GEODETECTOR:

CREATING RANDOMNESS AND WORKING WITH HETEROGENEITY IN BIG DATA OR SURVEY DATA

Jinfeng WANG

wangjf@Lreis.ac.cn State Key Laboratory of Resource & Environmental Information System Institute of Geographical Science & Nature Resources Research Chinese Academy of Sciences Beijing 100101, China www.geodetector.cn

2022-11-22

Statistics & Spatial Data
Spatial Stratified Heterogeneity (SSH)
Causation of/by SSH
9 Stories
Discussion
Conclusion

Science has been based on two great achievements: formal logical system and the causal relationships by systematic experiment.

-- 1953, Einstein Archive 61-381

Sampling:Population:Random & RepeatIdentical Distribution

Statistical Experiment

Sampling:Population:Random & RepeatIdentical Distribution

Statistical Experiment

Bias; Confounded; Misleading CI

Neglect the data features Removed by assumption

80% of Data Has Spatial Component

(1987 Williams)

Sampling: Neither Random Nor Repeated Meteorological stations in 1900 and meteorological zones in China

Population: Spatial Stratified Heterogeneity

Biased Statistic

Wang JF, Xu CD, Hu MG, et al. 2014. JGR 119(1): 1-9.

Confounded

	Treatment A			Treatment B			
	Works	Total	W/T	Works	Total	W/T	
Small Stone	81	87	93%	234	270	87%	
Large Stone	192	263	73%	55	80	69%	
Overall	273	350	78%	289	350	83%	
Charig CR et al. 1986 Br Med I (Clin Res Ed) 292 (6524): 879-882							

Misleading CI

Xu L, et al. 2011. PNAS

are sourced from:

Spatial Stratified Heterogeneity

Spatial Stratified Heterogeneity offers benefits:

Strata: Spatial Pattern

Overlay: General Interact

btw Strata: Nonlinear Cause

Statistics & Spatial Data **Spatial Stratified Heterogeneity (SSH)** Causation of/by SSH 9 Stories Discussion Conclusion

Find an overarching theme or concept with which to structure my heterogeneous materials.

-- Tuan Y-F. Space and Place: The Perspective of Experience University of Minnesota Press (2001), p.v.

Spatial Stratified Heterogeneity (SSH) within strata is more similar than between strata

- $q \in [0, 1], Y$ has 100q% degree of SSH
 - = 0, if *Y* has no SH
 - = 1, if Y is fully SH

Wang JF, Zhang TL, Fu BJ. 2016. A measure of spatial stratified heterogeneity. Ecological Indicators 7: 250-256.

 $\frac{N-L}{L-1}\frac{q}{1-q} \sim F(L-1, N-L; \lambda)$

Spatial Stratified Heterogeneity

Goodchild M. 1986. CATMOG, GeoBooks, Norwich Wang JF, Zhang TL, Fu BJ. 2016. A measure of spatial stratified heterogeneity. Ecological Indicators 67: 250-256. Statistics & Spatial Data
Spatial Stratified Heterogeneity (SSH)
Causation of/by SSH
9 Stories
Discussion
Conclusion

Correlations cry out for explanations.

-- Bell JS. Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press (1987), p.152.

Association + Info \rightarrow Causation

百世修来同船渡

千世修来共枕眠

Wang JF, Li XH, Christakos G, et al. 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. International Journal of Geographical Information Science 24(1): 107-127.

Interaction: $Y \leftarrow X1 \cap X2$

Wang JF, Li XH, Christakos G, et al 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. International Journal of Geographical Information Science 24(1): 107-127.

Statistics & Spatial Data Spatial Stratified Heterogeneity (SSH) Causation of/by SSH **9 Stories** Discussion Conclusion

9 Stories

Geodetector q

- 1 Test existence of a spatial pattern (NDVI pattern in China)
- 2 Find SSH, then modelling in strata (Lung cancer in US)
- 3 Determinants' spectrum, global (Birth defects in a county)
- 4 Determinants' spectrum, in regions (Land dissection in US)
- 5 Determinants' spectrum, in modules (Three eco-services)
- 6 Determinants' spectrum, evolution (Hu line in 80 years)
- 7 General interaction (Virus and meteorological factors)
- 8 Spatial Goodness of Fit (Global mortality & temperature)
- 9 Geodetector +
 - (1) Kriging (Mapping soil organic carbon)
 - (2) GWR (Spread pattern of COVID-19)
 - (3) InSAR (Ground deformation)
 - (4) Google Earth Engine (Land use changes & drivers)
 - (5) SWAT (Water conservation function)
 - (6) BHM (POI urban vibrancy)
 - (7) ...

Story 1. Spatial Pattern of NDVI

Story 2. Kriging in Strata

Merge two watersheds if their SSH is insignificant,

so Kriging would be more accurate by avoiding the error in border btw strata

Yang JT, et al. 2022. Chain modeling for the biogeochemical nexus of cadmium in soil-rice-human health system. Environment International 167 (2022) 107424

Story 3. Determinants of Neural Tube Defects

Environment q (watershed 0.47, lithozone 0.39, soil 0.19) controls NTD. Nutrition q (food 0.18) > Pollution q (fertilizer 0.09) in controlling NTDs. Interaction: ancient materials released from faults (q = 0.19) then spreading along slopes (q = 0.09) dramatically increase the risk of NTDs (q = 0.86).

Wang JF, Li XH, Christakos G, et al. 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. International Journal of Geographical Information Science 24(1): 107-127.

Story 4. Determinants of Dissection in Regions

Table 2. Factor or Factor Interaction With Maximum q Value

Physiographic Division/Province Name (#)	Dominant Factor	q	Dominant Interaction	q
Appalachian Highlands (1)	litho	0.49	litho ∩ elev	0.58
Atlantic Plain (2)	planc	0.46	elev ∩ precip ^a	0.62
Interior Highlands (3)	logk	0.31	logk∩ precip	0.47
Interior Plains (4)	planc/tanc	0.29	litho∩planc/litho∩tanc	0.40
Interior Low Plateau (4a)	litho	0.21	logk∩litho/logk∩difelev	0.34
Central Lowlands (4b)	glaci	0.36	glaci∩planc/glaci∩tanc	0.52
Great Plains (4c)	planc	0.24	$\log k \cap \text{litho}/\log k \cap \text{tanc}$	0.34
Intermontane Plateaus (5)	litho	0.31	litho ∩ slp	0.37
Colorado Plateau (5a)	litho	0.13	litho ∩ planc	0.20
Basin and range (5b)	litho	0.35	Litho ∩ slp/litho ∩ tanc	0.41
Columbia Plateau (5c)	litho	0.33	litho∩ precip	0.46
Laurentian Upland (6)	litho	0.23	litho∩tanc	0.32
Pacific Mountain System(7)	elev	0.28	elev ∩ precip ^a	0.43
Rocky Mountain System (8)	litho	0.10	litho∩tanc/litho∩slp	0.18

Luo W, Jasiewicz J, Stepinski T, et al. 2016. Spatial association between dissection density and environmental factors over the entire conterminous United States, *Geophys. Res. Lett.* 43: 692–700

Story 5. Determinants of Eco Service in Modules

	Biop_Factor	Clim_Factor	Dev_Factor	EndStress_Fac	Ldeg_Fac	Soceco_Fac
(a)						
Biop_Factor	0.114					
Clim_Factor	0.774	0.670				
Dev_Factor	0.225	0.713	0.015			
EndStress_Fac	0.680	0.753	0.569	0.509		
Ldeg_Fac	0.649	0.709	0.632	0.581	0.477	
Soceco_Fac	0.620	0.780	0.359	0.684	0.687	0.206
(b)						
Biop_Factor	0.050					
Clim_Factor	0.221	0.051				
Dev_Factor	0.419	0.282	0.202			
EndStress_Fac	0.294	0.300	0.421	0.138		
Ldeg_Fac	0.176	0.094	0.305	0.210	0.019	
Soceco_Fac	0.625	0.460	0.496	0.647	0.528	0.395
(c)						
Biop_Factor	0.122					
Clim_Factor	0.754	0.658				
Dev_Factor	0.225	0.693	0.002			
EndStress_Fac	0.597	0.766	0.490	0.418		
Ldeg_Fac	0.577	0.709	0.589	0.551	0.429	
Soceco_Fac	0.652	0.778	0.437	0.677	0.699	0.240

Individual and joint effects of the driving factors on ESs (a) biophysical, (b) economic, (c) hybrid modules.

ESs=ecosystem services; Biop_Factor=biophysical factor; Clim_Factor=climate factor; Dev_Factor=development factor; EndStress_Fac=environmental stress factor; Ldeg_Fac= land degradation factor; Soceco_Fac = socioeconomic factor.

Interaction btw biophysical and climatic factors on ES is greatestBiophysical factors very weakly interact development factors

• Climate factors very strongly interact socio-economic factors

Sannigrahi et al. 2020. Responses of ecosystem services to natural and anthropogenic forcings: A spatial regression based assessment in the world's largest mangrove ecosystem. Science of the Total Environment 715: 137004.

Story 6. Determinants' Evolution of the Hu Line

Li JM et al. 2019. A Balanced development: Nature environment and economic and social power in China. Journal of Cleaner Production 210: 181-189.

Story 7. Meteorological Factors' Interaction on Virus

Interactive effects of paired meteorological factors on total virus-positive rates, by region diagonal show *q*-statistics for the individual factors without interactions. Temp=temperature. AP=atmospheric pressure. VP=vapour pressure, Rain=rainfall. Sun=hours of sunlight. Humidity=relative humidity. Wind=wind speed.

Xu B et al. 2021. Seasonal association between viral etiologies of hospitalized acute lower respiratory infections and meteorological factors in China. Lancet Planetary Health 5: e154-63

Story 8. Spatial Goodness of Fit of MMT Prediction

Table 3 Statistical indices between the three temperature indicators and MMT					
	Annual mean temperature	78th percentile temperature	MFT		
Pearson correlation	0.71	0.75	0.93		
q statistics	0.56	0.57	0.83		

The Geodetector q statistic reports that the MFT explains the 83% spatially stratified heterogeneity of the MMT, much higher than AMT(56%) and 78% temperature (57%).

Yin Q et al. 2019. Mapping the increased mortality temperature in the context of global change. Nature Communications 10: 4640.

Story 9. Geodetector +

Geodetector + Kriging

Liu YL et al. 2021. <u>Geographical detector-based stratified regression kriging strategy for mapping soil organic carbon with</u> <u>high spatial heterogeneity</u>. **Catena** 196 (2021): 104953.

Geodetector + GWR

Wu XX, et al. 2021. <u>Natural and human environment interactively drive spread pattern of COVID-19: A city-level</u> modeling study in China. Science of the Total Environment 756: 143343.

Geodetector + Rough set

Bai HX, Li DY, Ge Y, Wang JF, Cao F. 2021. <u>Spatial rough set-based geographical detectors for nominal target variables</u>. **Information Sciences**. <u>https://doi.org/10.1016/j.ins.2021.12.019</u>.

Geodetector + InSAR

Chen J, et al. 2022. <u>Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR</u> on the central Qinghai-Tibet Plateau. **Remote Sensing of Environment** 268: 112778.

Geodetector + Google Earth Engine

Liu CL, et al. 2020. <u>Land use/land cover changes and their driving factors in the Northeastern Tibetan Plateau based on</u> <u>Geographical Detectors and Google Earth Engine: A case study in Gannan Prefecture</u>. **Remote Sensing** 2020, 12, 3139. **Geodetector + SWAT**

Wang ZY, Cao JS. 2021. <u>Spatial-temporal pattern study on water conservation function using the SWAT model</u>. Water Supply. doi: 10.2166/ws.2021.127.

Geodetector + Random Forest

Zhou XZ, et al. 2021. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geoscience Frontiers. <u>https://doi.org/10.1016/j.gsf.2021.101211</u>.

Geodetector + Machine Learning

Wang Q, et al. 2021. <u>Development of a new framework to estimate the environmental risk of heavy metal(loid)s focusing</u> on the spatial heterogeneity of the industrial layout. **Environment International** 147: 106315

Geodetector + BHM

Wang ZS, et al. 2022. <u>Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian</u> <u>spatially varying coefficients model</u>. International Journal of Geographical Information Science. https://doi.org/10.1080/13658816.2022.2117363

Geodetector + ?

Statistics & Spatial Data
Spatial Stratified Heterogeneity (SSH)
Causation of/by SSH
9 Stories
Discussion
Conclusion

Biased Statistic

Wang JF, Xu CD, Hu MG, et al. 2014. JGR 119(1): 1-9.

Confounded

	Treatment A			Treatment B			
	Works	Total	W/T	Works	Total	W/T	
Small Stone	81	87	93%	234	270	87%	
Large Stone	192	263	73%	55	80	69%	
Overall	273	350	78%	289	350	83%	
Charig CR et al. 1986 Br Med I (Clin Res Ed) 292 (6524): 879-882							

Misleading CI

Xu L, et al. 2011. PNAS

are sourced from: Spatial Stratified Heterogeneity solution: find SSH so bias or confound, then Q/A

Nonlinear Causation

Statistics & Spatial Data Spatial Stratified Heterogeneity (SSH) Creating Randomness by SSH Causation by SSH Discussion

Conclusion

