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Abstract Using modern census and environmental factor data, this study first identified the environmental factors that
significantly affect the population distribution through Geodetector analysis and then constructed a population spatial dis-
tribution model based on the random forest regression algorithm. Finally, with this model and historical population data that were
examined and corrected by historians, gridded population distributions with a spatial resolution of 10 km by 10 km in the
traditional cultivated region of China (TCRC, hereafter) were reconstructed for six time slices from 1776 to 1953. Using the
reconstruction dataset, the spatiotemporal characteristics of the population distribution were depicted. The results showed that
(1) the environmental factors that significantly affected the population density differences among counties in the TCRC mainly
consisted of elevation, slope, relief amplitude, distances to the nearest prefectural and provincial capitals, distance to the nearest
river and the climatology moisture index. (2) Using the census data of 1934 counties in the TCRC in 2000 and the above-
mentioned environmental factor data, a random forest regression algorithm-based population spatial distribution model was
constructed. Its determination coefficient (R2) is 0.81. In 88.4% of the counties (districts), the relative errors of the model
predictions were less than 50%. (3) From 1776 to 1953, the total population in the study area showed an uptrend. Prior to 1851,
the population increased mainly in the Yangtze River Delta. During this period, the number of grid cells in which the population
densities were greater than 500 persons per km2 increased from 292 to 683. From 1851 to 1953, the population increased
extensively across the study area. In the North China Plain and the Pearl River Delta, the number of grid cells in which the
population densities were greater than 500 persons per km2 increased from 36 to 88 and from 4 to 35, respectively. The spatial
clustering pattern of the population distribution varied temporally. The potential reasons included the shifts in economic
development hot spots, traditional beliefs, wars, famine, and immigration policies. (4) Between our reconstructions and the
HYDE dataset, there are large differences in the data sources, selected environmental factors and modeling methods. As a
consequence, in comparison to our reconstructions, there were fewer populations in the eastern area and more populations in the
western area from 1776 to 1851 and more populations in urban areas and fewer populations in rural areas after 1851 in the HYDE
dataset.
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1. Introduction

Human activities have profoundly modified natural land-
scapes and atmospheric compositions in the last 300 years
and are important driving forces of global environmental
change (IPCC, 2007). It is estimated that 42–68% of the
global land area has been modified by human activities over
the last 300 years (Hurtt et al., 2006). Greenhouse gas (GHG)
emissions induced by anthropogenic land use/cover changes
as well as agricultural activities account for approximately
20–25% of total emissions globally (Searchinger et al.,
2018). The strength of human activities is closely related to
population density. The spatial variability of population
density determines the spatial pattern of anthropogenic dis-
turbance strength on the environment. The spatial distribu-
tion of the population has been used as important primary
data in studies of historical land use/cover changes (He et al.,
2018; Fang et al., 2020; Kaplan et al., 2011) and historical
water resource development and utilization (Qin et al.,
2019). It is thereby important to reconstruct the spatial dis-
tributions of historical populations in the fields of historical
geography, environmental evolution, and global changes.
Demographics are usually measured by the total popula-

tion of each administrative region; hence, it is difficult to
depict the spatial heterogeneity of population density within
the region. It is also difficult to match natural environmental
data, which are usually expressed based on grid cells;
therefore, it is unfavorable for deeply understanding the re-
lationships between the population and natural resources as
well as the environment. To address this issue, gridded
modeling of population spatial distribution is widely used as
a downscaling method (Bai et al., 2013; Sorichetta et al.,
2015; Leyk et al., 2019). Although there are immensely di-
verse methods with which the population spatial distribution
is modeled, their mathematical foundations are summarized
as spatial statistics and modeling, referring to constructing a
statistical theory-based mathematical model to present the
relations between population density (dependent variable)
and environmental factors (independent variables) in the
spatial dimension. The differences among the existing
methods are mainly exhibited in two aspects: (1) The
mathematical model and (2) environmental factors. In terms
of the mathematical model frame, there are linear models
(Yang et al., 2013; Tan et al., 2018) and nonlinear models
(Linard et al., 2017; Li et al., 2018). In terms of the in-
dependent variable, there are models that use only geo-
graphical coordinates as the independent variables (Wang et
al., 2010) as well as models in which multiple types of en-
vironmental factors are applied as the independent variables
(Klein Goldewijk et al., 2010; Fang and Jawitz, 2018). In
terms of the number of independent variables, some models
use only one environmental factor as an independent variable
(Deville et al., 2014), while other models incorporate mul-

tiple environmental factors as independent variables (Tatem,
2017; Han et al., 2019; Yang et al., 2019). It is well known
that the population distribution is affected by multiple en-
vironmental factors, including not only natural factors but
also human factors, and that the effects of these factors are
generally observed in complex, nonlinear ways. Therefore,
multivariate nonlinear models are widely applied when
modeling population spatial distribution.
In comparison to studies focusing on gridded spatial dis-

tribution modeling of modern populations, few studies of
historical populations, particularly for populations in the
traditional cultivated region of China (TCRC) over the last
300 years, have been conducted. There are two potential
reasons. On the one hand, the availability of historical de-
mographic data is limiting and are not compared directly to
modern data. The historical populations were usually mea-
sured by households (Ding and Hu, in Chinese Pinyi) rather
than persons. Moreover, administrative boundaries have
undergone tremendous changes, and many issues have arisen
regarding the authenticity of historical population data dur-
ing the last 300 years. Therefore, to obtain population data
that can be compared with modern census data, many me-
ticulous examinations and corrections are needed. On the
other hand, it is limited by the models. As mentioned above,
multivariate nonlinear models are widely applied in gridded
spatial distribution modeling of populations. Such models
usually require multiple independent variables, most of
which (such as the vegetation index, impervious surface
area, night light index, etc.) are unavailable in historical
periods. Recently, Xue et al. (2019) reconstructed the spatial
distributions of the populations in Suzhou in 1776 and 1820
with a suitability model. However, this model used a large
amount of explicit data for urban areas in historical periods,
and this type of data is almost unavailable over the entire
geographic domain of the TCRC. Additionally, in this model,
there are a large number of empirical parameters. These
parameters are suitable for a particular region rather than for
large domains; therefore, there would be large uncertainties
when applying the parameters used by Xue et al. (2019) to
other regions. Wang et al. (2020) conducted an exploratory
study on the girded spatial distribution modeling of the po-
pulation in Gansu Province with a random forest regression
model, which is a nonlinear model, and independent vari-
ables including city, terrain, climate, and river factors. His
approach not only obtained small prediction errors but also
used independent variables that are easily available in his-
torical periods. It is practical for gridded population spatial
distribution modeling for historical periods. With this ap-
proach, Wang (2020) carried out gridded reconstruction of
the population for the 17 provinces in central and eastern
China in the Qing Dynasty.
There was always high population density and intense

human activity in the TCRC. This study took the TCRC as
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the study area, which consists of 18 provinces in the Qing
Dynasty. Based on the abovementioned studies, this study
attempted to quantitatively analyze the relations between
population spatial distribution and environmental factors and
then construct a population spatial distribution model based
on the random forest regression algorithm. Finally, using the
historical demographics data examined and corrected by
historians, we carried out the gridded reconstruction of po-
pulations with grid sizes of 10 km by 10 km for the TCRC
from 1776 to 1953, and using the reconstruction data, de-
picted the spatiotemporal characteristics of the population
distribution. It is expected to provide primary data for re-
search on population spatial distribution patterns and human-
land relations as well as their evolution in historical periods.

2. Material and method

2.1 Study area

The study area covers the domain in south of the Inner
Mongolia Plateau and in east of the Qinghai-Tibet Plateau
(excluding Taiwan Prefecture, as shown in Figure 1). It
consists of 18 provinces in the Qing dynasty. As the main
region of Chinese cultivated civilization, this region has al-
ways been the most densely populated area in China since
ancient times. The main body of the study area is in a tem-
perature and subtropical climate regime. It is dominated by a
humid and semihumid monsoon climate, with rain and heat
occurring over the same period, and the annual total pre-
cipitation is in the range of 400–2000 mm. The terrain is
mainly characterized by high land in the west and low land in
the east. In the east, there are mainly plains and hills, such as
the North China Plain, Middle-Lower Yangtze Plain and low
mountains in the southeast. In the west, there are mainly
plateaus and basins, such as the Loess Plateau, Yunnan-
Guizhou Plateau, and Sichuan Basin. Most of the study area
is below 2000 m above sea level.

2.2 Data sources

This study used three categories of data consisting of de-
mographic data, administrative division data and environ-
mental factor data. Among them, environmental factor data
included terrain, climate and river data.
(1) Demographic data: The county-level demographic data

for 2000 were derived from the Standardized Database of
Chinese Population Distribution (Yang, 2016). The original
data were derived from the Fifth National Population Census
in China, and the spatial units of the measurements were
municipal districts and counties (autonomous prefectures).
The historical prefecture-level population data included six
time slices, i.e., 1776, 1820, 1851, 1880, 1910, and 1953,
which cover three typical periods, namely, the period when

the population grew largely in the Qing Dynasty, the period
of the Republic of China and the early days of the People’s
Republic of China. These data were provided by the Center
for Historical Geographical Studies at Fudan University
(Cao, 2001). In comparison to the original demographic data
measured by households (Ding and Hu in Chinese Pinyin)
for the early Qing Dynasty (i.e., prior to 1776), these data
were produced through examination and correction by his-
torians and, hence, took the person as the measurement unit,
which is consistent with modern demographic data (Lu,
2014). Additionally, after being examined and corrected, the
population data at each time slice were uniformly recorrected
to match the prefecture-level administrative regions in 1820
from the Gazetteer of the Great Qing Unification.
(2) Administrative division data: For the modern periods,

the county-level administrative division data were derived
from the 1:1 million national basic geographic information
database (http://www.webmap.cn/). For the historical peri-
ods, the administrative division data are at the prefecture
level and refer to that in 1820. The original data were from
the Gazetteer of the Great Qing Unification. The capital
locations of each administrative region were recorrected by
following the administration evolution information obtained
from the evolution table of China’s modern political divi-
sions (Zhang, 1987). Both corrected historical administrative
division data and capital location data are derived from the
China Historical Geographic Information System (http://
www.people.fas.harvard.edu/~chgis/).
(3) Terrain data: The terrain factors include the elevation,

slope, and relief amplitude. The original data were the AS-
TER GDEM data provided by NASA (https://www.nasa.
gov/), with a spatial resolution of 30 m by 30 m. After being

Figure 1 The domain of the study area in 1820 (yellow shaded area)
(provided by the China Historical Geographic Information System).
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projected and transformed in ArcGIS software, the elevation
and slope were extracted. The relief amplitude was calcu-
lated as the difference between the highest and lowest ele-
vations within a window of 5 km by 5 km.
(4) Climate and river data: The climate data refer to the

climatic moisture index and are provided by the Resources
and Environmental Science and Data Center of the Chinese
Academy of Sciences (http://www.resdc.cn/). The climatic
moisture index reflects the ratio of climatology meanly
surface water income (i.e., precipitation) to water ex-
penditure (i.e., evaporation and runoff) over several decades
(Xu and Zhang, 2017). The river data refer to the spatial
distribution data for river systems in modern periods and are
provided by the National Earth System Science Data Center
(http://www.geodata.cn/). Historical river data refer to those
for 1820, which have been examined and corrected by his-
torians and are provided by the China Historical Geographic
Information System.

2.3 Approach

First, the influence degree of environmental factors on po-
pulation spatial distribution was quantified, and those sig-
nificantly affecting the population spatial distribution were
selected using county-scale data in 2000 with the Geode-
tector method. Then, a random forest regression algorithm-
based model predicting population density with environ-
mental factors as independent variables was constructed, and
its accuracy was verified. Next, using this model, the spatial
distribution of the historical population was reconstructed
with contemporaneous environmental factors and demo-
graphic data that were examined and corrected. Finally,
through spatial autocorrelation analysis, the characteristics
and evolution of the spatial distributions of the population in
the TCRC from 1776 to 1953 were depicted, and the simi-
larities and differences between our reconstructions and the
HYDE population dataset were revealed by comparing the
datasets with each other.

2.3.1 The selection of environmental factors
The factors that affect the spatial distribution of a population
are diverse. In previous studies, environmental factors were
usually selected through single-factor evaluations and cor-
relation analyses. These methods ignore the complex inter-
actions among factors, and it is hence difficult to select
dominant and independent environmental factors. In this
study, a Geodetector analysis was applied to select en-
vironmental factors. Geodetector analysis is a statistical
method that is based on the theory of spatial heterogeneity to
reveal the potential causes of geographical phenomena. The
degree of influence of each independent variable on the de-
pendent variable is measured by the similarity between the
spatial distributions of the independent variable and the de-

pendent variable. The degree of influence is defined as the q
value and is in the range of 0 to 1. The closer the value is to 1,
the stronger the explanatory ability of the independent
variable on the dependent variable is (Wang and Xu, 2017).
This method can be used not only for numerical data but also
for qualitative data and can be used to detect the interactions
among environmental factors. It has been widely applied in
factor selection and factor interaction research (Luo et al.,
2016; Liu and Li, 2017).
In this study, environmental factors were selected follow-

ing three criteria: (1) The factor has significant effects on the
population spatial distribution; (2) the factor was approxi-
mately unvariable over the past 300 years; and (3) the factor
can be measured quantitatively. Finally, two types of factors
were included in the Geodetector analysis. One type refers to
natural factors such as terrain, climate and river factors, in-
cluding the surface elevation above sea level, slope, relief
amplitude, climatic moisture index and the distance to the
nearest level-1 to level-3 rivers. The other type refers to city-
related factors represented by distance to the capital cities,
such as the distance to the nearest prefectural capital and the
distance to the nearest provincial capital.

2.3.2 Training of the RFRM-based population distribution
model and its verification
The random forest regression model (RFRM) is a machine
learning algorithm and is usually realized through classifi-
cation and regression trees (CART) (Breiman, 2001). The
RFRM can express the nonlinear relationships between the
population and environmental factors well. It has been
widely used in gridded distribution modeling of populations
for modern periods (Stevens et al., 2015; Ye et al., 2019;
Wang et al., 2019). Herein, the county-level census data and
environmental data of 1934 counties within the TCRC in
2000 were used as a sample set to train the RFRM model.
Population density was the dependent variable, and the en-
vironmental factors selected by the Geodetector analysis
were the independent variables.
The first step in training the RFRM is to randomly select a

certain number of samples from the sample set to construct a
training subset. This study used a bootstrap method to con-
struct the training subset, the size of which was exactly the
same as the sample set. The second step is to construct a
decision tree that follows a binary tree structure and grows
recursively from the root node to the leaf node without
pruning. The key point of this step is to determine the
dominant factor controlling the bifurcation structure. In this
study, two environmental factors were randomly selected
from all the environmental factors, one of which was further
selected as the dominant factor controlling the bifurcation at
each node with the CART method following the principle of
least variance (Rodriguez-Galiano et al., 2014; Song et al.,
2016).
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By repeating the above process, 300 decision trees were
constructed. Therefore, given a set of environmental data,
300 predictions could be obtained. Finally, by following the
idea of unbiased estimations based on large samples, the
mean value of the 300 prediction results was calculated and
used as the final prediction.
The leave-one-out method was used to verify the accuracy

and stability of the RFRM (Vehtari et al., 2017). For the data
of 1934 sampled counties, 1933 counties were extracted to
train the model; then, the model was used to predict the
population density of the left-out county. This method was
carried out 1934 times, and the population density of each
county was predicted. Then, the accuracy and stability of the
model were verified by comparing predictions to measure-
ments. The determination coefficients (R2), relative error and
root mean square error were used to quantify the accuracy of
the model, and the reduction of error (RE) and the coefficient
of efficiency (CE) were used to quantify the stability of the
model. The RE and CE values range from negative infinity to
1; the closer to 1, the more stable the model is (Gou et al.,
2015).

2.3.3 Gridded reconstruction of population distribution in
the TCRC from 1776 to 1953
With the abovementioned RFRM, into which historical en-
vironmental factor data were incorporated, the historical
population density can be predicted for each grid at sizes of
10 km by 10 km. It is notable that because the RFRM was
trained using census data for the year 2000, its parameters
actually represent the quantitative relationships between the
population and environmental factors in 2000. Since the total
population has increased prominently during the last
300 years, the predictions are largely different from the
historical demographic data. However, the relative weights
of the predictions among the grid cells are useful because
they represent the habitability, which is determined jointly by
the selected environmental factors. Therefore, the RFRM-
predicted population density was readjusted using the ratio
of the historical demographic data to the predicted total po-
pulation for each prefectural area, as follows:

P P S
D P

= × , (1)ij ij
i

j
n

ij ij=1

where Pij and Pij represent the readjusted population density
and RFRM-predicted population density for grid cell jwithin
the domain of prefecture i; Si represents the historical total
population of prefecture i; and Dij represents the land area of
grid cell j within the domain of prefecture i.
In the process of gridded allocation, the area weight

method was utilized to recalculate the populations of grid
cells that were shared by more than one administrative re-
gion:

P
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where j denotes grid cells that were shared by more than one
(i≥2) administrative region; P  j denotes the readjusted po-
pulation density for grid cell j; Dij denotes the actual land
area of grid cell j belonging to prefecture i; Dj denotes the
total land area of grid cell j; and P  ij denotes the population
density derived from eq. (1) for grid cell j belonging to
prefecture i.
Moreover, for any grid cell that was partly occupied by

water bodies, i.e., rivers and lakes, the relative population
weights of large lakes and first- and second-level rivers were
set to 0 according to the actual historical distribution of rivers
and lakes, since there would be no people living on a water
body. Based on the actual land area, the population in each
grid was recorrected at the prefectural scale following the
method of Lin et al. (2009).

2.3.4 Analysis of the agglomeration patterns of historical
population distribution
Spatial autocorrelation analysis is usually applied to explore
spatial agglomeration patterns and to reveal the spatial
nonrandom distribution characteristics of geographic phe-
nomena (Legendre, 1993), which are measured by the Moran
Index, i.e., Moran’s I for short. Moran’s I is a statistical
metric to quantify the spatial adjacency or the similarity of
adjacent unit attributes, with a range from −1 to 1. The closer
to 1, the more similar; the closer to −1, the more opposite. A
value of zero indicates that no correlation relationship exists
between the adjacent units (Liu et al., 2015; Wang and Yang,
2019). According to the spatial scale, for which Moran’s I is
suitable, there is global Moran’s I and local Moran’s I:
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where Xi and Xj denote the population densities of grid i and
grid j, respectively, X denotes the mean population density
of the whole study area, n denotes the number of grids in the
whole region, and Wij denotes the elements of the spatial
weight matrix (Wij=1 represents spatial adjacency while 0
represents nonadjacency). 

I Z W Z= , (4)i i
j

n

ij j
=1

where Zi and Zj are the standardized measurements of grid i
and grid j, respectively. Under a given confidence interval, if
both Ii and Zi are positive, grid i is considered to be in the
high-high clustering quadrant (H-H); if Ii is positive and Zi is
negative, grid i is in the low-low clustering quadrant (L-L); if
Ii is positive and Zj is negative, grid i is in the high-low
clustering quadrant (H-L); If Ii and Zj are negative, grid i is in
the low-high clustering quadrant (L-H).
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3. Result

3.1 The selection of environment factors

The Geodetector analysis shows that all four categories of
factors, including terrain, city, climate, and river factors,
significantly impact the spatial distribution of the population.
Among them, the impacts of terrain, city, and climate factors
are significant at the level of 0.01, and the impacts of river
factors are significant at the level of 0.1. As shown in Table
1, the degree of impact of terrain is the most prominent and
that of city is secondarily prominent; the degree of impacts of
climate and river factors are the third. In terms of q statistics,
the q values of terrain factors are in the range of 0.37–0.55,
which is higher than that ranging from 0.21 to 0.37 for cities.
The q values of the climatic moisture index and river factor
are as low as 0.02, which is one order of magnitude lower
than those of terrain and cities. This result suggests that
within the domain of the TCRC, the spatial variabilities of
population density are highly consistent with those of terrain
but weakly consistent with those of the effects of cities. The
explanatory ability of terrain to the spatial variability of
population density is stronger than that of city factors.
Among the q values of terrain factors, the q value of ele-

vation reaching up to 0.55 was the highest, and q values of
slope and relief amplitude, both of which are approximately
0.37, are comparable with each other. This result indicates
that the explanatory ability of elevation to the spatial varia-
bility of population density was stronger than those of slope
and relief amplitude. On behalf of the city factors, the q value
of the distance to the nearest prefectural capital was 0.37,
which was slightly higher than the q value of 0.21 of the
distance to the nearest provincial capital city. This result
indicates that the explanatory ability of the radiation effects
of prefectural capital cities was stronger than that of pro-
vincial capital cities. The climatic moisture index and the
distance to the nearest river also significantly impacted the
spatial variation in population density. There are usually
dense populations in wetter climate regimes and closer to
rivers, and vice versa. However, the degree of impact of
these factors on the population distribution was very weak.

This result suggests that moisture variations are within the
range to which human production and livelihoods can adapt,
and hence, its impact is weak. For the rivers, this may be
explained by the fact that the study area was mostly located
in humid and semihumid climate regimes, where river sys-
tems are highly developed; hence, the distances from most
counties to rivers of the first three levels remained very short,
and no differences could be detected.
On behalf of double-factor interactions (Table 2), most of

the two-factor combinations may have stronger impacts than
the individual factor. Among the combinations, the strongest
impact resulted from the combination of the distance to the
nearest prefectural city and elevation (q=0.69). At the sec-
ondary level, the two combinations were comparable in
terms of their degrees of impact. They were the combination
of the distance to the nearest provincial capital and elevation
(q=0.64) as well as the combination of the slope and eleva-
tion (q=0.64). The impacts of the combinations of terrain and
city factors were much stronger than those of any single
terrain, climate or river factor. This finding further confirmed
that the spatial distribution of the population was influenced
by multiple factors, especially combinations of natural and
human factors. Based on the results of the Geodetector
analysis, terrain factors (i.e., elevation, slope, relief ampli-
tude), city factors (i.e., distance to the nearest prefectural
city, distance to the nearest provincial capital), climate fac-
tors (i.e., moisture index) and river factors (distance to the

Table 1 The q values of the single-factor detector in Geodetectora)

Environmental factors q value p value

Elevation 0.55*** 0.00

Slope 0.37*** 0.00

Relief amplitude 0.37*** 0.00

Distance to the nearest prefectural city 0.37*** 0.00

Distance to the nearest provincial capital 0.21*** 0.00

Moisture index 0.02*** 0.01

Distance to the nearest river 0.02* 0.09
a) * and *** denote significance at the 0.1 and 0.01 confidence levels,

respectively.

Table 2 The q values of the interaction detection in Geodetector analysisa)

Elevation Slope Ra Dp Dc Mi Dw

Elevation 0.55

Slope 0.64 0.37

Ra 0.64 0.38 0.37

Dp 0.69 0.61 0.62 0.37

Dc 0.64 0.47 0.48 0.46 0.21

Mi 0.62 0.41 0.43 0.40 0.25 0.02

Dw 0.58 0.39 0.40 0.41 0.28 0.09 0.02

a) Ra, relief amplitude; Dp, Distance to the nearest prefectural city; Dc, Distance to the nearest provincial capital; Mi, Moisture index; Dw, Distance to the
nearest river
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nearest level-1 to level-3 river) were selected to carry out
gridded modeling of the population spatial distribution.

3.2 Verification of the RFRM-based population dis-
tribution model

The RFRM-based population distribution model with the
abovementioned seven environmental factors as input could
reproduce most of the spatial variability of the county-level
population density in 2000. Figure 2 shows that the predicted
population density is significantly positively correlated with
the census data (r=0.9, p<0.001). This suggests that predic-
tions could explain 81% of the total variance in the census
data. Moreover, the coefficient of efficiency (CE) and re-
duction of error (RE) were 0.72 and 0.75, respectively, which
suggested that the model was stable. However, notably, the
predictions underestimated the values for very high-popu-
lation-density areas and overestimated the values for very
low-population-density areas. As a result, the spatial var-
iance in the predicted population density is slightly smaller
than that in the census data (Figure 2).
On behalf of the distribution shape of the predictions’ re-

lative errors, the relative errors approximately followed a
normal distribution (Figure 3a). The counties where relative
errors are less than 50% accounted for as much as 88.4% of
the total counties, and the counties where relative errors are
higher than 80% accounted for only 4.1% of the total. This
result suggests that most predictions have small errors and a
small number of predictions have large errors. This char-
acteristic remains similar to the error distributions of output

from other statistical models. The stability of the model is
thereby reconfirmed by this finding. Figure 3b shows the
spatial distribution of the errors. Small errors mainly existed
in the North China Plain and lowlands along the Yangtze
River, while large errors mainly existed in the mountainous
areas of the northwestern and southwestern study areas, the
coast of Southeast China, the Guanzhong Plain, the Jiangnan
Hills and the Chengdu Plain. Among them, positive errors
mainly existed in the northwest and southwest mountainous
areas as well as the Jiangnan Hills. This finding indicates that
the predictions are greater than the actual population den-

Figure 2 Scatter plot of the random forest regression model predictions
against the county-level census data for 2000.

Figure 3 Histogram (a) and spatial distributions (b) of the relative errors in the random forest regression model predictions.
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sities in these regions. Negative errors mainly existed in the
Guanzhong region, along the southeast coast, and on the
Chengdu Plain. This finding indicates that the predictions are
less than the actual population densities in these regions. The
main reason for these errors was that the model did not in-
clude the effects of economic location factors on the popu-
lation spatial distribution. On the Guanzhong Plain and
Chengdu Plain, the terrain is flat; hence, agriculture is de-
veloped, and transportation is convenient. Both of them are
regional economy centers. There are dominantly hills on the
southeast coast of the study area, but it is favorable for ocean
shipping, and the economic level is higher than that in ad-
jacent areas. Due to the developed economies, there are high
populations in these regions. However, following the Geo-
detector analysis results, the population density would be
low in both high-elevation and complex terrain areas. The
elevations of the Guanzhong region and the Chengdu Plain
are approximately 500–600 m above sea level, which is
much higher than the elevation over the North China Plain of
0–50 m above sea level. Therefore, the model predictions are
lower than the actual population density.

3.3 Population distribution pattern in the TCRC from
1776 to 1953

The reconstruction results show that the spatial distribution
pattern of the population in the TCRC remained approxi-
mately unchanged from 1776 to 1953. It was dominantly
characterized by more persons in the east and fewer persons
in the west. High population densities always existed in the
middle and lower reaches of the Yangtze River Plain, North
China Plain, Guanzhong Plain, Sichuan Basin and Pearl
River Delta. Low population densities always existed in the
Western Sichuan Plateau, Yunnan-Guizhou Plateau, South-
east Hills, Loess Plateau, Inner Mongolia Plateau and north
of the Hexi Corridor. At the grid cell scale, the global
Moran’s I remained greater than 0 (p<0.01) throughout the
study period (Table 3). This finding indicates that there was
always significant spatial agglomeration of the population in
the TCRC. Notably, the dominant characteristics of spatial
agglomeration varied temporally.
From 1776 to 1851, along with the opening of commercial

ports and the development of canal trade, the Yangtze River
Delta region was the area where the greatest population
growth occurred (Figure 4a–4c). During this period, the grid
cells where the population density was higher than 500
persons per km2 increased, from 292 to 683, by 134%. The
population densities of the grid cell where Suzhou pre-
fectural capital was located were the highest, exceeding
5,000 persons per km2. The provincial and prefectural ca-
pitals in the eastern provinces were the main population
agglomeration areas. For instance, in the Shuntian, Kaifeng,
Jinan and Nanchang prefectural capitals, the population

densities were more than 1,500 persons per km2. There was
spatial variability in the population densities in the hinterland
of the eastern plain areas, but the population densities were
consistently high. As a result, these areas were characterized
by high-density population agglomerations; they were the
main high-density population agglomeration areas in this
period (Figure 5a–5c). Although the population density in
the urban areas of the eastern study area increased promi-
nently in this period, the area with a high-density population
concentration remained approximately unexpanded. The
main reason for this result is that the population had reached
nearly the maximum value that can be supported by pro-
duction ability and that farmers were reluctant to leave their
ancestral homelands due to traditional beliefs (Pei, 2017);
hence, there was no immigration. In the western region, the
population densities in the urban areas of the Sichuan Basin
and the Yunnan-Guizhou Plateau greatly increased, and there
was immigration to nearby areas. The urban settlements
developed, and population agglomeration strengthened over
the Chengdu Plain. Until 1851, a high-density population
concentration area existed surrounding the Chengdu Pre-
fecture, with a population density of 1,770 persons per km2

in the Chengdu Prefecture capital. This was mainly caused
by the strong inertia of population growth led by the massive
immigration that occurred during the Kangxi-Qianlong em-
pire periods, when nearly one million people immigrated into
Sichuan. Therefore, high immigration provided the basis for
the high population growth rate in the mid-late Qing Dy-
nasty, and the population spatial agglomeration also in-
tensified.
From 1851 to 1880, the changes in population density in

the study area exhibited distinct spatial variability (Figure
4d). On the one hand, due to war and famine, the population
declined sharply in the urban areas in southern Jiangsu,
northern Zhejiang, southern Anhui, central Shaanxi and
southern Gansu. Due to the Taiping Rebellion, there were
severe population losses in the middle and lower reaches of
the Yangtze River. In 1880, grid cells where the population
density was higher than 500 persons per km2 declined to 145,
accounting for approximately 20% of that in 1851. The po-
pulation density of the grid cell where Suzhou Prefecture was
located declined by 64%, i.e., from 5,235 persons per km2 to

Table 3 Global Moran’s I index and Z values of the population in the
TCRC from 1776 to 1953 at the grid scale of 10 km by 10 km

Year Moran’s I Z

1776 0.85 247.86

1820 0.85 245.52

1851 0.85 245.58

1880 0.83 242.25

1910 0.81 236.68

1953 0.82 236.86
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1,894 persons per km2, from 1851 to 1880. Due to the Ding-
Wu severe famine and the northwest clash during the
Tongzhi period, the population density in southern Gansu,
northern Henan and the Fengxiang-Qianzhou-Xi’an-Datong
line in Shanxi and Shaanxi declined by 200-500 persons per
km2. Along with population losses in urban areas, the ag-
glomeration characteristics of the population changed. The
population agglomeration areas in the middle and lower
reaches of the Yangtze River shrank to the east and expanded
to the north, and the population agglomeration areas in the
Guanzhong Plain disappeared. On the other hand, with the
beginning of modernization, the functions and statuses of
cities gradually developed. There was prominent urban de-
velopment in the North China Plain, the Sichuan Basin and
the Pearl River Delta, which were impacted slightly by wars
and famines. Their populations grew, and spatial agglom-
eration characteristics occurred in these areas (Figure 5d).
From 1776 to 1880, the population density of the prefectural
cities in southern Zhili and Shandong increased by 50–200
persons per km2. As a result, there was a high-density po-
pulation-agglomeration area in Shandong, southern Zhili and
northeast Henan. Meanwhile, the high-density population
agglomeration areas in the Pearl River Delta and the Sichuan
Basin also began developing in this period.
From 1880 to 1953, the population increased extensively

in the plains and the southeastern coastal areas of the TCRC

(Figure 4e to 4f). Up to 1953, the numbers of grid cells
where population densities exceeded 500 persons per km2

in the eastern North China Plain and the Pearl River Delta
had increased to 88 and 35 respectively, which were ap-
proximately 2.4- and 8.75-fold of those in 1851. At this
time, the population densities in the urban areas of Beijing
and Shanghai exceeded 4,000 persons per km2. The high
population density agglomeration area in the eastern study
area, which was represented by the northern China region
and the middle and lower reaches of the Yangtze River,
arose at that time. Additionally, due to the expansion of
human activities toward the north, the population agglom-
eration area extended toward the north and, hence, the low-
population-density agglomeration area in the northern part
of the North China Plain shrunk. In the west, through po-
pulation growth and expansion over a long period, the po-
pulation density within the Sichuan Basin greatly increased.
In 1953, the grid cells where population densities were
greater than 500 persons per km2 in the Chengdu Plain and
Chongqing increased to 60 and 12, respectively. As a result,
a high-population-density agglomeration area centered in
the central-eastern part of Sichuan and Chongqing arose
(Figure 5e–5f). The population in the Yunnan-Guizhou
Plateau also grew, but there were no detectable spatial ag-
glomeration characteristics and no high-density population
hotspots.

Figure 4 Spatial distribution pattern of the population in the TCRC from 1776 to 1953 (grid size: 10 km by 10 km).
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3.4 Comparison with HYDE population dataset

Among the grid cell-based global historical population da-
tasets, the HYDE population dataset v3.2 covers the longest
time series (Klein Goldewijk et al., 2017). This dataset
partially overlaps with our reconstructions in both the tem-
poral and spatial dimensions. For the years in which both of
them do not exactly match each other, we selected the closest
year between the HYDE dataset and our reconstructions for
the comparison. As shown in Figure 6, the spatial distribu-
tion patterns of the population exhibited by both our re-
constructions and the HYDE dataset are highly consistent
but with differences in some regions. From 1776 to 1851, the
population densities in the HYDE dataset were much lower
than those from our reconstructions in the eastern plains
areas, particularly in the middle and lower reaches of the
Yangtze River and urban areas of the provincial and pre-
fectural capitals. Among them, the population densities in
some urban areas in the southern region of the Yangtze River
in the HYDE dataset were less than those in our re-
construction by exceeding 500 persons per km2. In the
western and northern highland and mountainous areas, the
population densities in the HYDE dataset were generally
higher than those in our reconstructions. The largest over-

estimations existed in the Sichuan Basin, where the over-
estimations were 50–200 persons per km2, except for the
Chengdu Plain. Between 1851 and 1953, in the eastern part
of the study region, the population densities in the HYDE
dataset were still lower than those in our reconstructions but
with smaller differences than those in previous periods.
However, the difference between the HYDE dataset and our
reconstruction exhibits new characteristics, which are urban
and rural discrepancies. The urban population densities in
HYDE were higher than those in our reconstructions, while
the rural population densities in HYDE were lower than
those in our reconstructions. In the western study area, where
urban areas developed slowly and rural areas were dominant,
the population densities in HYDE were extensively lower
than those in our reconstruction. Taken together, we find that
HYDE overestimated the urban population and under-
estimated the rural population during 1851–1953.
The differences between our reconstructions and the

HYDE data mainly resulted from the different data sources
and spatial modeling methods (Table 4). In terms of the data
sources, HYDE used province-level population data pro-
vided by Populstat, whereas our reconstructions used pre-
fecture-level population data taken from historical
documents and examined and corrected by local historians.

Figure 5 LISA cluster map of the population distribution in the TCRC from 1776 to 1953 (grid size: 10 km by 10 km).
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Hence, the total populations differed between the two data-
sets. The overall regional mean population densities were
thereby different between the two datasets. This may be the
main reason why the populations in the HYDE dataset were
generally less than our reconstructions in the eastern areas
and higher in the western areas between 1776 and 1851 and
why the populations in the HYDE dataset were less than our
reconstructions in the western region between 1851 and
1953. In terms of the spatial modeling methods, HYDE used
LandScan’s modern population spatial distribution pattern as
the main control factor and maintained a fixed spatial pattern
throughout the historical period. As a result, there are high
weights in urban areas, and the population in urban areas
would be overestimated. This is because in the preindustrial
period, China was dominantly supported by agriculture, and
population density differences between urban and rural areas
were much smaller than those existing at present. Our re-
constructions took into account the environmental factors
that were selected through Geodetector analysis. In detail,

population spatial modeling took into account the actual
historical information on the ranks and locations of cities to
indicate the historical spatial agglomeration of the popula-
tion. As a result, the reconstructed population spatial dis-
tribution was dominantly determined by the terrain and city
factors as well as by the temporal variability of the cities.
Hence, the dominant cause of overestimations in eastern
urban areas and underestimations in rural areas in the HYDE
dataset may be the maintenance of the unchanged current
spatial relative weighting.

4. Discussion

Based on prefecture-level population data that were rigor-
ously examined and corrected by Chinese historians, this
paper performed gridded historical population reconstruc-
tions and explicitly revealed the evolution of the population
spatial distribution in the TCRC from 1776 to 1953. Mod-

Figure 6 Differences in population densities between the reconstructions obtained in this paper and the HYDE dataset (HYDE dataset minus the
reconstructions in this paper).

Table 4 Comparisons of data sources and environmental factors applied by spatial distribution model between the reconstructions from this study and the
HYDE population dataset

Dataset Original population data sources Environmental factors for spatial distribution modeling

This study Prefecture-level population data from historical
documents

Elevation; slope; relief amplitude; distance to city; climate moisture index;
distance to river

HYDE Province-level population from Populstat LandScan population distribution pattern; soil productivity; slope; distance to river
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eling the population spatial distribution is a crucial task in
reconstruction. The model accuracy can exert profound im-
pacts on the reconstructions. To understand the uncertainties
of the reconstruction results, the shortages of the modeling
and its possible impacts on the reconstruction results are
discussed.
First, the selection of environmental factors is limited by

the availability of environmental data in the historical period.
Due to missing data in the historical period, modern data
were used instead of historical data for some environmental
factors. For example, due to the absence of high-precision,
grid cell-based climate moisture index data for historical
periods, the modern climate moisture index was used. Ac-
cording to historical climate reconstructions, the 18th and
19th centuries were in the Little Ice Age, during which the
temperatures were lower by 0.3–0.6°C than modern times
(Ge et al., 2013). Moreover, in this period, the climate was
also wetter, especially in northern China (Zheng et al., 2006).
Nevertheless, it is difficult to assess the impact of the sub-
stitution of the moisture index between historical and mod-
ern times on gridded population reconstruction because most
of the available climate reconstruction data are targeted to
the entire study region rather than to spatially explicit grid
cells. It is generally understood that spatial variabilities in
climate change are greater in areas with complex topography
than in areas with homogenous topography. It can be inferred
that the impacts of substituting the moisture index on the
reconstruction results are greater in complex topography
areas than in flat areas.
Second, this paper used the distances to cities to measure

the impact degrees of the city factors. The industrial structure
differs under different social forms. Modern cities are far
more attractive to populations than cities in historical peri-
ods. In particular, after the reform and opening up, with the
acceleration of urbanization, the population agglomeration
effect in urban areas strengthens gradually. Thus, the RFRM-
based model trained with modern data may overestimate
population densities in urban and surrounding areas in his-
torical periods. Finally, economic locations were not taken
into account in the model. However, our reconstructions used
prefecture-level population data, which are partly modulated
by national-level economic locations. Hence, the macroscale
population distribution may have been impacted very little.

5. Conclusion

Through the above analysis, it was found that at the county
level in the TCRC, terrain factors (i.e., elevation, slope and
relief amplitude) were the dominant environmental factors
affecting the population distribution. City factors (i.e., the
distance to the nearest provincial capitals and prefecture-
level cities) were secondary; the climate factor (i.e., moisture

index) and the river factor (i.e., the distance to level-1 to
level-3 rivers) were in third. Using the above factors as in-
dependent variables, the population distribution model based
on the random forest regression algorithm had a coefficient
of determination of 0.81 (p<0.01), which suggests that this
model could reproduce the spatial distribution of the popu-
lation well. Using the model taking together with the his-
torical demographic data, the gridded spatial distribution
patterns of the population at a grid size of 10 km by 10 km
were reconstructed for six time slices from 1776 to 1953. The
reconstructions show that the population in the TCRC in-
creased overall during this period. Population growth mainly
existed in the Yangtze River Delta region before 1851, and it
occurred particularly and extensively in the plains and
southeast coastal areas from 1851 to 1953. Spatial agglom-
eration characteristics were observed in the population spa-
tial distribution, but different patterns emerged among
different periods. The main reasons for the different spatial
patterns included shifting economic development hotspots,
traditional beliefs, wars, famines, and migration policies. In
comparison to our reconstructions, the HYDE dataset un-
derestimated the population in the eastern region and over-
estimated the population in the western region from 1776 to
1851, while it overestimated the urban population and un-
derestimated the rural population in the eastern region from
1851 to 1953. The reasons leading to these biases include the
data sources, environmental factor selection and spatial
modeling methods.
Our reconstructions provide data support to study the

issues that are relevant to the resource environment and
human society in the TCRC during historical periods, such
as the impacts of climate change on human society, the
interactions between regional environmental change and
human activities, the contexts and impacts of major his-
torical events, epidemic risk analyses, social resource car-
rying capacity assessments, and human-induced land use
and land cover changes and their climatic and ecological
effects. However, gridded reconstructions of the population
approximate the actual population sizes and distributions.
Due to the influences of the model structures and the
availability of environmental data in historical periods, the
reconstruction results are subject to uncertainty and need to
be further refined. Finally, the available gridded population
datasets for the post-1950s used different dependent vari-
ables, model structures, and grid sizes; thus, systematic
differences exist between our reconstructions and other
datasets. It is thereby an important issue to eliminate these
differences.
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