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a b s t r a c t

When the sampled population belongs to a metric space, the
selection of neighboring units will imply often similarities in the
collected data due to their geographical proximity. In order to
estimate parameters such as means or totals, it is therefore more
efficient to select samples that are well distributed in space.
Often, the interest lies not only in estimating a parameter at one
point in time, but rather in estimating it at several points and
studying its evolution. Because of the temporal autocorrelation
of successive values from the same unit, a system of temporal
rotation of the units in the samples must be provided. In other
words, this type of problem forces us to consider two types of
autocorrelation: spatial and temporal. In this article, we propose
two new spatiotemporal sampling methods for equal or unequal
inclusion probabilities. Systematic sampling is used to promote
a rotation of the selection of the same unit over time, and thus
address temporal spread. Both methods select samples that are
well distributed in space at each sampling time. They differ by
the fact that these samples are of random size for the first one,
while for the second one, more complex, their sizes are con-
trolled. Thus, the first method is called spatiotemporal sampling
with random sample sizes (SPAR) and the second, spatiotemporal
sampling with fixed sample sizes (SPAF). Simulations show that
our methods outperform and generalize existing methods.

© 2022 The Author(s). Published by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Sampling is almost always done to estimate unknown population parameters, for instance a
otal. When spatial data are considered, information from two neighboring units are generally very
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similar. In this case, the selection of close units thus provides less information than the observation
of spatially well-distributed units, and a less efficient estimator.

In addition, many applications require not only the selection of a spread sample at a given time,
ut also a rotation system of the selected units over time. For example, in some environmental
onitoring such as that described in Tillé and Ecker (2013), a different part of the population is
isited each year. Similarly, in the new census techniques applied in France and Italy, rotation
roups of small municipalities are formed and one is selected each year. In these applications, if
ach annual sample is well spread, the gain in accuracy is likely to be significant. Therefore, the
amples must remain spatially spread at each sampling time.
A large number of methods have been proposed to select spread samples. In one dimension, Que-

ouille (1949) has shown that systematic sampling is the optimal design for obtaining the most
pread sample with equal inclusion probabilities. A first family of methods consists in transforming
multi-dimensional problem into a one-dimensional one in order to apply a systematic design.
his is the case of the stratified sampling method by generalized random tessellation developed
y Stevens and Olsen (1999, 2003, 2004), who use a quadrant-recursive partition of the unit square
o map to a one-dimensional problem. The method has been implemented by Kincaid and Olsen
2015). Dickson and Tillé (2016) have used the traveling salesman problem to reduce the sampling
roblem to one dimension.
Another family of methods introduces a repulsion in the selection of neighboring units. Graf-

tröm (2011) has proposed the method called ‘‘Spatially correlated Poisson sampling’’ which
enerates a strong negative correlation between inclusion probabilities of close units using sampling
eights. Grafström et al. (2012a) generalize the pivotal method proposed by Deville and Tillé (1998)
o the selection of spread samples. This method has been modified by Grafström and Tillé (2013) to
btain samples that are both spread and balanced on totals of known auxiliary variables. Another
eneralization enables its application to continuous populations (Grafström and Matei, 2018).
rafström and Lundström (2013) recommend the use of spatially balanced samples on variables
hat are not geographic coordinates. Because of their similarities, groups of neighboring units can
e seen as strata. Thus, the selection of spread samples can be compared to a multidimensional
tratification, as in the method proposed by Jauslin and Tillé (2020).
Information from a unit collected at close sampling times will probably be similar. Zhao and

rafström (2020) propose a method of spatiotemporal sampling to improve estimators of change
y selecting positively coordinated samples, i.e. by maximizing their overlap. If the goal is not to
stimate the evolution of a parameter, it is preferable to do the opposite: select samples with
egative coordination. Indeed, selecting samples that overlap as little as possible reduces redundant
nformation. An appropriate rotation of the units must then be planned. This problem is complex
hen inclusion probabilities are unequal. Several solutions have been proposed in Deville and
illé (2000) or Rivest and Ebouele (2020) but these methods do not take into account spatial
utocorrelations. The selection of several spread samples from the same population over time
ecomes much more complex. Some solutions have already been proposed. Khavarzadeh et al.
2018) divide the space into primary units that are chosen with a balanced design and the units are
elected to maximize the spread. Wang and Zhu (2019) propose a spatiotemporal sampling method
ased on a consecutive application of the local pivotal method. However, it cannot be applied when
nclusion probabilities vary over time and does not allow to select a unit more than once over time.

In this paper, a set of new solutions for spatiotemporal sampling generalizing the method
f Wang and Zhu (2019) is proposed. These methods can be applied to any temporal matrix of
qual or unequal inclusion probabilities. If the inclusion probabilities allow the same unit to be
elected several times, an appropriate rotation of the selected units over time is provided. The two
roposed methods select spatiotemporal samples that are temporally and spatially spread. In other
ords, temporal spread means that a unit should not be selected at close sampling times, and spatial
pread means that at each sampling time, the selected sample will be well distributed in space. The
ethods differ in that one produces random size samples at each sampling time while the other,
uch more complex, produces fixed size samples. Their effectiveness was demonstrated by a set
f simulations on spatial biological data using the R package SpotSampling from Eustache et al.
2020). This package enables to apply the methods proposed in this paper.
2
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2. Spreading in the context of spatial statistic trinity

In sampling theory, Hájek (1981) defines a pairwise strategy consisting of a design and an
stimator. In survey sampling, we can also distinguish between a design-based approach and a
odel-based approach, depending on whether the inference is conducted according to the model
r according to the design that generates the population (see among others Valliant et al., 2000, for
he model-based approach, and Tillé, 2020; Lohr, 2021, for the design-based approach). Wang et al.
2020) define the trinity of spatial statistics as the triplet composed of a population, a sampling
esign and an estimator. In this section, we will justify the interest of our method in this context.
Consider a finite population U of units denoted by k ∈ {1, . . . ,N}. A sample s ⊂ U is selected

by means of a sampling design p(.) such that

p(s) ≥ 0, for all s ∈ U and
∑
s⊂U

p(s) = 1.

A variable ak has a Bernoulli distribution and takes the value 1 if unit k is in the sample and 0
otherwise. The first and second order inclusion probability are respectively

πk =
∑
s∋k

p(s) = Ep(ak) and πkℓ =
∑
s∋k,ℓ

p(s) = Ep(akaℓ), for all k, ℓ ∈ U .

where Ep(.) is the expectation under the sampling design. Moreover, define ∆kℓ = covp(ak, aℓ) =
πkℓ − πkπℓ as the covariance under the sampling design between ak and aℓ, with covp(., .) the
covariance under the sampling design. In order to estimate a total

ty =
∑
k∈U

yk

of a variable of interest yk, k ∈ U , the Horvitz–Thompson estimator (Horvitz and Thompson, 1952)

t̂y =
∑
k∈s

yk
πk

ives the simplest unbiased estimator provided that all first order inclusion probabilities are not
ull.
Furthermore, suppose that the population is governed by a model M . As in Grafström and Tillé

(2013), we can consider the general linear model, with possible heteroscedasticity and autocorre-
lation,

yk = x⊤k β + εk, for all k ∈ U, (1)

where xk is a column vector of the values taken by p auxiliary variables on unit k and β ∈ Rp is
the vector of regression coefficients. Moreover, the εk is a random variable such that EM (εk) = 0,
varM (εk) = σ 2

k , for all k ∈ U , and

covM (εk, εℓ) = σkσℓρkℓ, with k ̸= ℓ ∈ U,

where EM (.), varM (.) and covM (., .) respectively denote the expectation, variance and covariance
under model M . The spatial heterogeneity studied in Wang et al. (2016) is a particular case of
model (1) when vector xk contains the indicator variables of the strata and the σ 2

k are equal within
a stratum but can be unequal from one stratum to another. Usually the closer the units are, the
more correlated they are. The ρkℓ are thus supposed to be decreasing in function of a distance that
can be computed between k and ℓ. For instance, the correlations could be written as ρkℓ = ρd(k,ℓ),
where d(k, ℓ) is a distance between units k and ℓ.

Isaki and Fuller (1982) define the anticipated variance as

Avar(̂Y ) = EMEp (̂Y − Y )2.

The anticipated variance allows to evaluate the precision of an estimator under a given design and a
model. It thus allows to conceive the best design according to a superpopulation model that would
3
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have generated the population. Nedyalkova and Tillé (2008) compute the anticipated variance for a
very general class of linear estimators. Grafström and Tillé (2013) prove that, under model (1), the
anticipated variance of the Horvitz–Thompson estimator can be shown to be

Avar(̂Y ) = Ep

⎡⎣(∑
k∈S

xk
πk
−

∑
k∈U

xk

)⊤
β

⎤⎦2

+

∑
k∈U

∑
ℓ∈U

σkσℓρkℓ
∆kℓ

πkπℓ
. (2)

rafström and Tillé (2013) also showed that the design that minimizes the anticipated variance
hould be balanced on xk in the sense defined by Deville and Tillé (2004). Furthermore, it must have
nequal inclusion probabilities proportional to σk and must be as spread as possible in the space
aking the quantity ρkℓ/∆kℓ small. Neyman optimal allocation (Neyman, 1934) is also a particular
ase of this result. Variance estimators for spread samples are proposed in Grafström et al. (2012a).
Grafström and Lundström (2013) have also shown that spread samples are automatically well

alanced on the variables used to compute the distance. The spread samples can then be considered
pproximately stratified over any compact set of units in space. Furthermore, Grafström et al.
2014) have shown, through a set of simulations, that a spread sample improves not only the
ccuracy of the Horvitz–Thompson estimator but also that of the nearest neighbor estimator. A
igorous proof of this result is given in Fattorini et al. (2021). There are thus multiple applications
here it is interesting to select samples spread out with unequal probabilities. As we have seen,
everal methods exist to select such samples. However, the selection of several spread samples with
nequal probabilities that are negatively coordinated from the same population is a problem that
s not yet solved. We propose a solution in the following sections.

. Spatiotemporal sampling notations and requirements

Suppose that each unit k of the population U belongs to a metric space of dimension r ≥ 2
nd the spatial coordinates of each unit are known. Consider also T ∈ N different moments spaced
ut in time. For example, these T times may correspond to years or months. The selection of a
patiotemporal sample must satisfy given inclusion probabilities which can be equal or unequal.
et π t

k be the probability that unit k ∈ U is selected at time t ∈ {1, . . . , T }. Let Π denote the N × T
atrix of temporal inclusion probabilities:

Π =

⎛⎜⎜⎜⎜⎜⎜⎝
π1
1 · · · π t

1 · · · π T
1

...
...

...

π1
k · · · π t

k · · · π T
k

...
...

...

π1
N · · · π t

N · · · π T
N

⎞⎟⎟⎟⎟⎟⎟⎠ .

he tth column of matrix Π is denoted by πt
= (π t

1, . . . , π
t
k , . . . , π

t
N )
⊤ and contains the inclusion

robabilities of all the units at sampling time t . The kth row of matrix Π is denoted by πk =

π1
k , . . . , π

t
k , . . . , π

T
k ) and contains the inclusion probabilities of k at each sampling time. The sum

f the tth column of Π is denoted by ψ t
=
∑

k∈U π
t
k and the sum of the kth row by ψk =

∑T
t=1 π

t
k .

he sums ψ t and ψk are not necessarily integer.
The aim is to generate a matrix of indicator random variables atk that are equal to 1 if plot k is

elected in the sample at sampling time t and 0 otherwise. Matrix A is the N×T sampling indicator
atrix:

A =

⎛⎜⎜⎜⎜⎜⎜⎝
a11 · · · at1 · · · aT1
...

...
...

a1k · · · atk · · · aTk
...

...
...

1 t T

⎞⎟⎟⎟⎟⎟⎟⎠ .

aN · · · aN · · · aN

4
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The tth column of matrix A is denoted by at = (at1, . . . , a
t
k, . . . , a

t
N )
⊤ and corresponds to the cross-

sectional sample at time t . The kth row of matrix A is denoted by ak = (a1k, . . . , a
t
k, . . . , a

T
k ) and

corresponds to the longitudinal sample of k. Let also nt
=
∑

k∈U atk be the number of units selected
at the tth sampling time and nk =

∑T
t=1 a

t
k be the number of times that unit k is selected during

the T times.
The objective is to select a spatiotemporal sample A, which best meets the following three

requirements:

(i) The sampling design satisfies the inclusion probabilities given in Π , i.e. Ep(A) = Π .
(ii) The longitudinal sample ak = (a1k, . . . , a

t
k, . . . , a

T
k ) is as spread over time as possible, for all

k ∈ U , in the sense that once a unit has been selected, it should remain out of the following
samples as long as possible.

(iii) The cross-sectional sample at = (at1, . . . , a
t
k, . . . , a

t
N )
⊤ is as spread in space as possible, for all

t ∈ {1, . . . , T }, in the sense that we avoid selecting geographically neighboring units.

Requirement (i) is equivalent to have Ep(atk) = π t
k , for each element atk of matrix A and implies

Ep(nt ) = ψ t and Ep(nk) = ψk.
A longitudinal sample corresponds to select or not the same unit at T different times. The

ame variable measured at several different times on a unit k is positively autocorrelated over
ime. For this reason, the objective is to obtain a sample ak as spread as possible if the vector of
nclusion probabilities πk allows to select the unit k more than once. By spreading each sample
ak (requirement (ii)), once a unit k is selected, it remains out of the sample as long as possible,
depending on the vector of inclusion probabilities πk. This generates an appropriate rotation of
the units selected in the cross-sectional samples at and minimizes the overlap between successive
samples.

If the units are geolocated, spatial autocorrelation must be taken into account. By selecting a
spread sample based on the spatial coordinates at each sampling time t , the accuracy of the estimate
should be better than with unspread samples. Requirement (iii) prevents the selection of similar
units at the same time.

Finding a method to meet all of these requirements is not straightforward. In the following
sections, we proceed step-by-step, first explaining how the rotation of units in time is optimized (ii),
and then describing the two spatiotemporal methods.

4. Method of Wang and Zhu

The new methods proposed in this paper are based on an existing method, developed by Wang
and Zhu (2019), for the problem of spatiotemporal sampling. It is based on consecutive applications
of the local pivotal method developed by Grafström et al. (2012a). The local pivotal method
generalizes the pivotal method, a sampling method without replacement described in Deville and
Tillé (1998), to the selection of spread samples (see Appendices A and B).

The method of Wang and Zhu (2019) is described in Algorithm 1 and consists of two steps.
First a spatially spread set of units, denoted by G ⊂ U , is selected using the local pivotal method.
Then, samples a1, . . . , aT are selected from G without replacement. The method satisfies the
constraints (i)–(iii), but can only be applied under two conditions:

(i) The columns of matrix Π are proportional.
(ii) The sums of the rows of Π are equal to or smaller than one, i.e. ψk ≤ 1 for all k ∈ U .

In the step 1 of Algorithm 1, probabilities of π◦k must remain smaller than one and L must not be
too large to have a good spatial balance. The authors recommend to take L ≤ min{2,mink∈U (ψk)−1}.

In real sampling problems, the assumptions on Π are not always satisfied. Indeed, inclusion
probabilities are not necessarily proportional as in condition (i) of Wang and Zhu, especially if
5



E. Eustache, R. Jauslin and Y. Tillé Spatial Statistics 47 (2022) 100613

w
d

w
s
Π
d
c

m
o
m
(
m
s

2

3

i

P
t

Algorithm 1 Wang and Zhu method

1. Select an initial set from U , denoted by G, by the local pivotal method with probabilities π◦k = L
∑T

t=1 π
t
k ,

where L ≥ 1 is a predefined value.
2. For t = 1, . . . , T , repeat the following steps.

(a) Select a sample at from G of size nt by the local pivotal method with equal inclusion probabilities.
(b) Update G by G∗ = G\{a1 ∪ . . . ∪ at }.

they are based on a variable that changes over time. Condition (ii) of Wang and Zhu is also very
restrictive. In practical problems, the sums of the rows of Π could be larger that one. In this case,
a unit would be selected several times during the period using a rotation scheme. With Wang and
Zhu’s method, each unit can only be selected once for the entire time period. The new methods
proposed in this paper are not restricted to these two requirements.

5. Preliminary step to spatiotemporal sampling: a two-phase sampling approach

Spatiotemporal sampling methods can begin by the selection of an initial spread set of units, as in
the method of Wang and Zhu. This allows to obtain a better spreading of the cross-sectional samples
at . This first sampling phase consists in selecting a first well-spread set U ′ of N ′ units, N ′ ≤ N , which
ill then be considered for the spatiotemporal design. Thus, the inclusion probabilities used for this
esign become conditional on the first sampling phase.
All units k ∈ {U\U ′}will therefore be permanently excluded from all the cross-sectional samples,

hich means that their inclusion probability will be π t
k = 0 for each sampling time t . This first

ampling phase is a generalization of the first step of the Wang and Zhu method without restricting
to condition (i). Concerning the second condition (ii), this first phase should not be applied if Π

oes not satisfy it. Indeed, if we have ψk ≥ 1 for a unit k, this unit must be selected in at least one
ross-sectional sample at , and then cannot be completely excluded.
This selection is made using the local cube method (Grafström and Tillé, 2013). The local cube

ethod is based on two methods: the cube method, that allows to select balanced samples on totals
f auxiliary variables (Deville and Tillé, 2004), and the local pivotal method. Similarly to the cube
ethod, the local cube method is divided in two phases: the flight phase and the landing phase

see Appendix B). More precisely, this preliminary step uses only the flight phase of the local cube
ethod (see Appendix C). Algorithm 2 describes the main steps of the selection of this initial spread
et.

Algorithm 2 Preliminary step: selection of an initial spread set

1. Compute inclusion probabilities π◦ = (π◦1 , . . . , π
◦

k , . . . π
◦

N )
⊤ such that π◦k = min(L

∑T
t=1 π

t
k , 1).

. Run the flight phase of the local cube method with π◦ as inclusion probabilities and column of Π as
balancing constraints. A vector π• = (π•1 , . . . , π

•

k , . . . π
•

N )
⊤ of inclusion probabilities is obtained.

. Update matrix Π with Π • such that Π • = diag(π•)diag(π◦)−1Π .

The same recommendation as in the Wang and Zhu method is applied to the choice of L,
.e. L ≤ min{2, mink∈U (ψk)−1}.

roposition 1. During the process of Algorithm 2, the sums of the columns of matrix Π are equal to
hat of matrix Π •.
6
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Proof. After step 2 of Algorithm 2, because of the flight phase of the local cube method, many
lines of Π • may contain only zeros and we have Π ⊤π• = Π ⊤π◦. This allows to deduce that
•⊤1N = Π ⊤diag(π◦)−1π•1N = Π ⊤diag(π◦)−1π◦1N = Π ⊤1N , so the sums of the columns of Π •

re exactly the same as the ones of Π , with 1N a column vector composed of N ones.

Proposition 1 will allow us to obtain the fixed sample size based on the original matrixΠ during
he second sampling phase, i.e. the spatiotemporal sampling methods presented below. The sums
f the rows of Π • are either equal to zero or not greater than 1/L.
Matrix Π can be singular. In this case, it is more efficient to remove the columns of Π that are

inearly dependent on the others. Indeed, this reduces the number of balancing constraints. If all
he columns of matrix Π are proportional (i.e. linearly dependent), as in condition (i) of the Wang
nd Zhu method, only one column can be used and the local cube method is reduced to the local
ivotal method. This shows that this first phase generalizes Wang and Zhu’s.

. Temporal spreading

As explained in Section 3, samples at must be as spread over time as possible while ak must be
s spread as possible in the space of dimension r ≥ 2. These two spreads are difficult to manage
imultaneously. The method used to address the first problem of temporal spreading is presented
n this section.

The first constraint to be managed is the temporal spreading. In other words, each sample
k must be spread in a one-dimensional space corresponding to the T different times. To that
nd, the longitudinal samples ak are generated using systematic sampling, k ∈ U . Systematic
ampling for unequal probabilities was proposed by Madow (1949) (see also Iachan, 1982, 1983;
ellhouse, 1988; Bellhouse and Sutradhar, 1988). This sampling method selects a sample according
o a random starting point but with a fixed, periodic interval based on the inclusion probabilities
see Appendix D). In one dimension, Quenouille (1949) and Bellhouse (1977) proved that systematic
ampling is the best design to obtain the most spread sample when the inclusion probabilities are
qual. Therefore, systematic sampling is a good way to select each longitudinal sample ak meeting
equirement (ii).

For each vector of inclusion probabilities over time πk, all possible systematic samples are
omputed. Let h(k) denote the number of possible systematic samples with non-zero probabilities
or k. This number h(k) is not greater than T , if ψk is integer, and is not greater than (T + 1)
therwise (Pea et al., 2007). Let also H =

∑
k∈U h(k) be the total number of longitudinal samples. In

ddition to taking into account autocorrelation as explained above, the advantage of systematic
ampling is that the total number H of possible samples is relatively small compared to other
esigns for which H = N × 2T . This makes it possible to describe all possible systematic samples
n a simple way.

Consider Sk the matrix containing in rows the h(k) possible longitudinal samples of a unit k
uch that Sk = (s⊤k,1, . . . , s

⊤

k,i, . . . , s
⊤

k,h(k))
⊤, where sk,i = (s1k,i, . . . , s

t
k,i, . . . , s

T
k,i) is the ith possible

systematic sample. Consider also pk = (pk,1, . . . , pk,i, . . . , pk,h(k))⊤ the probabilities of selecting the
samples of Sk. We have S⊤k pk = πk. All matrices Sk and vectors pk are respectively concatenated
in a matrix S and a vector p, such that S = (S⊤1 , . . . , S

⊤

k , . . . , S
⊤

N )
⊤ and p = (p⊤1 , . . . , p

⊤

k , . . . , p
⊤

N )
⊤.

The rows of matrix S thus contain H longitudinal samples of size T . Vector p contains the selection
probabilities of the H longitudinal samples in S.

Example 1. Consider the matrix of inclusion probabilities Π with N = 3 and T = 4

Π =

(
π1
π2

)
=

(0.4 0.6 0.2 0.8
0.5 0.5 0.5 0.5

)
.

π3 0.1 0.9 0.3 0.7
7
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The longitudinal sampling designs using systematic sampling are computed:

S =

⎛⎝S1
S2
S3

⎞⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1,1
s1,2
s1,3
s2,1
s2,2
s3,1
s3,2
s3,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0
1 0 0 1
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
0 1 1 0
0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and p =

⎛⎝p1
p2
p3

⎞⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1,1
p1,2
p1,3
p2,1
p2,2
p3,1
p3,2
p3,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2
0.2
0.6
0.5
0.5
0.1
0.2
0.7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the number of samples in S are H = h(1)+ h(2)+ h(3) = 3+ 2+ 3 = 8.

Once all longitudinal sampling designs have been computed, a systematic sample must be chosen
for each unit k ∈ U . Let q ∈ {0, 1}H denote the vector of indicators, with the same dimension as
p, that indicates which systematic sample is definitively selected. Each element qk,i is a Bernoulli
random variable that is equal to 1 if the ith longitudinal sample of the unit k is selected and 0
otherwise. Each realization of q corresponds to the selection of the longitudinal samples and we
have S⊤k qk = ak. The aim is to define a method to select exactly one longitudinal sample for each
unit k, this implies

h(k)∑
i=1

qk,i =
h(k)∑
i=1

pk,i = 1, k ∈ U . (3)

Vector ak will be a systematic sample, the temporal spreading is therefore guaranteed. Some
constraints must also be applied on q to ensure the spatial spreading of cross-sectional samples at .
If unit k is in the neighborhood of ℓ, the idea is to choose systematic samples that do not select k
and ℓ at the same time. In other words, it could be better to have as less as possible atk = atℓ. In
the next section, two spatiotemporal sampling methods are explained. They use different methods
to randomly select ak in each submatrix Sk while satisfying the spatial spreading at each sampling
time.

7. Spatiotemporal sampling

The constraint of knowing the size of the sample selected before sampling is often required. In
the context of spatiotemporal sampling, this constraint must be taken into account for T samples.
This makes it much more complicated to satisfy. To obtain fixed sample sizes, vector q must satisfy
the balancing equation

S⊤q = S⊤p = (n1, . . . , nt , . . . , nT )⊤. (4)

In this section, we propose two different spatiotemporal sampling methods that select spatially
well-distributed samples at the sampling times. It is important to note that the methods differ
in that one generates random sample size at each sampling time while the other generates fixed
sample size. The second method is much more complex because of the complexity of satisfying
Eq. (4) while still considering the requirements (i)–(iii) presented above. Both can be considered as
generalizations of Wang and Zhu’s method.

7.1. Spatiotemporal sampling with random sample sizes (SPAR)

The spatiotemporal sampling with random sample sizes (SPAR) method is a spatiotemporal sam-
pling method with random sample size at each sampling time. The sizes of the samples at are fixed
only if the inclusion probabilities in πt are all equal. In this restricted case, this method is the same
as that of Wang and Zhu. In the other cases, this method has only fixed sample size at the sampling
time t = 1.

The SPAR method is described in Algorithm 3. The spread of the selected units is managed by
recursively applying a spread sampling method at each sampling time. This spread sampling method
8
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Algorithm 3 SPAR Sampling
For t = 1 to T , apply the following instructions:

1. Apply a spread sampling method on vector of inclusion probabilities πt of matrix Π and obtain vector
at = (at1, . . . , a

t
k, . . . , a

t
N )
⊤.

2. For each unit k, update the probabilities pk = (pk,1, . . . , pk,j, . . . , pk,h(k))⊤ of the systematic sampling design
as follows:

- If atk = 1,

p∗k,j =

⎧⎪⎪⎨⎪⎪⎩ pk,j

⎛⎝ h(k)∑
j=1

pk,jstk,j

⎞⎠−1 if stk,j = 1,

0 if stk,j = 0.

- If atk = 0,

p∗k,j =

⎧⎪⎪⎨⎪⎪⎩ pk,j

⎛⎝ h(k)∑
j=1

pk,j(1− stk,j)

⎞⎠−1 if stk,j = 0,

0 if stk,j = 1.

. Update matrix Π by Π ∗ such that the kth row of Π ∗ is π∗k = S⊤k p
∗

k , with k = 1, . . . ,N .

used could be for instance the local pivotal method, the generalized random tessellation stratified
method (Stevens and Olsen, 1999, 2003, 2004), the wave sampling method (Jauslin and Tillé, 2020)
or even the traveling salesman problem-systematic method (Dickson and Tillé, 2016). By updating p
alues to 0, some systematic samples are excluded at each iteration depending on the results of the
pread sampling. For example, at time t = 1, if unit k = 1 is selected in sample a1, any systematic
amples of unit k for which the first element is 0 are excluded. The latest update of vector p in
lgorithm 3 is only composed of 0 s and 1 s and corresponds to the vector q. This sampling satisfies
nclusion probabilities, requirement (i) is met. This vector q also satisfies requirements (ii) due to
the systematic sampling and (iii) due to the first step, but does not have a fixed sample size.

7.2. Spatiotemporal sampling with fixed sample sizes (SPAF)

The spatiotemporal sampling with fixed sample sizes (SPAF) method allows to select spatiotemporal
samples that are spatially, temporally spread, while controlling the size of cross-sectional samples.
The procedure is based on the local pivotal method. Let (Sk, pk) denote the couple containing the
longitudinal sampling design of a unit k and Im(M) be the image of a matrix M. The steps of the
SPAF method are described in Algorithm 4.

Each of the T sampling times is processed one by one. Two units k and ℓ in U are considered
at main stages of Algorithm 4. The main idea is to recursively update the vectors pk and pℓ such
that there is a repulsion in the selection of k and ℓ at the same sampling time. All the couples of
units (k, ℓ) are treated in a particular order. Indeed, they are sorted in increasing order according
to the Euclidean distance between their coordinates in the metric space to which they belong.
Nearby units are thus favored because they are treated first, and they will have less chances to
be selected at the same sampling time. The update of pk and pℓ is similar to that of the local
ivot method. The particularity here is that the update focuses on the decision making for the
ampling time considered at this iteration. During the procedure, the pk vectors are updated and
ome of their values are potentially set to 0. The probabilities updated to 0 imply the exclusion of
he corresponding samples in the Sk matrices. These samples should therefore not be taken into
ccount for the rest of the procedure, so sub-couple (̃Sk, p̃k), containing only systematic sampling
ith non-null probabilities of being selected in pk, must be defined for each k. These samples must
ot be taken into account for the rest of the procedure. It is thus necessary to define for each k a
9
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Algorithm 4 SPAF sampling

(i) Define the vector dt ∈ RT such that its tth element is equal to 1 and the others to 0, with t ∈ {1, . . . , T }.
(ii) Consider all pairs of units (k, ℓ) ∈ (U × U).
iii) For each sampling time t = 1 to T , apply the following steps to each pair of units (k, ℓ) from the closest

to the farthest in terms of Euclidean distance between their spatial coordinates.

1. Define the subdesign (̃Sk, p̃k) of (Sk, pk) such that (̃Sk, p̃k) contains only the h̃(k) samples of (Sk, pk)
with non-null probabilities. Compute subdesigns (̃Sk, p̃k) and (̃Sℓ, p̃ℓ).

2. Compute matrices Uk = S̃⊤k − πk1⊤h̃(k) and Uℓ = S̃⊤ℓ − πℓ1⊤h̃(ℓ).

3. While π t
k /∈ {0, 1} and {Im(Uk) ∩ Im(Uℓ)} ̸= { b}, repeat the following instructions:

(a) Let up ∈ RT be the orthogonal projection of dt on the set {Im(Uk) ∩ Im(Uℓ)}. If up is null, move
on to another couple of units.

(b) Find two vectors bk ∈ Rh̃(k) and bℓ ∈ Rh̃(ℓ) such that S̃⊤k bk = up and S̃⊤ℓ bℓ = up.
(c) Compute the largest values for γk1, γk2, γℓ1 and γℓ2 that satisfy b ≤ p̃k + γk1bk ≤ 1 ,

b ≤ p̃k − γk2bk ≤ 1, b ≤ p̃ℓ + γℓ1bℓ ≤ 1 and b ≤ p̃ℓ − γℓ2bℓ ≤ 1.
(d) Compute λ1 = min(γk1, γℓ2) and λ2 = min(γk2, γℓ1).
(e) Update randomly vectors p̃k and p̃ℓ such that{

p̃k ← p̃k + λ1bk
p̃ℓ ← p̃ℓ − λ1bℓ

with probability λ2/(λ1 + λ2),

or {
p̃k ← p̃k − λ2bk
p̃ℓ ← p̃ℓ + λ2bℓ

with probability λ1/(λ1 + λ2).

(f) Update non-null probabilities in pk and pℓ with the updated values of p̃k and p̃ℓ.
(g) If there is at least one null value in vector p̃k, remove them from p̃k and remove also their

corresponding longitudinal samples in matrix S̃k. Do the same for unit ℓ to considered only
samples with positive selection probabilities in S̃ℓ and p̃ℓ.

(h) Update the inclusion probabilities πk and πℓ because S̃k, S̃ℓ, p̃k and p̃ℓ could be modified in the
previous step.

(i) Recompute also matrices Uk and Uℓ.

4. Update p with p∗ such that p∗k and p∗ℓ are the updated pk and pℓ.
5. Update Π with Π ∗ where the kth and ℓth rows of Π ∗ are respectively π∗k = S⊤k p

∗

k and π∗ℓ = S⊤ℓ p
∗

ℓ .

iv) If Π still contains values not equal to zero or one, apply the following steps:

1. Consider the population of size H of the systematic samples contains in S.
2. Stratify the population in N strata so that each stratum contains the subgroup of systematic samples

of a unit k ∈ U , i.e. Sk.
3. Apply a stratified balanced sampling on the population of systematic samples using vector p as

inclusion probability, columns of S as balancing variables and strata defined in the previous step.

sub-couple (̃Sk, p̃k), containing only systematic samples having non-zero probabilities in pk to be
elected.

roposition 2. Consider the procedure described in Algorithm 4. Throughout this process, the following
propositions are satisfied:

(i) The vectors b and b exist.
k ℓ

10
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(ii) If the sums of the rows of Sk are all integer, the vectors q ∈ {0, 1}H and p ∈ [0, 1]H satisfy

h(k)∑
i=1

qk,i =
h(k)∑
i=1

pk,i = 1, k ∈ U,

(iii) E(A) = Π ,
(iv) The units selected in each cross-sectional sample at , t ∈ {1, . . . , T }, are well spread in the metric

space in which they belong,
(v) The sum of the vector π remains unchanged after each of its updates:

n∑
k=1

π∗k =

n∑
k=1

πk.

Proof.

(i) The existence of bk and bℓ is guaranteed because up ∈ {Im(Uk)∩Im(Uℓ)} can always be written
as a linear combination of the samples contained in rows of Sk and Sℓ

(ii) Throughout algorithm 4, p is iteratively modified in order to finally obtain q. Only the non-
zeros values of p are considered at each step, so a subvector p̃k of pk containing only these
relevant values is defined for each unit k. For a unit k, p̃k is updated by (̃pk+λbk), with λ ∈ R.
If bk is centered, the proposition (i) is immediately proven. Since S̃⊤k bk = up and 1⊤T up = 0,
we have 1⊤T S̃

⊤

k bk = 0. In the case where the sums of the rows of Sk are all equal because
ψk ∈ N, this implies 1⊤T S̃

⊤

k = nk1⊤h̃(k) and then nk1⊤h̃(k) = 0. The vector bk is thus centered and
the proposition (ii) is proven.

(iii) For a unit k, the expectation of πk under the random of the update, i.e. the expectation of π∗k ,
is:

Ep(π∗k) =
λ2

λ1 + λ2
S̃⊤k (̃pk + λ1bk)+

λ1

λ1 + λ2
S̃⊤k (̃pk − λ2bk) = πk.

(iv) The update is made such that if a probability π t
k is increased by the update, the corresponding

π t
ℓ will be decreased and reciprocally. There is a repulsion in the selection of the neighboring

units k and ℓ at the same sampling time t , as in the local pivotal method. This allows to obtain
a spread sample.

(v) At each iteration, only the inclusion probability vectors πk and πℓ of two units k and ℓ are
updated by π∗k and π∗ℓ . So the proposition (v) is proven if (πk + πℓ) = (π∗k + π∗ℓ). The sum
(π∗k + π∗ℓ) can be computed:

π∗k + π∗ℓ = S̃⊤k (̃pk + λbk)+ S̃⊤ℓ (̃pℓ − λbℓ)
= S̃⊤k p̃k + λ̃S⊤k bk + S̃⊤ℓ p̃ℓ − λ̃S

⊤

ℓ bℓ
= πk + λup + πℓ − λup = πk + πℓ,

with λ = λ1 or λ = −λ2.

Only one longitudinal sample ak must be selected among Sk for each unit k (Eq. (3)). This
s satisfied by keeping the sum of the components of pk and pℓ equal to one at each step, as
in Proposition 2(ii). This is satisfied only under the condition that the sums of the rows of Π
are integer, i.e. ψk ∈ N for all k ∈ U . During each stage, if at least one of the two units k and
ℓ does not satisfy this condition, one can simply solve the problem by adding phantom sampling
times to vectors of inclusion probabilities πk and πℓ, as proposed by Grafström et al. (2012b), to
sum to an integer. This trick allows to apply the algorithm, without restriction on the Π matrix.
Proposition 2(iii) and (iv) correspond to requirements (i) and (iii) respectively. Then, the size of the
cross-sectional samples is fixed at each sampling time t , this can be deduced from Proposition 2(iv).
11
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8. Simulations

First of all, the interest of this section is to compare our method to other existing methods in
ifferent situations. However, when the probability matrix Π is totally unequal, no method exists
o select spatiotemporal samples. In this case, the general dispersion of each sample selected using
he methods SPAR and SPAF must be evaluated and criticized, without any means of comparison.

.1. Spreading measures

A commonly used spatial balanced index has been developed by Stevens and Olsen (2004). This
ndex is based on the partition of space into Voronoï polygons and is particularly effective for
omparing the spatial spread of different samples of the same population. Let st = {i ∈ U | ati = 1}
e the set of selected units index at time t in a cross-sectional sample at , t ∈ {1, . . . , T }. The Voronoï
olygon of the ith selected unit in at is defined as the polygon which includes all non-selected units
hat are closest to i than all other selected units, with i ∈ st . Let zi be the sum of the inclusion
robabilities of units included into the ith Voronoï polygon. Grafström et al. (2012a) assert that
best spatially balanced sample is one with zi = 1 for all selected unit i and suggest that the
ariance B(st ) = 1/nt

∑
i∈st (zi − 1)2 can represent a measure of spatial balance for a sample of

ize nt =
∑

k∈U atk. The smaller its value, the better at is spatially balanced. Since this measure
epends on the spatial pattern of the population, this allows to compare the spreading of different
amples from the same population. It is very useful in determining which sampling design best
elects well-spread samples at each sampling time.
Moran’s I index is a measure of spatial autocorrelation proposed by Moran (1950). It is based

n the fact that the level of spatial autocorrelation of an indicator random variable as at shows its
evel of spatial spreading. Because of the limitations of this index, Tillé et al. (2018) have developed a
ormalized version of Moran’s I index: the IB index. This new index version can take values from−1
perfect spatial balance) to 1 (maximum concentration) and a neutral value 0. It allows to evaluate
he spatial spreading and the spatial balance of a sample.

.2. Biological data

To evaluate our methods, the Centre Suisse de Cartographie de la Faune (CSCF) provided us with a
patial biological data set. These data list odonata (i.e. dragonflies and damselflies) species observed
n land squares in Switzerland between 1840 and 2020. Data includes 1400 land squares with an
rea of 1 km2 and 83 different odonata species located in the Swiss cantons of Fribourg, Neuchâtel
nd Vaud. Fig. 1 represents a map with the 1400 land squares.
We focused on a sampling design to study the rare species. The importance of a square is related

o the number of rare species observed there. Let M denote the matrix that contains in rows the
400 land squares and in columns the 83 species. Matrix M is composed of 0 s and 1 s that specify if
species has already been observed within a square. Consider column vector g ∈ N83 that contains
he inverse of the species occurrence rate. In other words, gi is equal to the inverse of the sum of
he ith column of M, i = 1, . . . , 83. Consider also vector c ∈ R1400, such that c = g⊤M, containing
square importance measure based on rare species.

.3. Results

To evaluate our sampling methods, we consider the problem of selecting a spatiotemporal sam-
le of land squares that are both spread and with fixed size at each sampling time. We considered
= 3 sampling times. The simulations were run using the ‘SpotSampling’ R package (Eustache

t al., 2020).
For the first scenario of simulations, we considered equal inclusion probabilities at each sampling

ime, with n1
= 200, n2

= 250 and n3
= 300. The columns of Π are then proportional and the sum

of its rows are all equal to 15/28. By taking this structure of inclusion probabilities, the method of

Wang and Zhu can be applied and then compared to our methods. For the second scenario, inclusion

12
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Fig. 1. Representation of land squares where odonata species have been observed within the Swiss cantons of Fribourg,
Neuchâtel and Vaud. Lakes are filled in light gray.

probabilities are chosen totally unequal, with the idea of increasing emphasis on rare species over
time. For the first sampling time, inclusion probabilities in π1 are all equal. For the second one, π2

is proportional to the number of species in land squares. Next, vector π3 of inclusion probabilities
of the last sampling time is proportional to vector c to give more importance to squares potentially
containing rare species. Sample sizes are n1

= n2
= n3

= 250.
Fig. 2 shows a spatiotemporal sample selected with the SPAF method using equal inclusion

probabilities from the first scenario of the simulations. Land squares filled in light gray represent
the initial spread set selected using the preliminary step described in Section 5. This first step can
be applied because the sums of the rows of Π are not greater than 1. This initial set is represented
in Fig. 2 at the top left. Land squares definitively selected with the SPAF sampling are filled in
black. Fig. 2 at top right, bottom left and bottom right respectively represent the selected samples
at sampling times 1, 2 and 3.

We performed 10’000 simulations. For each compared method evaluated, the average values of
the spread measures IB and B during the simulations are calculated for each sampling time t . The
results are summarized in Table 1. In the first scenario, SPAR, SPAF and Wang and Zhu methods are
comparable in terms of IB and B measures. For the second scenario, spreading measures show that
samples selected with the SPAF sampling method are well spread. However, spreading of samples
selected with SPAR is better than those selected with SPAF. This is easily explained by the fact that
SPAR generates samples with random size.

9. Conclusion

The selection of spatiotemporal samples is a complex problem particularly when one wants to
impose simultaneously constraints of temporal and spatial spreading. However, these constraints
are important to optimize the collection of information.
13
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S
w

Fig. 2. Figures showing a spatiotemporal sample selected with the spot sampling method. The sampling population are
composed of 1400 land squares located in the Swiss cantons of Fribourg, Neuchatel and Vaud. Three sampling times are
considered with sample size respectively equal to 200, 250 and 300. Inclusion probabilities are equal at each sampling
time. An initial spread set is selected before applying the SPAF method. Land squares that are not excluded from the
population during this preselection are filled in light gray in figure at top left. Land squares definitively selected with the
SPAF sampling are filled in black. Figures at top right, bottom left and bottom right respectively represent the selected
samples at sampling times 1, 2 and 3.

In this paper, we have solved the problem in the most general case, i.e. when inclusion proba-
bilities are unequal and variable over time. Two spatiotemporal sampling methods are described.
They provide a random spatiotemporal sample that is well spread in time and in space. The first one,
called SPAR, selects a sample at each sampling time that is of random size while the second one, the
SPAF method, also allows to control their sizes. The SPAF method gives a random spatiotemporal
sample containing longitudinal samples of fixed size and well spatially spread.

The proposed sampling methods are evaluated on spatial biological data given by the Centre
uisse de Cartographie de la Faune. Simulations show that samples selected with SPAR and SPAF are
ell spread in space. The SPAF method is the first spatiotemporal sampling method that allows to
14
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Table 1
Spreading measures of spatiotemporal samples based on 10,000 simulations on the
spatial biological data from CSCF. The WZ method cannot be applied on totally
unequal inclusion probabilities.

Sampling design

Equal probabilities Unequal probabilities

SPAR SPAF WZ SPAR SPAF

IB
t = 1 −0.388 −0.374 −0.389 −0.386 −0.360
t = 2 −0.393 −0.378 −0.395 −0.264 −0.233
t = 3 −0.387 −0.357 −0.386 −0.309 −0.273

B
t = 1 0.116 0.123 0.115 0.130 0.140
t = 2 0.128 0.135 0.127 0.151 0.165
t = 3 0.138 0.147 0.138 0.145 0.158

SPAR, spatiotemporal sampling with random sample sizes; SPAF, spatiotemporal
sampling with fixed sample sizes; WZ, Wang and Zhu method.

consider unequal and time-varying probabilities. All of these results indicate that the spot method
is very efficient to select a well spread sample. These methods can be very easily used by means of
the ‘SpotSampling’ R package (Eustache et al., 2020).
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ppendix A. The local pivotal method

Consider a vector of inclusion probabilities π = (π1, . . . , πN )⊤. The local pivotal method is
escribed in Algorithm 5.

Algorithm 5 Local pivotal method
Repeat the following steps until all elements in π are equal to zero or one.

. Select two neighboring units k ∈ U and ℓ ∈ U that still have non-integer inclusion probabilities πk and πℓ.
2. Compute λ1 = min(πk + πℓ, 1) and λ2 = max(0, πk + πℓ − 1).
3. Update the probabilities πk and πℓ such that{

πk ← λ1, πℓ ← λ2 with probability (πk − λ2)/(λ1 − λ2),
πk ← λ2, πℓ ← λ1 with probability (λ1 − πk)/(λ1 − λ2).

In Algorithm 5, the definition of the neighborhood of unit k may be based on spatial coordinates.
Several variants of the method exist but they only differ by the way of selecting the two neighboring
units from spatial coordinates. At each step, if πk is increased, πℓ is decreased and reciprocally. This
repulsion in the selection of neighboring units allows to obtain a spread sample at the end of the
algorithm.
15
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Appendix B. The cube method

Consider a vector of inclusion probabilities π = (π1, . . . , πN )⊤. The cube method allows to
enerate a random vector a = (a1, . . . , aN )⊤ of Bernoulli variables such that Ep(a) = π and which
s balanced on the totals of auxiliary variables. A sample a is said to be balanced on the J auxiliary
ariables if it satisfies equation

M⊤a = M⊤π, (5)

where M = (x1/π1, . . . , xN/πN )⊤. Expression (5) is called the system of balancing equations.
Sometimes, this equality cannot be exactly satisfied.

The cube method is divided into two phases: the flight phase and the landing phase. The flight
phase of the cube method is a random walk from π to π∗ such that Ep(π∗) = π, M⊤π∗ = M⊤π
nd #{k | π∗ /∈ {0, 1}} ≤ J . So, there remain at most J (i.e. the number of columns of M) non-
nteger values in π∗ at the end of the flight phase. The landing phase consists of rounding to 0 or
probabilities of the remaining units. If there are not a lot of remaining units, a solution satisfying
xactly the balancing constraints can be found using linear programming. Otherwise, the constraints
ust be relaxed. One possibility consists of removing balancing variables one by one until a sample
atisfying remaining balancing constraints can be selected. This landing phase by suppression of
ariables requires a priority order on the variables.

ppendix C. The flight phase of the local cube method

Consider a vector of inclusion probabilities π = (π1, . . . , πN )⊤. The flight phase of the local cube
ethod is described in Algorithm 6.

Algorithm 6 Flight phase of the local cube method
Repeat the following steps until there remains less than (J + 1) non-integer values in π.

. Select (J + 1) neighboring units with a non-integer inclusion probability in π.

. Apply the flight phase of the cube method only on these units and update π.

At each step, only (J + 1) neighboring units of k are considered. At the end of the flight phase
f the cube method, the updated vector of π contains mainly 0 s and 1 s, except for at most J
omponents.

ppendix D. Systematic sampling

Consider a vector of inclusion probabilities π = (π1, . . . , πN )⊤ and suppose that π sums to an
nteger number n, i.e. ψ = n, with n ∈ N. The usual systematic method is described in Algorithm 7.

Algorithm 7 Systematic sampling

1. Compute the cumulative inclusion probabilities Vk =
∑

j≤k πj with k = 1, . . . ,N and V 0
= 0.

2. Generate a uniform continuous random variable u on interval [0,1].
3. Next, for i = 1, . . . , n, select the units k(i) such that Vk(i)−1 ≤ u+ i− 1 < Vk(i).

Let Vk =
∑

j≤k πj denote the cumulative inclusion probability, with k = 1, . . . ,N . Define
vj ∈ [0, 1] such that Vj mod 1 = vj, for j = 0, . . . ,N − 1. Let also v(j) be the vjs sorted by increasing
order with v(N) = 1. Each interval [v(k−1), v(k)[ corresponds to the selection of a unique sample and
the length of this interval is the probability of selecting this sample, for t = 1, . . . , T . The probability
ssociated to each sample is thus (v − v ).
(k) (k−1)
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