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Abstract Geographical detector models provide a

quantitative approach for evaluating spatial correla-

tions among ecological factors, population density and

landscape connectivity. Here, we used a geographical

model to assess the influence of different gradients of

urbanization, human activities and various environ-

mental factors on the connectivity of urban forest

landscapes in Xiamen, China from 1996 to 2006. Our

overarching hypothesis is that human activity has

modified certain ecological factors in a way that has

affected the connectivity of urban forest landscapes.

Therefore, spatiotemporal distributions of landscape

connectivity should be similar to those of ecological

factors and can be represented quantitatively. Integral

indices of connectivity and population density were

employed to represent urban forest landscape connec-

tivity and human activity, respectively. We then

simulated the spatial relationship between forest

patches and population density with Conefor 2.6

software. A geographical detector model was used to

identify the dominant factors that affect urban forest

landscape connectivity. The results showed that a

distance of 600 m was the threshold of node impor-

tance. Mean annual temperature, mean annual precip-

itation, elevation, patch area, population density and

dominant species had significant effects on the node

importance. Mean annual temperature was moreElectronic supplementary material The online version of
this article (doi:10.1007/s10980-014-0094-z) contains supple-
mentary material, which is available to authorized users.
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significant than population density in controlling the

spatial pattern of the delta of the integral index of

connectivity (dIIC). The spatial interaction between

population density and various ecological factors as

well as their linearly enhanced or nonlinearity

enhanced urban forest landscape connectivity. In

conclusion, a combination of graph theory and geo-

graphical detector models is effective for quantita-

tively evaluating interactive relationships among

ecological factors, population density and landscape

connectivity.

Keywords Geographical detector model � Graph

theory analysis � Human activity � Landscape

connectivity � Subtropical monsoon Asia � Urban

forests

Introduction

Urban forest ecosystems are found in widespread areas

ranging from urban cores to exurbs. Urban forest

landscape connectivity has an important influence on

urban ecosystem services and functions (e.g., seed

migration and proliferation, animal migration, and gene

flow) and interferes with water infiltration and soil

erosion. Connectivity is directly related to the integrity,

sustainability and stability of urban ecosystems (Urban

et al. 2006). Maintaining landscape connectivity is a

crucial part of the sustainable planning and management

of urban forest landscapes (Wu 2013a).

Over the past decades, landscape connectivity

research has focused mainly on the role of connectiv-

ity in the interplay among multiple landscape func-

tions of natural ecological systems (e.g., coastal

plains, reefs, and forests) at different spatial scales

(e.g., patches, regions, and countries) (Gledhill et al.

2008; Garcia-Feced et al. 2011). Much research has

been conducted on the mechanisms of the interaction

between landscape connectivity and ecological pro-

cesses of various communities using different land-

scape models, metrics and software packages (Urban

and Keitt 2001; Galpern et al. 2011). Recent research

has emphasized the application of landscape models

combined with network analysis and landscape pat-

terns of graph theory (Decout et al. 2012; Martin-

Martin et al. 2013). Achievements have been made to

better understand the relationships between human

activity or landscape connectivity and urban species

diversity (Luque et al. 2012). However, an integrated

approach for quantifying human activities along

different urbanization gradients and their effects on

urban forest landscape connectivity, as well as the

interactions among various environmental factors, has

not yet been reported (Royle et al. 2013). Conse-

quently, additional efforts are needed to reveal the

mechanisms that explain how human activities influ-

ence changes in urban forest landscape connectivity

(Martin-Queller and Saura 2013).

The distribution patterns of urban forest landscapes

are associated with the mechanisms involved in forest

patch formation and with environmental factors (e.g.,

climate, topography, and geomorphology) that are

responsible for landscape patterns. As a result, the

interactions between urban forest patches and human

activity levels constantly shape urban forest landscape

patterns. Additionally, human activity in urban areas is

not only an important factor for driving urban

ecological processes but also a key source of heter-

ogeneity in urban forest landscapes. Thus, human

activity can change the quality of resources, spatial

positions and sizes of patches, and consequently the

landscape patterns (Partel et al. 2007). Unfortunately,

the interactions between human activity and urban

forest landscape connectivity are poorly understood

and evaluated. This shortcoming directly prevents an

accurate assessment of the relationship between the

levels of urban development and the conditions of

urban forests (Ahern 2013; Wu 2013a). A quantitative

analysis of this type of relationship represents a

contemporary research direction in the field of

ecological planning of urban forest landscapes (Wu

2013b).

Environmental variables affect the interactions

between human activity and urban forest landscape

connectivity and thus influence the overall evolution

of urban ecological systems. Various environmental

variables or factors with different coupling strengths

not only define urban forest structures but also

determine which ecological features and functions

exist in multiple biological communities. These vari-

ables also affect urban forest landscape patterns and

processes, where certain environmental factors may

even dominate the connectivity of urban forest land-

scapes (Schweiger et al. 2005). However, the nonlin-

earity and complexity of urban forest ecosystems

make it impossible to use a single method or model to
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conduct accurate and comprehensive assessments.

Thus, it is necessary to integrate various methods

when evaluating the effects of human activity on urban

forest landscape connectivity (Urban et al. 2006).

The integration of a geographical detector model

and graph theory provides a scientific basis for

quantifying the driving mechanisms of the influence

of human activities on urban forest landscape connec-

tivity. A geographical detector model is a creative

integration among various dominant ecological fac-

tors combined with logical reasoning and existing

statistical techniques (Wang et al. 2010). This type of

model not only addresses the spatial effects of

explanatory variables on the explained variables but

also helps reveal the interaction between the two types

of variables (Li et al. 2013). Graph theory provides an

explicit spatial description of landscape connectivity

and associates graph structures with patch character-

istics, ecological processes and thresholds. Graph

theory can also be used to build a comprehensive

index, such as the integral index of connectivity (IIC),

which has practical applications. Graph theory is an

important method for analyzing the structure and

function of landscape connectivity (O’Brien et al.

2006). Thus, the integration of different methods and

technologies can allow for a comprehensive consid-

eration of environmental variables in landscape eco-

logical planning and research. Environmental

variables normally include biotic (such as area, tree

species, forest age, and planting density) and abiotic

factors (such as climate, topography, and soil condi-

tions). Thus, an integrated approach can support more

comprehensive and accurate assessments of human

activity and landscape connectivity (Galpern et al.

2011).

The purpose of this study is to examine the effects

of human activities along a gradient of urbanization

and the effects of various environmental variables on

the connectivity of urban forest landscapes in Xiamen

City, China (Tang et al. 2013). The IIC and population

density were selected to represent urban forest land-

scape connectivity and human activity, respectively.

Conefor 2.6 software was combined with a geograph-

ical detector model to simulate spatial relationships

between forest patches and population density and to

identify the major factors that affect forest landscape

connectivity. Our hypothesis is that human activity

combined with certain ecological factors affect the

connectivity of the urban forest landscape and that the

spatiotemporal distribution of landscape connectivity

is therefore similar to the distribution of these

ecological factors. Our specific research questions

were as follows: (1) What are the critical spatial

thresholds at which urban forest landscapes are

aggregated? (2) Where do the changes in the connec-

tivity of urban forest landscapes occur? and (3) What

environmental factors have a dominant influence on

the connectivity of urban forest landscapes?

Materials and methods

The research methods of this study involved data,

mapping, tools, metrics and landscape connectivity

assessment outcomes (Fig. 1). The analysis proce-

dure consisted of three steps: (1) mapping landscape

units by integrating data from multiple sources,

including weather records, forest management plan-

ning inventory (FMPI) data, elevation and population

data; (2) selecting an appropriate threshold of

distance using FMPI data to map forest habitat

distribution and calculate the delta IIC (dIIC) values

of forest classes using Conefor 2.6 software; and (3)

clarifying the driving mechanisms in the geograph-

ical detector model by integrating multi-source data

and dIIC.

Our study area is Xiamen (24�250–24�540N,

117�530–118�250E), a city in southeastern China that

is characterized by a subtropical monsoon climate

with maritime influences (Zhao et al. 2013; Yang et al.

2014). Xiamen has 165,036.3 ha of urban forest

ecosystems consisting of suburban forest, exurban

forest, city parks, botanical gardens and greenbelts

that cover 45.60 % of the study area. Xiamen City

consists of six administrative districts, including

Siming, Huli, Jimei, Haicang, Tongan and Xiangan,

which spread approximately 70 km from the center of

the city northward. These six districts show a clear

gradient of urbanization: the urban cores of Siming

and Huli with a population density of 51 or more

persons/ha, the suburbs of Jimei and Haicang with

8–50 persons/ha, and the exurbs of Tong’an and

Xiangan with 8 or less persons/ha.

FMPI data obtained in 1996 and 2006 contained the

attributes of tree species composition, age group,

elevation, slope degree, direction, position, and site

index, which were averaged for every subcompart-

ment and georeferenced against topographic maps at a
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scale of 1:10,000. Population density data were

obtained from the governmental census database.

Meteorological data were collected from 11 weather

stations located in Xiamen metropolitan area. Digital

elevation model data were downloaded from http://

gdem.ersdac.jspacesystems.or.jp/ (see Table S1). The

maps of mean annual temperature (MAT) and mean

annual precipitation (MAP) in 1996 and 2006 were

generated using the thin plate smoothing spline sur-

face fitting technique in ANUSPLIN version 4.37. The

maps of population density in 1996 and 2006 were

generated with the kernel density model of ArcGIS

software.

To conduct a connectivity analysis based on local

urban forest conditions and previous studies, we

selected the areas with a forest canopy density greater

than 30 % and used 6 ha as the minimum patch size

(Fu et al. 2010; Liu et al. 2014). The main forest types

are Pinus massoniana Lamb, P. elliottii Engel,

Cunninghamia lanceolata Hook., Casuarina equiseti-

folia Forst, Acacia confusa Merr., and Eucalyptus

robusta Smith. The maximum dispersal distance of

1 km was used for the seeds of these tree species (Lü

and Ni 2013).

We used Conefor 2.6 software (http://www.

conefor.org) as a decision-making support tool (Sa-

ura and Torné 2009). This program uses the identifi-

cation and prioritization of critical sites to analyze

ecological connectivity (Saura et al. 2011) and is

widely used in network connectivity analysis (Galpern

et al. 2011; Decout et al. 2012; Luque et al. 2012). IIC

was selected because it exhibits reliable properties that

can be usedn to quantify inter- and intra-patch con-

nectivity using values ranging from 0 to 1: larger IIC

values indicate sites with better connectivity. IIC not

only makes data acquisition easier but also is more

sensitive to the presence of connecting elements. IIC

was calculated as follows:

IIC ¼
Pn

i¼1

Pn
j¼1

aiaj

1 þ nlij

A2
L

ð1Þ

where ai is the area of forest patch i, aj is the area of

forest patch j, nlij is the number of links in the shortest

paths between patches i and j within the threshold

dispersal distance (also referred to as effective paths),

n is the number of patches, and AL is the total

landscape area (including forest and non-forest areas)

(Pascual-Hortal and Saura 2006).

The importance of a node can be expressed

relatively as follows:

dIIC ¼ 100 � I � Iremove

I
ð2Þ

where I is the IIC value when all of the initially

existing nodes are present and Iremove equals the IIC

when any single node is removed (Saura and Pascual-

Hortal 2007).

Fig. 1 Scheme of the

proposed methodology. The

data of three steps were

processed using Conefor 2.6

software and a geographical

detector model
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In this study, the rank of dI was used to represent the

patch accounting for the proportion of the importance

of the entire urban forest network in Xiamen.

In addition to IIC, the degree and betweenness

centrality (BC) indices were used to identify crucial

patches. The degree of a node measures the numbers

of links for this node in a network, and BC is an index

representing node centrality in the network. High BC

nodes, which may have a low degree index value, are

located at the convergence of paths and function as

‘‘bridges.’’ BC is equal to the number of shortest paths

from all vertices to all others that pass through that

node. The BC for node k (BCk) is defined as the sum of

all the effective paths (gij(k)) between all pairs of

patches (i, j = k) that go through k divided by the total

number of effective paths (gij) between each pair of

patches (i, j = k). The calculation of BCk is as

follows:

BCk ¼
X

i

X

j

gijðkÞ
gij

ð3Þ

In addition to the complex connectivity indices,

other simple binary indices were also used, such as the

total number of links (NL), the number of components

(NC), and the number of paths.

A geographical detector model detects various

factors influencing the distribution of patches, the

degree of influence of each factor and the interaction

between factors based on spatial analysis of variance.

Geographical detector models have been successfully

used to explore determinants and their interaction

with neural tube defects (Wang et al. 2010), mortality

in children under 5 years old, and fluoroquinolone

residues in the soil (Li et al. 2013). The software

(www.sssampling.org/geogdetector) is based on the

spatial consistency of variables, including a factor

detector, an ecological detector, and an interaction

detector. The factor detector is used to explore the

impact of different factors on the research target; the

ecological detector is used to explore the impacts of

different levels of significance on those factors; and

the interaction detector is used to explore the impacts

of the combinations of different impact factors on the

research target. We used a geographical detector

model to analyze impact factors that result in the

variations in dIIC in forest patches. We first classified

the dIIC values and all the impact factors by using the

equal interval classification. We then loaded the

distribution layers of all the impact factors and dIIC

into ArcGIS. We intersected all the layers including

dIIC and all the impact factors into one layer to

extract all the impact factors’ attributes of the dif-

ferent layers. All the different impact factor values

were input into the geographical detector model for

runs. For additional details, please see Appendix

Method 1.

Differences in dIIC among groups were examined

using a t test for two groups or one-way analysis of

variance followed by multiple comparison tests when

more than two groups were compared. Games-Howell

tests (paired comparisons when the variance had no

homogeneity) were used when variances were heter-

ogeneous (Levene’s test), and Tukey’s tests (paired

comparisons among all the mean values of each group

using the Student-Range statistical method) were used

when variances were homogeneous. Statistical signif-

icance was determined at p \ 0.05. Statistical analy-

ses were conducted in SPSS version 16.0 (SPSS Inc.,

Chicago, IL, USA).

Results

Analysis of the optimal threshold distance

The number of components and the number of patches

in the largest components were evaluated at different

threshold distances (i.e., 50, 100, 200, 400, 600, 800,

1,000, 1,200, 2,000, 3,000, 4,000, 5,000, and

10,000 m) to determine the optimal threshold distance

of connectivity. In 1996, at shorter threshold distances,

NC decreased rapidly, and the number of patches of

the largest component increased sharply with

increases in threshold distance (Fig. 2). Specifically,

when the interval was changed from 50 to 600 m, NC

decreased from 224 to 43, and the number of patches

of the largest component increased from 15 to 226. In

addition, with the same changes in interval, the area of

the largest component increased from 2,009 to

27,442 ha, and the proportion of the total area of the

selected patches increased from 6.4 to 87.0 %. In

2006, similar dramatic trends were observed when the

threshold distances increased from 50 to 600 m. While

NC decreased from 160 to 35, the number of patches

of the largest component increased from 29 to 156, and

the area of the largest component increased from
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6,146 ha (16.4 %) to 30,638 ha (81.5 %). However,

only minor changes were observed beyond the 600-m

threshold distance in both 1996 and 2006. This pattern

implies that the landscape types were relatively

homogeneous and that the landscape was consistently

connected.

The contribution of different sizes of patches to

connectivity at various threshold distances is repre-

sented by node importance. The optimal threshold

indicates the importance of not only large nodes but

also small and medium nodes. Small nodes clearly had

lower importance than medium and large nodes at a

50 m threshold distance, after which small and

medium nodes became more important before becom-

ing less important again after a 600-m threshold

(Fig. 3). Large nodes played a crucial role in land-

scape connectivity because patch area was the node

attribute used to calculate IIC. The significance of

small nodes proved difficult to determine. Conse-

quently, small or medium nodes should be examined

in addition to large nodes under the optimal threshold

(Fig. 4).

Spatiotemporal distribution of the connectivity

of forest patches

We defined ALC as the area of the largest component

and F* as the ratio of ALC to ATOT, the total forest area

from all patches (Ferrari et al. 2007). A total of

25,909.5 ha, accounting for 82.2 and 69.0 % of the

vegetation patches in 1996 and 2006, respectively,

remained unchanged between 1996 and 2006 (Fig. 5).

Emerging patches accounted for 31.0 % of the area of

the target patches in 2006. Approximately 17.8 % of

the target patches in 1996 had vanished in 2006.

In 1996, 314 patches with areas of 6 ha or above

covered a total area of 31,534.7 ha, and the mean

patch area was 100.4 ha. The ten largest patches

constituted 52.5 % of the total area. In 2006, Xiamen

had 236 patches with a total area of 37,576.6 ha, and

the mean patch area was 159.2 ha. The ten largest

patches accounted for 64.7 % of the total area.

In both 1996 and 2006, the IIC values increased

with threshold distance (Fig. 6). Under the optimal

threshold distance of 600 m, the IIC values for urban

cores decreased slightly from 1996 (F1996
* = 87.0 %)

to 2006 (F2006
* = 81.5 %), whereas the IIC values for

suburbs and exurbs increased. However, the connec-

tivity of the entire urban landscape was improved by

66.0 % (Table 1).

The distribution of forest importance varied greatly

from 1996 to 2006, and the landscape became more

connected in 2006 (Fig. 7). Urban-core forest patches

in 2006 essentially included the same physical areas as

in 1996. However, suburban forest patches, which

were loosely connected at the edges of administrative

boundaries in 1996, were polarized into two large

clusters in 2006. The isolation of these patches that

occurred between 1996 and 2006 resulted in worsen-

ing connectivity. Nevertheless, the emergence of new

patches led to a modest growth in connectivity.

Exurban connectivity increased dramatically due to

large emerging ecological patches, which connected

these initially isolated small patches. As a result,

overall connectivity increased significantly in Xiamen

from 1996 to 2006.

Fig. 2 Changes in the number of components and the number of patches of the largest component under different thresholds in 1996

(a) and 2006 (b)
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Factors influencing dIIC

The downward trends in dIIC values in urban core and

suburban areas contrast with the upward trend in dIIC

values in exurbs (Fig. 8). The mean node importance

increased from 10.96 (1996) to 15.80 (2006) in

Xiamen (Table 2). However, patch importance in

urban core and suburban areas experienced decreases

over time (Fig. 8). An ascending trend with a change

in dIIC values was observed for forest types and age

classes (excluding over-mature forest) in exurbs

(Fig. 8).

Fig. 3 Variations in the

delta values of the integral

index of connectivity (dIIC)

for various sizes (ha) of the

patches under different

distance thresholds in 1996

(a) and 2006 (b). The red

plots represent the selected

threshold. (Color figure

online)
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Fig. 4 Euclidean networks for Xiamen in 1996 and 2006. Blue lines represent links; yellow circles located at the centroid of the patch represent

nodes; red numbers on the circles represent degrees. Circle diameters increase with the betweenness centrality score. (Color figure online)

Fig. 5 Changes in the patches for Xiamen from 1996 to 2006
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The population density in Xiamen increased from

565.0 ± 12.6 (mean ± standard error) people ha-1 in

1996 to 755.5 ± 11.9 people ha-1 in 2006 (t-test,

p \ 0.01) (Table 3). In both years, the population

density was largest in urban cores and lowest in

exurbs. The population density increased significantly

(p \ 0.05) from 2,085.6 ± 37.8 people ha-1 in 1996

to 2,789.0 ± 48.5 people ha-1 in 2006 in urban cores;

from 503.6 ± 13.7 people ha-1 in 1996 to 673.4 ±

20.4 people ha-1 in 2006 in suburbs; and from

394.9 ± 8.1 people ha-1 in 1996 to 528.1 ±

6.2 people ha-1 in 2006 in exurbs (Table 3).

From 1996 to 2006, forest area in Xiamen

decreased by 10.3 %, from 83,928 to 75,251 ha;

meanwhile, stand density decreased from 2,106 stems

ha-1 in 1996 to 1,932 stems ha-1 in 2006 (p \ 0.05).

The mean diameter at breast height (DBH) increased

from 6.16 cm in 1996 to 11.26 cm in 2006, and mean

tree height increased from 5.97 m in 1996 to 7.62 m in

2006) (p \ 0.01). However, no significant change was

found in the stand age between 1996 and 2006

(p [ 0.05) (Table 2). In addition, topographical vari-

ables (e.g., slope angle, slope position and slope

direction) did not change significantly between 1996

and 2006. A significant difference (p \ 0.01) was

observed among the ecological factors along the

urbanization gradient. For details, see Ren et al.

(2011a) (Table 2, Appendix Fig. S1).

Among the 12 selected factors, the major factors

influencing node importance, listed in order of

decreasing q value, were the MAT, MAP, elevation,

patch area, population density and dominant species

(Fig. 9). The MAT, MAP and elevation were more

significant than population density in controlling the

spatial pattern of the dIIC in 1996, whereas only the

MAT was more significant than population density in

2006. However, under the different levels of urbani-

zation, the influential factors varied (Table 3). Patch

area (q values of 0.81 in 1996 and 0.69 in 2006) and

population density (0.28 in 1996 and 0.18 in 2006)

controlled the node importance in the urban core. Only

elevation was more significant than population density

in 2006. For the suburb, aside from patch area and

population density, biological factors (dominant spe-

cies and age class) and topographical factors (slope

angle and slope direction) also exerted effects. Only

slope direction was more significant than population

density in 1996. Regarding the exurb, the influence of

population density was absent. The node importance

was dominated by abiotic factors (MAP, elevation and

MAT), and biotic factors (patch area and dominant

species) played a smaller role. MAT, MAP, elevation

and dominant species were more significant than

Fig. 6 Changes in the IIC under different thresholds in 1996

and 2006

Table 1 A comparison of

various landscape

measurements among urban

cores, suburbs and exurbs,

as well as the temporal

changes in these

measurements from 1996

and 2006

Year Boundary NL NC IIC Patch number

of the largest

component

Total area of the

patch components

(ha)

1996 All regions 470 43 0.00712 226 31,431.5

Urban core 18 9 0.01944 8 2,254.8

Suburb 74 12 0.01439 26 8,220.7

Exurb 380 24 0.00854 201 20,956.0

2006 All regions 341 35 0.01182 156 37,479.6

Urban core 13 8 0.01819 6 2,232.5

Suburb 26 8 0.01632 14 9,145.8

Exurb 304 22 0.01824 154 26,101.3
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population density in controlling the spatial pattern of

dIIC in 1996, whereas none of the 12 selected factors

was more significant than population density in 2006.

In addition, a linearly enhanced or nonlinearly

enhanced interaction was observed for all relation-

ships between population density and the 12 selected

factors (Tables S3, S4, S5 and S6) (population density

\ ecological factor) [ (population density ? ecolog-

ical factor) or (population density \ ecological

factor) [ (population density, ecological factor)

(Table 4).

Discussion

Construction of a comprehensive index of urban

forest landscape connectivity

Recently, increasingly complex indices of landscape

connectivity based only on mathematical statistics or

topological calculations have been developed. How-

ever, these indices have failed to reveal the construc-

tion, composition and functional characteristics of

landscapes (Table S2) (Devi et al. 2013). How should

b Fig. 7 Landscape connectivity (dIIC) in 1996 and 2006. Zones

A, B, C and D are zoomed-in views of the regions with

significant changes. There is polarization of the forest patches in

zone A, partial fragmentation in zone B, the merging of initial

isolated small patches in Zone C and the expansion of connected

patches in Zone D

Fig. 8 Changes in the delta values of the integral index of connectivity (dIIC) among urbanization levels, forest types and age classes.

Lowercase letters indicate significant differences between 1996 and 2006 (P \ 0.05)

Table 2 A comparison of delta values of the integral index of connectivity (dIIC) and stand attributes among urban cores, suburbs

and exurbs, as well as the temporal changes in these statistics from 1996 and 2006

Level Year dIIC Stand age

(year)

Mean DBH

(cm)

Mean height

(m)

Stand density

(Stems ha-1)

Stand volume

(m3 ha-1)

All 1996 10.96 ± 0.27 24.20 ± 0.26 6.16 ± 0.14 5.97 ± 0.06 2,106 ± 25 52.55 ± 1.66

2006 15.80 ± 0.28 23.77 ± 0.20 11.26 ± 0.09 7.62 ± 0.12 1,932 ± 15 53.06 ± 0.79

Urban core 1996 1.98 ± 0.02 33.59 ± 0.45 10.78 ± 0.19 6.88 ± 0.16 1,254 ± 46 50.26 ± 1.60

2006 0.83 ± 0.03 36.63 ± 0.50 15.34 ± 0.30 10.22 ± 0.43 1,574 ± 23 52.62 ± 1.01

Suburb 1996 15.72 ± 0.45 29.81 ± 0.38 8.70 ± 0.23 6.99 ± 0.08 1,782 ± 35 87.63 ± 3.35

2006 2.36 ± 0.23 29.95 ± 0.48 11.34 ± 0.40 9.06 ± 0.77 1,836 ± 35 69.08 ± 4.06

Exurb 1996 9.98 ± 0.38 24.77 ± 0.36 6.47 ± 0.20 6.34 ± 0.08 2,124 ± 33 53.02 ± 22.49

2006 19.32 ± 0.32 21.68 ± 0.22 10.95 ± 0.08 7.18 ± 0.05 1,980 ± 17 50.31 ± 0.69

Data are presented as the mean ± SE (standard error)
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metrics used to assess the connectivity in urban

ecosystems be developed? (Goodwin 2003). IIC can

quantify ecological connectivity and identify regions

that have extensive ecological connectivity and enable

the matching of all types of ecological factor infor-

mation from multiple sources. Thus, IIC is considered

the best index for estimating spatial variations of

functional landscape connectivity. However, because

the integration of human activities has not been

considered with various types of ecological factors,

IIC fails to explain the most valuable features and

functions of urban forest landscape connectivity.

Thus, this index is rarely used in landscape monitoring

(Freudenberger et al. 2013). In the present study, we

used graph theory analysis to integrate various types of

ecological factors and used the geographical detector

model to explore the impact of population density on

IIC index. This approach provided a theoretical basis

for the establishment of a more comprehensive and

improved landscape connectivity index.

Urban forest landscape patterns and processes

based on network analysis

Previous studies have often relied on remote sensing

image interpretation and have not identified each

Table 3 Relative

importance of forest

characteristics, climate,

topography and population

to the delta values of the

integral index of

connectivity (dIIC) for

urban cores, suburbs and

exurbs in 1996 and 2006

Factors Urban core Suburb Exurb

1996 2006 1996 2006 1996 2006

Patch area 0.813 0.694 0.860 0.923 0.193 0.140

Dominant tree

species

0.039 0.073 0.265 0.346 0.092 0.082

Canopy density 0.001 0.008 0.021 0.146 0.005 0.015

Age class 0.044 0.159 0.157 0.328 0.045 0.041

MAT 0.001 0.694 0.005 0.844 0.192 0.095

MAP 0.001 0.052 0.005 0.056 0.363 0.251

Elevation 0.001 0.005 0.005 0.017 0.264 0.310

Slope degree 0.031 0.078 0.197 0.372 0.016 0.003

Slope position 0.029 0.014 0.068 0.141 0.036 0.032

Slope direction 0.064 0.103 0.365 0.363 0.026 0.033

Site index 0.015 0.017 0.018 0.018 0.006 0.020

Population density 0.280 0.175 0.237 0.269 0.056 0.102

Fig. 9 Relative importance of forest characteristics, climate,

topography and population to the delta values of the integral

index of connectivity (dIIC). PA patch area, DS dominant

species, CD canopy density, AC age class, MAT mean annual

temperature, MAP mean annual precipitation, ELE elevation,

SDe angle of slope, SPo slope position, SDi slope direction, SI

site index, PD population density
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independent block. Some scholars even believe that

only remote sensing imagery can be effectively used to

explain the relationship between landscape patterns

and processes (Baggio et al. 2011; Cushman et al.

2011). The problem with remote sensing is that the

images only depict changes in forest area but fail to

reflect changes in structure and function. As a result,

important information related to the block is missing.

In addition, image resolution and mapping methods

affect the accuracy of landscape modes. Therefore,

considering an index of the sensitivity of measurement

data and an index that changes with spatial resolution

is necessary when using a landscape connectivity

index to describe landscape patterns (Ren et al. 2011a;

Ren et al. 2012). In the present study, we integrated a

variety of ground-based observations and detailed

survey data (i.e., census data, a forest inventory, and

weather data). Based on the consistency of spatial and

temporal scales, we used spatial interpolation tech-

niques to generate spatial and temporal distribution

diagrams of IIC landscape connectivity, population

density and various ecological factors. This approach

proved to be effective to study socially driven forces of

urban forest landscape patterns to facilitate planning

for urban forests with multiple ecological functions

(Ahern 2013).

Development of quantitative measurement tools

of landscape connectivity in the ecological

planning of urban forest landscapes

A number of previous landscape connectivity models,

such as the incidence function, neutral, and capture-

recapture models, have made assumptions that clarify

the interactions between urban population density and

urban forest landscape connectivity, require direct

observation and verification (Janin et al. 2009). In this

study, we used the geographical detector model, which

can detect dominant factors and interactions and extract

implicit interactions among population density, ecolog-

ical factors and landscape connectivity to quantify

nominal data without any preconditions or limiting

conditions (Wang and Hu 2012). Urban forest connec-

tivity, as affected by the interactions between human

activities and multiple ecological factors, has been

combined with the design and analysis of ecological

networks in a wide range of studies of forest landscape

composition and the mechanisms that affect the spread

of species (Richard and Armstrong 2010).T
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Continuous afforestation projects effectively

select and use forest patches

Since the 1990s, a worldwide campaign encouraging

reforestation and afforestation has increased the extent

of tropical and subtropical forests by 2.8 Mha per

year. Although previous studies evaluated a large area

of forest connectivity, they did not apply ecological

factors involved in the protection and planning of

forest landscapes (Ren et al. 2011b). Current refores-

tation projects rarely consider spatial correlations of

forest ecological factors and the role of multiple urban

forest ecological functions in landscape planning

(Garcia-Feced et al. 2011). Our study focused on both

dynamic processes within the urban forest area and

forest landscape connectivity during a reforestation or

afforestation project. We also built multiple ecological

services and functions of new forests from the

perspective of forest network analysis. Our sugges-

tions may apply to other forest regions in eastern Asia

and have practical value in wildlife resource planning

and landscape design. In addition, our approach can

provide a useful diagnosis of urban landscape condi-

tions and provide guidelines for afforestation projects

that aim to improve urban forest landscapes.

Critical thresholds of connectivity in urban forest

landscapes

Our results showed that in both 1996 and 2006, NC

and the number of patches in the largest components

changed only gradually beyond the 600-m threshold

distance. Taking a graphical-theoretical approach,

many researchers have examined the critical thresh-

olds for resources, energy and organisms. These

earlier studies failed to describe the general patterns

of connectivity because different species respond

differently to dispersal distances. Recently, the most

common method employed has been to graphically

compare many linking thresholds and analyze the

tendency or the connection of study organism clusters.

Our results for 13 threshold values, including the

distance of the spread of the main species in urban

forest areas, are consistent with the results of other

published studies. For example, our results revealed a

larger threshold of connectivity than the results of

Andersson and Bodin (2009), who used a link

threshold of 50 m for coal tits in an urban landscape

of Sweden. Our threshold of connectivity is lower than

that of Brooks (2006), who analyzed the pattern of

hierarchical clustering for two populations, first

among a fungal pathogen population at an extent of

1,000 m and second among the gene flow in a

salamander species across a subcontinental range.

Our results agree with those of O’Brien et al. (2006),

who studied the distribution of woodland caribou in

Manitoba, Canada. O’Brien et al. (2006) found that the

range of scales (500 to 1,900 units) was associated

with clusters that are larger than average for the

landscape, revealing that caribou select larger areas of

functionally connected habitat at these thresholds.

Differences in the selection of the landscape connec-

tivity threshold are mainly related to the distance that a

species spreads, the enforceability of landscape con-

nectivity, research purposes at different levels and the

internal and external factors of landscapes. Therefore,

a deep understanding of the threshold distance is

important in the prioritization of landscape connec-

tivity if the landscape elements are to be accurately

measured (Lookingbill et al. 2010; Moilanen 2011).

Spatiotemporal heterogeneity of important values

of connectivity in urban forest landscapes

The distribution of urban forest connectivity impor-

tance varied greatly in 1996 and 2006 along an

urbanization gradient (Fig. 4). This finding shows that

human activities have had both positive and negative

effects on urban forest landscape connectivity during

different stages of urbanization (Liu et al. 2006). In

addition, the expansion of built-up land leads to a

steady decline in forest landscape connectivity and

forest area (Joshi et al. 2009). With increased intensive

agricultural activity, afforestation projects may trans-

form croplands into forest and steadily improve forest

landscape connectivity and forest area (Tang et al.

2010). As a consequence of human activities and other

ecological processes, the spatiotemporal heterogene-

ity of important values of urban forest landscape

connectivity changes characteristically.

Zones A, B, C and D (Fig. 7) underwent substantial

changes in exurban regions. The new ecological

patches connected with initially isolated small patches

led to a modest increase in connectivity. Numerous

studies suggest that ecological habitat fragments that

provide stepping stones for species from one habitat to

another in a city have little impact on species that are

easily dispersed (Urban and Keitt 2001). However, for
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most species that have a moderate ability to spread, a

workable pattern can be achieved by linking large

patches across the entire landscape and promoting the

dynamic contact of urban blocks throughout the

landscape; this approach plays an important role in

the maintenance of ecological connectivity (Soga and

Kaike 2013). The current results suggest that human

activities have focused on high-value urban blocks in

exurban areas and have enhanced the connectivity

between blocks by building stepping stones. However,

whether a stepping stone is efficient in maintaining

connectivity between species must be further studied

for specific species (Galpern et al. 2011).

Interactions between human activities and urban

forest landscape connectivity

During rapid urbanization, MAT, MAP, elevation,

patch area, population density and dominant species

have strong effects on the importance of nodes.

Although many studies have considered the ecological

factors that affect landscape connectivity, the majority

have focused on specific ecological factors. Research

considering the effect of multiple ecological factors

and human activities on landscape connectivity and

confirming the dominant factors appears to be scarce.

Saura et al. (2011) considered forest area to be an

important factor affecting landscape connectivity and

found the total amounts of energy and matter to be

directly proportional to the area of a block. In other

words, a larger block will have more ecological

functions. A reduction in forest area and an increase in

forest landscape fragmentation would lead to a

reduction in landscape connectivity. Martı́n-Queller

and Saura (2013) found that precipitation is the major

determinant of species abundance. Changes in species

abundance start with the complex interaction of

environmental factors and then dissipate throughout

the relevant habitat due to habitat loss and fragmen-

tation. However, our study integrated a wide variety of

ecological factors on the same GIS platform and

performed a comprehensive comparison of these

factors, which directly affect landscape connectivity.

MAT was more significant than population density

in controlling the spatial pattern of dIIC in 1996 and

2006. This finding may be related to two factors. First,

human activities dramatically affect both abiotic (e.g.,

light, temperature and humidity) and biological envi-

ronments, which leads to forest growth. Second, the

impact of human activities on urban forests is clearly

related to location (Martin-Martin et al. 2013). Human

activities severely affect locations that have conve-

nient transportation, flat topography and a forested

landscape around cities. However, human activities

have little effect on distant, high-elevation forest

landscapes. MAT is more significant than population

density in controlling urban forest connectivity in

Xiamen because the majority of urban forests are

located in exurban areas.

The interaction between population density and

ecological factors nonlinearly enhanced urban forest

connectivity. Thus, in complex human-natural eco-

systems, human activities together with complex

ecological factors promote urban forest connectivity,

and the interaction has a greater effect on urban forest

landscape connectivity than any ecological factor

alone. With increased urbanization, urban forest

landscape connectivity will continue to increase.

Previous research has mainly employed multivariate

statistical analysis combined with graph theory to

focus on the diversity of human activities, animals and

plants as well as the interaction between animal and

plant diversity with landscape connectivity (Martin-

Martin et al. 2013). Little attention has been paid to the

interactions between human activities and urban forest

landscape connectivity. In fact, there is an indirect

interaction between human activity and species diver-

sity. Human activities profoundly change the connec-

tivity of urban forest landscapes with species diversity

through the construction of roads, the development of

corridors and the establishment of protected areas

(Schweiger et al. 2005). Although differences exist

among different species in their response to continu-

ous increases in connectivity, our study illustrated the

driving mechanisms for the increase in urban forest

landscape connectivity to aid in sustainable ecological

landscape planning.

Recommendations and further study

We propose the following recommendations based on

our results. First, software tools or models related to,

and methods for analyzing, landscape connectivity

must be developed. New theories should also be

explored, and these methods and theories should be

applied to urban forest management practices during

landscape planning. Second, landscape patterns and

population density should be combined to allow for
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dynamic networking observations. We should focus

on population density and landscape connectivity to

improve the diversity of urban forest landscapes and

consider the direct and indirect effects of each

ecological factor along the urban–rural gradient.

Finally, policies that protect the landscape based on

the changing trends and driving mechanisms of urban

forest landscape connectivity are needed in urban

zones with different gradients. Urban core manage-

ment should focus on preventing a reduction in the

forested area of urban areas. The analysis of suburbs

should account for a wide variety of ecological factors

affecting landscape connectivity, and exurbs should

build interconnections between blocks with strong

landscape connectivity.

Each landscape connectivity index has different

ecological relevance. Additional studies are needed to

compare relationships between multiple landscape

connectivity indices and population density. These

studies should use networked observations so that

graphical and theoretical methods can be combined to

establish a comprehensive index of urban forest

landscape connectivity based on different importance

values. In addition, differences in economic develop-

ment and cultural traditions in different countries may

create different interactions between human activities

and urban forest landscape connectivity. As a result,

the construction of an urban forest landscape connec-

tivity index cannot simply be copied from one area to

another and requires networking research at multiple

spatial and temporal scales capable of addressing local

needs. Further, several limitations still exist for

geographical detector models. For example, we must

apply a geographical detector model in a natural

setting when selecting target species rather than

limiting its application to research studies associated

with human activities. In addition, we should explore

various ways to validate the accuracy of model results,

encourage the study of interdisciplinary coupling and

develop potential applications of the geographical

detector model to other analysis areas worldwide,

including North America and Europe.

Conclusions

This study was supported by integrated field data from

multiple sources, including forest resource planning and

design survey data, population census data and

meteorological records. Through the use of these data,

interactive relationships among various factors were

examined and related to the spatial distribution of

ecological factors. New knowledge related to these

factors was gained for the analysis of the mechanisms

and influence of human activities on urban forest

landscape connectivity in Xiamen City, China. This

multi-source, data-based analysis using geographical

detector models is an effective approach for quantita-

tively characterizing the interaction relationships among

ecological factors, population density and landscape

connectivity. This new method is particularly useful for

urban landscape ecology research because it quantifies

the impacts of human activity on landscape connectivity

based on a complex set of factors.

The results of our analysis showed that the thresh-

old of node importance was 600 m. MAT, MAP,

elevation, patch area, population density and dominant

species had strong effects on node importance. MAT

was more significant than population density in

controlling the spatial pattern of dIIC in 1996 and

2006. The interaction between population density and

various ecological factors as well as their linearly or

nonlinearity helped enhance urban forest landscape

connectivity. Although field survey data that were

collected and analyzed were directly applicable only

to Xiamen City, our research methods and analysis

procedures can be broadly applied in urbanized

regions where different levels of human activity exist

across landscapes.
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