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Abstract

Background: Typhoons greatly threaten human life and property, especially in China. Therefore, it is important to
make effective policy decisions to minimize losses associated with typhoons.

Methods: In this study, the GeoDetector method was used to quantify the determinant powers of natural and
socioeconomic factors, and their interactions, on the population casualty rate of super typhoon Lekima. The local
indicator of spatial association (LISA) method was followed to explore the spatial pattern of the population casualty
rate under the influence of the identified dominant factors.

Results: Both natural and socioeconomic factors were found to have significantly impacted the population casualty
rate due to super typhoon Lekima. Among the selected factors, maximum precipitation was dominant factor (q =
0.56), followed by maximum wind speed (g = 0.45). In addition, number of health technicians (g =0.35) and number
of health beds (g =0.27) have a strong influence on the population casualty rate. Among the interactive effects of
12 influencing factors, the combined effects of maximum precipitation and ratio of brick-wood houses, the
maximum precipitation and ratio of steel-concrete houses, maximum precipitation and number of health
technicians were highest (g =0.72). Furthermore, high-risk areas with very high casualty rates were concentrated in
the southeastern part of Zhejiang and northern Shandong Provinces, while lower-risk areas were mainly distributed
in northern Liaoning and eastern Jiangsu provinces.

Conclusions: These results contribute to the development of more specific policies aimed at safety and successful
property protection according to the regional differences during typhoons.
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Background

Typhoons are among the most frequent and disastrous
natural hazards in the world, inflicting great losses on
human life and property, have affected the lives of more
than 250 million people worldwide [1-4]. Typhoons are
often accompanied by extreme weather, such as coastal
erosion, storm surge and heavy precipitation that can
lead to floods and landslides [3, 5]. These hazards should
not be underestimated as they can result in significant
loss of housing and infrastructure as well as posing a
considerable threat to human life, especially in coastal
areas [6—8]. China is currently among those countries
most vulnerable to typhoons [9], particularly coastal
areas of that.

In the previous studies, typhoon disaster risk com-
monly refers to the probability that a typhoon will cause
harmful consequences or expected losses to elements at
risk within a certain period of time, and is related to
hazards, vulnerability, exposure, and disaster prevention
and mitigation capabilities [10]. Among them, hazards
represent a potentially destructive physical event,
phenomenon, or human activity that may cause loss of
life or injury, property loss, socioeconomic chaos, and
environmental degradation, such as the hazards of ty-
phoon disasters include storm surge, heavy rainfall, land-
slides (debris flow), coastal erosion, and so on [3, 5].
Vulnerability represents how exposed entities are af-
fected by typhoon disasters, in which personnel vulner-
ability refers to the characteristics that cause individuals
or groups to be injured and died by typhoon disasters
[11]. Exposure refers to the number of people or build-
ings exposed to and adversely affected by typhoon disas-
ters [12]. The ability of disaster prevention and
mitigation represents how an area can effectively recover
from short-term and long-term impacts caused by the
typhoon disaster. It is the ability of the area to prevent
and respond to typhoon disasters and recover from di-
sasters. Therefore, the study of typhoon disaster risk
must comprehensively consider the hazard, vulnerability,
exposure and disaster prevention and mitigation capabil-
ities, so as to provide reference and basis for the
decision-making of resource allocation and disaster pre-
vention and mitigation planning in a certain area.

That is, in a region, the magnitude of the risks with as-
sociated typhoons is not only dependent on their inten-
sity, but also on the level of economic development,
population density, the level of medical facilities, and hu-
man activities in the affected areas [13, 14]. With socio-
economic development, increasing numbers of people
and property are becoming exposed to typhoons [14,
15]. Furthermore, with global warming, typhoon-
induced losses in China may be higher in the future, par-
ticularly in southeastern coastal areas that most fre-
quently experience typhoons, such as Zhejiang and
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Guangdong Provinces [4]. Therefore, the dominant fac-
tors resulting in risks during typhoons should be deter-
mined and recorded.

In recent years, previous research has demonstrated
that the risk of typhoons is not only related to climate
change parameters, such as wind speed, ocean
temperature changes, the El Nifio-Southern Oscillation,
and sea-level rise [14, 16, 17], but also the vulnerability
of hazard-affected bodies and capacity of disaster pre-
vention and reduction. Notably, with urbanization, hu-
man socioeconomic activities will aggravate the impacts
of natural disasters. Since the 1980s, research on ty-
phoon disasters has increasingly focused on the safe
construction of the economy and society, and has
highlighted the importance of vulnerability, exposure,
sensitivity, and adaptive capacity in economic, social,
and cultural systems [18, 19]. This has become a multi-
scale, comprehensive concept influenced by nature, soci-
ety, economy, and the environment [11]. Therefore, the
links between socioeconomic activities and disaster
losses caused by typhoons have attracted widespread at-
tention in a range of fields, including economics, urban
studies, architecture, and the social sciences [18, 19].

Most previous research has focused on analyzing the
impacts of single natural or socioeconomic factors on
disaster risks [20, 21], while interactive effects are more
rarely considered. Additionally, traditional statistical
methods cannot detect interactive effects between those
factors affecting disaster losses, as traditional regression
methods typically consider the products of two individ-
ual factors [22]. Additionally, statistical models of inter-
active effects are usually created for local regions, and
their ability to reflect broader spatial variability is lim-
ited. Coefficients with spatial differences can be derived
using Geographical Information Systems (GIS)-based re-
gression methods and machine learning algorithms, but
these have poor large-scale explanatory capability due to
the existence of spatially stratified heterogeneity [23, 24].

Regional and global typhoon risk management high-
lights the importance and necessity of studying the fac-
tors influencing typhoon disaster risks. The eastern
coastal region of China is undergoing rapid urbanization,
becoming an increasingly important metropolitan group.
However, this region is also one of the main areas facing
severe typhoon risks. Therefore, quantifying the deter-
minant powers of impact factors and their interactive ef-
fects is important for successfully formulating policies to
control and reduce casualties and property losses. In this
study, focusing on the 2019 super typhoon Lekima, haz-
ard factors, the sensitivity of the disaster environment,
the vulnerability of hazard-affected bodies, and disaster
prevention and mitigation are considered simultan-
eously. Specifically, this study aimed to (1) quantify the
determinant powers and interactive effects of natural
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and socioeconomic factors on the population casualty
rate resulting from super typhoon Lekima using the
GeoDetector method; (2) identify the dominant factors
affecting the population casualty rate; and (3) examine
the spatial patterns of the population casualty rate under
the influence of the dominant factor using the LISA
method.

Materials and methods

Typhoon data

On August 10, 2019, super typhoon Lekima made land-
fall on Wenling City, Zhejiang Province, followed by
Qingdao City, Shandong Province, data regarding the
development and characteristics of the typhoon were ob-
tained from the China Meteorological Administration
(http://2011.cma.gov.cn), and data on total population of
a county was obtained from Liaoning, Shandong,
Jiangsu, and Zhejiang province governmental statistical
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yearbooks (https://data.cnki.net/Yearbook/Navi? type =
type&code = A).

Notably, according to records, super typhoon Lekima
was the fifth strongest typhoon to hit mainland China
since 1949, resulted in a total of 14.02 million popula-
tion casualties, the collapse of 15,000 houses and the loss
of 11.37 thousand hectares of agricultural land equating
to direct economic losses of 51.53 billion CNY, in which
the population casualty in this study represents the total
number of people died and injured caused by super ty-
phoon Lekima; the population casualty rate represents
the ratio of total number of people died and injured
caused by super typhoon Lekima divided by the total
population in a county. Therefore, the spatial character-
istics of the disaster for the four provinces most affected
by Super Typhoon Lekima, namely, Zhejiang, Jiangsu,
Shandong, and Liaoning are analyzed here, which are lo-
cated in the eastern coastal region of China, and densely
populated and economically well developed (Fig. 1).
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Fig. 1 Geographic location of the study area and spatial distribution of population casualty rate attributable to super typhoon Lekima (The
administrative map in the figure was obtained from the Resource and Environment Data Cloud Platform (http://www.resdc.cn))
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Moreover, this region spans a length of more than 18,
000 km along the coastline and often suffer from ex-
treme weather events, such as strong winds and heavy
precipitation caused by typhoons, with such events typ-
ically resulting in significant numbers of casualties and
property losses. Therefore, it is essential to deploy rapid
emergency measures against typhoons in this eastern
coastal area of China.

Impact factors

Considering hazard factors, sensibility of disaster envir-
onment, vulnerability of hazard-affected bodies, and abil-
ity of disaster prevention and reduction, results from
previous studies [13, 18, 25, 26] and data availability, 12
natural and socioeconomic variables were selected in
this study. Data collected during the same period from
governmental statistic yearbooks of Zhejiang, Jiangsu,
Shandong, and Liaoning Provinces (Fig. 2), including
house structures, such as the ratio of steel-concrete
houses (RS), ratio of brick-concrete houses (RC), and ra-
tio of brick-wood houses (RW), were also considered. In
addition, population density (PD), per capita gross do-
mestic product (GDP) (PG), proportion of tertiary indus-
try (PT), number of health beds (NB), number of health
technicians (NT), daily maximum precipitation (MP),
and maximum wind speed (MW) associated with Super
Typhoon Lekima were also included. Data on the slope
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(SP) and elevation (EV) (resolution of 1 km x 1 km) were
downloaded from the resource and environmental data
cloud platform (http://www.resdc.cn). Then, the mean
values of SP and EV were calculated using zonal statis-
tics in ArcGIS 10.3 software for each county.

Statistical analysis

In this study, the GeoDetector was used to quantify the
determinant powers of single natural and socioeconomic
factors and their interactive effects on the population
casualty rate attributable to super typhoon Lekima,
allowing the dominant factors to be determined. Then
the local indicator of spatial association (LISA) was used
to identify the spatial pattern of population casualty rate
under the influence of the dominant factor, and further
classify the study area into hot spots (high-risk areas)
and cold spots (low-risk areas).

GeoDetector

GeoDetector (www.geodetector.cn) is a suitable tool for
handling the phenomenon with spatially stratified het-
erogeneity. The basic idea of GeoDetector is that if a fac-
tor X affects a dependent variable Y to a certain extent,
the dependent variable Y will exhibit a spatial distribu-
tion similar to that of factor X [24, 27, 28]. This idea is
more comprehensive than traditional methods and truly
reflects geographical phenomena, has been widely used

@azard factors

Sensibility of disaster
environment

7N

‘f House \
| i

9!

\ collapse rate ]
\\ Vulnerability of hazard-
o affect body

VN

prevention and
reduction

The ability of disaster

Fig. 2 Proxy and potential impact factors
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in disaster and health fields [29-31]. In this study, Geo-
Detector was introduced to quantify the relationships
between the dependent variable (population casualty
rate) and the natural and socioeconomic factors, here we
classified the values of each impact variable into 6 levels,
and the definition of g as follows:

1 L
q=1-55> N, (1)

where g represents the degree to which the influence
factor X explains the spatial heterogeneity of the
dependent variable Y (population casualty rate), and its
value ranges from 0 to 1. The larger the value of g, the
stronger the effect of the independent variable X on the
dependent variable Y. The study area was divided into L
layers, which are denoted by #=1, 2, .., L. N and N, are
the number of counties in the entire study area and
strata &, respectively. o° and ¢, are the variances of the
entire area and strata /, respectively.

GeoDetector can also be used to identify interactive ef-
fects between two random impact factors to evaluate
whether factors X1 and X2 work together to increase or
decrease the determinant power of the single factor on
the dependent variable Y, or whether these factors af-
fecting Y are independent of each other. GeoDetector
first calculate the g value of the two factors X1, X2,
namely, ¢ (X1), g (X2) and their interactive effects g
(X1nX2) (the new layer formed by the tangency of the
two layers of the overlapping variable X1 and the X2
polygon distribution, Fig. 3), and then compare g (X1), g
(X2) and ¢q (X1nX2).

It is worth mentioning that one of the advantages of
GeoDetector is that the variables have no linear assump-
tion, which means that the multicollinearity of the input
factors can be ignored. Therefore, adding new factors or
excluding existing factors will not affect the results of
the other factors.
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Identification of spatial pattern

Bivariate spatial correlation analysis is an extension of
spatial correlation analysis and can be used to examine
the spatial correlation of bivariate observations [32]. Ac-
cordingly, the local Moran’s I value was used to identify
the hot and cold spots for the population casualty rate
and determine the class of spatial correlation between
the two studied subjects, as follows:

. . n .
W=7z Wil (2)
XX o x-x
Zl — k Zl — 1 3
k ok <1 o ( )

where W; is the spatial weight matrix, x4 is the observa-
tion k at location i, / is the observation / at location j,
Xr and X; are the mean values of x; and x;, respectively,
and oy and o; are the variances of x; and x;, respectively.

7, and the corresponding spatial lag W.Z,' at location i
are presented on the vertical and horizontal axes of
Moran’s I scatter plot, respectively [33]. The spatial cor-
relation is then divided into four quadrants by the two-
coordinate axis. The first and third quadrants indicate
that the two variables in these spatial units have a posi-
tive spatial correlation or spatial clustering (High-High
and Low-Low), in which spatial clustering is the value of
two variables with significant positive spatial correlation
in some spatial units. The second and fourth quadrants
indicate that the bivariate variables in these spatial units
have a negative spatial correlation or spatial outliers
(High-Low and Low-High), in which spatial outliers are
bivariate values that have significant negative spatial cor-
relation in some spatial units [32]. All LISA calculations
were performed in GeoDa.

Results

Detection of dominant factors

In this study, GeoDetector was used to quantify the de-
terminant powers of the selected 12 natural and
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socioeconomic factors on the population casualty rate
attributable to super typhoon Lekima, the importance of
each factor sorted in descending order according to the
q values of the impact factors (Table 1), and the domin-
ant factors of spatial heterogeneity were further cap-
tured. The results showed that, among the selected
variables, maximum precipitation had the strongest ef-
fect on population casualty rate, with a g value of 0.56,
followed by maximum wind speed, with a g value of
0.45. This shows that heavy precipitation and strong
wind induced by super typhoon Lekima had the stron-
gest influences on human life.

The socioeconomic factors, number of health techni-
cians, number of health beds, per capita GDP and popu-
lation density, also exhibited a significant correlation
with population casualty rate. The g values of number of
health technicians, number of health beds, per capita
GDP and population density were 0.35, 0.27, 0.16 and
0.14, respectively, which indicates that the effects of eco-
nomic level, medical level, and human activity are non-
negligible in determining the population casualty rate
caused by the super typhoon Lekima (Table 1).

The results also showed that house structures signifi-
cantly impacted the population casualty rate during the
arrival of the typhoon. For example, the g values of ratio
of steel-concrete houses, ratio of brick-wood houses, and
ratio of brick-concrete houses were 0.14, 0.12, and 0.11,
respectively, showing that the difference in the house
structures is also non-negligible for the population cas-
ualty rate attributable to the super typhoon Lekima
(Table 1).

Slope and elevation also significantly impacted the
population casualty rate, with g values of 0.08 and 0.06,
respectively. This shows that natural environmental situ-
ations also impact on the population casualty when there
hit by the typhoon (Table 1).

Table 1 The g and p values of each influence factor

Influence factors q p

Maximum precipitation (mm) 0.56 0.00
Maximum wind speed (m/s) 045 0.00
Number of health technicians (per 10°) 035 0.00
Number of health beds (per 10°) 027 0.00
Per capita gross domestic product (GDP) (10*CNY) 0.16 0.01
Population density (WO“persom/kmz) 0.14 0.03
Ratio of steel-concrete houses (100%) 0.14 0.00
Ratio of brick-wood houses (100%) 0.12 0.00
Ratio of brick-concrete houses (100%) 0.11 0.00
Slope (degrees) 0.08 0.04
Proportion of the tertiary industry (100%) 0.07 0.01
Elevation (m) 0.06 0.05
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Proportion of tertiary industry also has a certain deter-
minant power on the population casualty rate, with a ¢
value of 0.07, which also shows that the economic level
also has a non-negligible impact on the population cas-
ualty rate (Table 1).

Interactive effects among the impact factors

A total of 66 pairs of interactive effects among the 12
factors were calculated using GeoDetector. Considering
the results of the interactive effects among selected fac-
tors (Fig. 4), the interactive effects of each pair of factors
were found to be significantly larger than the g value of
the two factors individually. This indicates that the
population casualty rate is not only affected by individ-
ual factors, but also by interactive effects between two
random factors, with greater impact. According to the
results of interactive effects of two random factors, the
values of g (maximum precipitation n ratio of brick-
wood houses), g (maximum precipitation n ratio of
steel-concrete houses), and g (maximum precipitation n
number of health technicians) were the highest (g =
0.72), followed by g (maximum precipitation N max-
imum wind speed) and ¢ (maximum precipitation n
number of health beds) with g values both of 0.70. These
results indicate that the interactive effects between max-
imum precipitation and house structures, such as houses
of brick-wood and steel-concrete structures, is the stron-
gest, and that the interactive effects between natural and
socioeconomic factors are far stronger than the effects
of individual natural or socioeconomic factors.

Spatial pattern

Bivariate local spatial association analysis was conducted
based on the dominant factor (maximum precipitation)
and the population casualty rate attributable to super ty-
phoon Lekima. The results showed that the local Mor-
an’s [ value of the population casualty rate was 0.46 (p <
0.001), indicating that maximum precipitation and popu-
lation casualty rate had a significant and positive spatial
correlation. Based on the results of Moran’s I scatter
plot, counties in the four quadrants are plotted in Fig. 5.
For counties located in the first quadrant, a positive cor-
relation was found between high population casualty
rate and severe precipitation. For counties located in the
third quadrant, a positive correlation was found between
low growth of population casualty rate and low precipi-
tation. Figure 5 shows the spatial clustering of the two
variables and counties where the spatial correlation of
the two variables is significant. High-high spatial clusters
(hot spots) of precipitation and population casualties
were observed in counties located in southeastern Zhe-
jiang and northern Shandong. Low-low spatial clusters
(cold spots) of precipitation and population casualties
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were observed in counties located in northern Liaoning
and eastern Jiangsu.

Discussion

Comprehensively considering various hazard factors,
sensibility of disaster environments, vulnerability of
hazard-affected bodies, and the combined effects of dis-
aster prevention and reduction capacity [13, 21, 25, 34],
the determinant powers of natural and socioeconomic
factors and their interactive effects on the population
casualty rate attributable to super typhoon Lekima were
quantified. Then, the spatial pattern of the population
casualty rate under the influence of the dominant factor
(maximum precipitation) was determined using the
LISA model to identify hot and cold spots. The results
showed that both natural and socioeconomic factors sig-
nificantly affect the population casualty rate. Addition-
ally, among all the interactive effects of the selected
influencing factors, the interactive effects between max-
imum precipitation and ratio of brick-wood houses,
maximum precipitation and ratio of steel-concrete
houses, and maximum precipitation and number of
health technicians were the strongest. High-risk areas of
high population casualty rate attributable to super ty-
phoon Lekima were mainly distributed in the southeast-
ern counties of Zhejiang and northern Shandong, which
suffered the most severe precipitation induced by super
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typhoon Lekima, while low-risk areas are mainly distrib-
uted in northern Liaoning and eastern Jiangsu.

It is generally and globally acknowledged that severe
precipitation and strong wind are the main mechanisms
of typhoons releasing energy, and these factors largely
lead to population casualties and property losses [35—
37]. Similarly, in this study, the results showed that max-
imum precipitation was the dominant factor affecting
the population casualty rate attributable to super ty-
phoon Lekima, with a g value of 0.56. This implies that
severe precipitation has a significant impact on the
population casualty rate, which is consistent with the
findings of previous research. For example, Hu et al
demonstrated that extreme precipitation can cause flood
disasters and contributes towards increasing the expos-
ure of populations and assets [13]. Similarly, Lin et al.
showed that heavy precipitation and floods caused by
tropical cyclones have caused huge population and eco-
nomic losses worldwide [38]. These studies indicated
that severe precipitation is a key phenomenon of ty-
phoon energy release and one of the main factors caus-
ing population casualties and property losses. Moreover,
the interactive effects of maximum precipitation and
other factors, such as ratio of brick-wood houses, ratio
of steel-concrete houses, and number of health techni-
cians, had a strong impact on the population casualty
rate, indicating that heavy precipitation will not only
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have a great impact on the population casualty rate,
but also significantly increase the impact with other
factors on the house collapse rate. This may be be-
cause heavy precipitation could cause secondary disas-
ters, such as floods and mudslides, which lead to
major disasters in coastal areas [39], and threaten the
safety of human life and property. Moreover, areas
with developed economies and dense populations are
highly sensitive to disasters, such as floods, rain-
storms, and raised water levels. Therefore, the inter-
active effects of precipitation and socioeconomic
factors could increase the magnitude and intensity of
typhoon disasters in such regions [40-42].

Strong wind was also an important and non-negligible
factor in relation to the population casualty rate attribut-
able to super typhoon Lekima. In this study, the results
showed that maximum wind speed has a high determin-
ant power, with a g value of 0.45, showing that severe
wind has a significant impact on the population casualty

rate, which is consistent with the findings of previous re-
search. For example, Nigusse et al. found that strong
wind speed induced by typhoons would increase the
damage to life and property [18]. Similarly, Li et al. re-
ported that the strong wind speed induced by a typhoon
had a significant impact on human life and property
[43]. Typhoon disasters may be mainly driven by heavy
precipitation and strong wind; the associated water flow
and wind would erode or destroy structures or compo-
nents of houses and further aggravate the collapse of
houses, leading to population casualties and serious eco-
nomic losses.

In addition to natural factors, socioeconomic factors
also had an important impact on population casualty
rate attributable to super typhoon Lekima. For example,
number of health technicians, number of health beds,
per capita GDP and population density (g values of 0.35,
0.27, 0.16 and 0.14, respectively), which are generally
considered to be important factors affecting disaster
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assessment, would increase the impact intensity of ty-
phoon disasters, especially in the coastal areas, consist-
ent with the results of other previous studies. Ying et al.
reported that factors of the ability of disaster prevention
and reduction, such as per capita GDP, can reflect the
resilience of a region against typhoons [44]. Similarly,
Hu et al. showed that population density has a signifi-
cant impact on population casualties affected by severe
precipitation and secondary disasters caused by typhoon
disasters [13]. In addition, Wang et al. pointed out that
densely population and high economic level will further
increase the extent of damages caused by typhoon disas-
ters [45]. These studies showed that rapid urbanization
has promoted higher economic growth and attracted a
large number of people, resulting in the accumulation of
population. In other words, the disaster losses caused by
typhoons will further increase as the economic level in-
creases, because cities with high economic levels are ac-
companied by an increase in population density, with
increased concentration of both roads and buildings in
metropolitan areas [18]. Therefore, the impact of natural
disasters in such areas will increase or expand to some
extent.

The interactive effects between natural and socioeco-
nomic factors were all enhanced, that is, the determinant
power of two factors were greater than that of single fac-
tor, as revealed by the GeoDetector analysis. For in-
stance, the values of g (maximum precipitation n ratio of
brick-wood houses), ¢ (maximum precipitation N ratio
of steel-concrete houses) and ¢ (maximum precipitation
n number of health technicians) were the highest (g =
0.72), greater than those on individual factors; this im-
plies that the interactive effects of the factors presented
a significant increase over the effects of individual fac-
tors on the population casualty rate attributable to super
typhoon Lekima. Notably, in recent years, the ecological
environment and human living conditions have changed
dramatically due to rapid urbanization [46, 47]. The
interactive effects between natural and socioeconomic
factors will amplify the impact of natural disasters to a
certain extent, and the factors will enhance the effects of
each other on the population casualty rate.

Specifically, the risk of typhoon disasters is affected by
various factors, including meteorology, emergency man-
agement, socioeconomic, and physical effects. This study
provides a new perspective on study of typhoon disasters
by analyzing the interactive impacts of factors, which
can provide a certain scientific basis and make contribu-
tions for policy formulation. For example, when formu-
lating policies, not only the impact of a single factor, but
also the interactive impacts of factors on disaster risk
should be considered, which would be helpful to have
more concrete insights into what are the typhoon disas-
ters could look like and make contribution for policies
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and strategies to more fully consider and integrate the
interactions of multiple factors to enhance the capacity
of disaster response efforts. Moreover, in the process of
specific implementation, the risk assessment of typhoon
disasters needs to consider these factors comprehen-
sively, so as to compare the typhoon disaster risks of dif-
ferent regions, provide reference for the resource
allocation and high-level planning of decision-making
departments, and improve the public’s awareness and
understanding of typhoon disasters. It is undeniable that
cities are the common spatial carrier of typhoon disas-
ters and influencing factors, and none of the factors exist
alone. Therefore, further research should pay more at-
tention to the comprehensive interactive impacts of fac-
tors on typhoon disasters.

Furthermore, hot and cold spots of population casualty
rate in this study were revealed by LISA. Hot spots were
mainly located in southeastern Zhejiang and northern
Shandong, indicating that these regions experienced sig-
nificantly severe population casualties. Therefore, these
regions should receive more attention during typhoon
events. In contrast, cold spots were mainly located in
northern Liaoning and eastern Jiangsu, indicating that
these regions experienced a significantly low population
casualty rate. These results indicate that, in addition to
natural factors, the socioeconomic level also has a cer-
tain intervention effect on the outcome of disasters,
which is consistent with the results of previous research.
For example, Zhang et al. reported that heavy precipita-
tion caused by typhoons resulted in a decrease in popu-
lation mortality with the growth of per capita GDP [48].
Similarly, Hu et al. reported that, with a rise in per
capita GDP of $1, flood deaths attributable to typhoons
will decrease by 0.41 [13]. The underlying mechanism
may be the significant improvements made in disaster
prevention infrastructure and the ability to mitigate di-
sasters with socioeconomic development.

This study has some limitations that should be clari-
fied. The first limitation is that only some natural, demo-
graphic, and socioeconomic factors were considered as
risk factors for population casualty rate, while ignoring
environmental factors (such as temperature and specific
humidity). Moreover, the natural disaster system is a
complex subsystem of the huge earth system, and it is
affected by various complicated natural processes and
human social activities. The second limitation is that the
spatial scale used in this study was at the county level,
which may introduce some uncertainties in the study.

Conclusions

In this study, GeoDetector was used to quantify the de-
terminant powers of natural and socioeconomic factors
in Zhejiang, Jiangsu, Shandong, and Liaoning, in order
to further examine the dominant factor, and their
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interactive effects on the population casualty rate attrib-
utable to super typhoon Lekima. Then, the LISA method
was used to reveal the spatial pattern of population cas-
ualty rate under the influence of the dominant factor.
The results showed that hot spots were mainly distrib-
uted in southeastern Zhejiang and northern Shandong,
while cold spots were mainly distributed in northern
Liaoning and eastern Jiangsu. Both natural and socioeco-
nomic factors significantly affected the population cas-
ualty attributable to super typhoon Lekima. Notably,
with rapid urbanization, the impact of socioeconomic
factors has been receiving increasing attention in recent
years, which further illustrates that the spatial hetero-
geneity of disaster losses is closely related to socioeco-
nomic factors. Moreover, the interactive effects between
natural and socioeconomic factors had stronger impact
on the population casualty attributable to the super ty-
phoon Lekima. These findings provide deeper insight
into the impact mechanism of typhoon disasters. With
better understanding of the mechanism, information can
be collected and evaluated more scientifically and rea-
sonably, and the impact factors of the spatial heterogen-
eity of disaster losses can be understood in greater
detail. These results imply that more specific strategies
are required for different regions to prevent, control,
and allocate resources in order to enhance their disaster
response capabilities and reduce potential losses caused
by natural disasters.
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