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Abstract 

In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering 

method to define joint control regions is an effective approach to address severe regional air pollution. 

However, current cluster analysis research on the determination of joint control areas relies on the Pearson 

correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the 

correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge 

this gap, we proposed a method to delineate spatial patterns of PM2.5 pollution and regional boundaries of 

polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first 

mined, and the support values were employed as interestingness metrics to describe the significance of similar 

variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate 

areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring 

model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control 

regions. By analysing urban PM2.5 pollution in China from 2015 to 2018, we obtained results demonstrating 

that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively 

identify regional divisions. The clustering approach could facilitate a greater understanding of PM2.5 

spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of 

this research have important implications for the formulation of clean air policies in China. 
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1. Introduction 

 

In recent years, severe PM2.5-dominated air pollution attributed to significant economic prosperity and 

urbanization has remained a persistent issue in China (Fontes et al., 2017). Long-term exposure to PM2.5 

causes many health problems, such as cardiovascular disease, stroke, respiratory diseases, and lung cancer 

(Al-Hemoud et al., 2019; Lu et al., 2015). Air quality deterioration has become a notable environmental and 

social problem in China (Zhang et al., 2012). As a pollutant, PM2.5 is prone to transboundary transport via 

atmospheric circulation, resulting in regional air pollution (Khuzestani et al., 2017; Yu et al., 2021). Hence, 
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the air quality in one city could be highly influenced by neighbouring cities (Chen et al., 2016; Zhang et al., 

2020). A strong temporal correlation of PM2.5 pollution between cities within 250 km has frequently been 

observed (Hu et al., 2014). 

To strengthen programme planning for the joint prevention and control of atmospheric pollution, China 

has formulated and implemented a series of relevant policies. In 2012, China designated 13 key areas for 

joint prevention and control of air pollution based on the level of economic development and the severity of 

air pollution (Ministry, 2012). To ensure good air quality in Beijing during the Asia-Pacific Economic 

Cooperation (APEC) period, Beijing and five neighbouring provinces implemented a rigorous joint 

atmospheric pollution prevention and control programme. This joint policy achieved excellent results and led 

to the APEC blue phenomenon (Wang et al., 2016a). In 2017, to improve the ambient air quality in the 

Beijing-Tianjin-Hebei (BTH) region and surrounding areas, the Chinese government formulated a joint 

control policy involving 28 cities (including 2 municipalities and 26 prefecture-level cities, referred to as the 

policy of the “2+26” cities). Given the natural and socioeconomic conditions of the different areas in China, 

there are substantial regional variations in the emissions, transformation, and diffusion of PM2.5 pollution, 

resulting in notable spatiotemporal variations and agglomeration characteristics of the distribution of the 

PM2.5 concentration (Timmermans et al., 2017). However, current regional environmental management 

cooperation practices in China are mainly formulated for China’s well-developed urban agglomerations, 

thereby ignoring the spatiotemporal heterogeneity of air pollution (Yao et al., 2020). 

Since joint air pollution control in regions is more effective and efficient than a single pollution control 

strategy applied in respective cities (Wu et al., 2015), the scientific formulation of joint control regional 

divisions is a reliable strategy to improve both local and regional air quality levels. To address this problem, 

studies have applied clustering methods to define atmospheric pollution joint control regions. Zhang et al. 

(2018a) established a network correlation model to demarcate highly intercorrelated regions within China. 

Based on spatiotemporal clustering of the PM2.5 concentration, Chen et al. (2019) divided China into six areas 

for joint pollution control. Wang and Zhao (2018) defined regional divisions within the BTH region through 

cluster analysis of the correlation between PM2.5 and PM10 pollutants. The key to clustering techniques is 

how similarity is measured, with similarity measures commonly based on the distance. Different distance 

measurement methods are suitable for data with different characteristics. To date, however, most studies have 

relied on the Pearson correlation coefficient as a similarity measure (Wang and Zhao, 2018; Wang et al., 

2016a; Zhang et al., 2018a). The Pearson correlation coefficient was used to measure the simple linear 

relationship between two continuous variables (Mukaka, 2012). This coefficient usually requires data to 

conform to normal distribution and is vulnerable to extreme values. More importantly, this approach cannot 

assess nonlinear relationships between variables. Since the generation, transformation, and diffusion 

processes of PM2.5 are affected by multiple factors, PM2.5 data of a city include complex nonlinear time series 

data. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reflect 

the similarity in air quality between different cities. Therefore, the current clustering algorithms cannot 

accurately determine joint control areas. A scientific, reasonable, and effective method urgently should be 

adopted to mitigate this problem. 

To bridge this gap, in this paper, we propose a novel framework to delineate regional boundaries of 

PM2.5 pollution using the frequent itemset clustering approach. Regional environmental issues are 

characterized by the fact that the patterns of the variation in air quality among different cities within a region 
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are consistent. Therefore, a region containing cities with similar patterns of the variation in air quality is the 

optimal joint control region. The similarity in patterns of the variation in air quality among cities can be used 

to measure the similarity in regional urban air pollution. The proposed method first applies a frequent itemset 

mining technique to mine similar patterns of variation between cities as a similarity measure and then applies 

a hierarchical clustering algorithm to define the scope of joint control regions. Frequent itemset mining is a 

data mining technique that can effectively discover cities with consistent patterns of air pollution variation. 

The method is quite robust to the presence of outliers because outlier values do not exceed the minimum 

support threshold during the pattern generation process. Furthermore, the method does not require model 

assumptions and yields the advantage of easy interpretability, making it more practical for domain experts to 

better understand and implement the results. This approach is more suitable in complex air pollution domains 

than traditional methods in terms of effectiveness and interpretability. 

The rest of this paper is organized as follows: the data and methods used in this research are introduced 

in Section 2. Section 3 provides a detailed explanation of the experimental results. A discussion of the 

research is contained in Section 4. Finally, the conclusion of this study is presented in Section 5. 

 

 

2. Data and Methods 

 

2.1. Data 

 

The Ministry of Ecology and Environment of China started to establish a national ambient air quality 

monitoring network in 2013, and the monitoring network has covered all the major cities in China since 2015 

(Li et al., 2019; Ye et al., 2018). The original data of PM2.5 pollutant concentration is released publicly online 

by the China National Environmental Monitoring Platform (http://106.37.208.233:20035/) on an hourly 

basis. We collected the hourly PM2.5 pollution data from the National Environmental Monitoring Platform, 

covering four municipalities and 334 prefecture-level cities across China from 2015 to 2018; and then, the 

daily, monthly and annual average PM2.5 concentration data for each city can be calculated through arithmetic 

averages method. 

 

2.2. Methods 

 

This paper presents a novel method based on the integration of frequent itemset mining and 

agglomerative hierarchical clustering to identify potential patterns of the variation in air pollution among 

cities. 

Specifically, the proposed approach first identifies cities with consistent patterns of air pollution 

variation based on the frequent itemset mining algorithm. Then, the mined frequent itemsets are applied as a 

similarity measure among cities, and a hierarchical clustering algorithm is applied to define the scope of 

joint control regions. Finally, the q-statistic test is performed to verify the effectiveness of the proposed 

approach. The principle of our method is inspired by the divide-and-conquer paradigm widely applied in data 

mining and machine learning (Witten et al., 2016). This paradigm first breaks down a complex problem into 

subproblems and then combines the answers to the individual subproblems to appropriately generate the final 
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solution. The frequent itemset mining method reveals the relationships between pairs of cities, and local 

patterns can be efficiently identified in a dividing manner. After the subproblems (i.e., local cities) are solved, 

solutions to the whole problem (i.e., the nation as a whole) are considered in a systematic way based on the 

agglomerative hierarchical clustering method. The clustering approach merges all the determined local 

patterns and provides a comprehensive view of pollution in cities across China. Previous studies have usually 

solved this problem in either a piecemeal or integral manner, but our approach gathers abundant knowledge 

from partitioned problems to tackle the overall problem by combining partial patterns. 

 

2.2.1. Frequent itemset mining 

 

Frequent itemset mining is a data mining technique to find groups of items (i.e., itemsets) that appear 

frequently together and reveal interesting associations hidden in a database. Frequent itemset mining was 

first proposed by Agrawal in the context of a database of customer transactions to determine the patterns of 

purchasing behaviours (Agrawal et al., 1993). Given a customer transaction database, the task of frequent 

itemset mining is to discover itemsets that are frequently purchased together by customers (Fournier-Viger 

et al., 2017). In frequent itemset mining, the frequency (or interestingness) of an itemset in a database is 

usually evaluated by the support parameter, which corresponds to the number of transactions where the items 

in the itemset co-occur divided by the total number of transactions in the database. The support of an itemset 

X in a database D can be estimated using Eq. 1. 

{ , D}
( )

D

T T X T
sup X

 
         (1) 

where T is a set of distinct items that make up database D, and |D| denotes the total number of transactions 

in D. If an itemset is a frequent itemset, its support value is no less than a user-specified minimum support 

threshold called minsup. 

To efficiently mine frequent itemsets, the FP-growth algorithm (Han et al., 2004) was proposed. The 

algorithm does not need to scan the database repeatedly or to generate a large set of candidates, which greatly 

reduces the time and space requirements compared to traditional algorithms. The core concepts of the FP-

growth algorithm are illustrated by the pseudocode in Fig. S1 in the appendix. Although itemset mining was 

originally designed for the market basket database, its application can be further widened more generally to 

discover groups of attribute values frequently co-occurring in various databases. It is profitably exploited in 

different domains, such as malware process identification (Duan et al., 2015), image classification (Fernando 

et al., 2012), and bioinformatics data analysis (Naulaerts et al., 2015). 

Regional air pollution suggests that cities within a specific region exhibit similar patterns of the 

spatiotemporal variation in air pollutants. The similarity in patterns of the variation in air quality among cities 

can be used to measure the similarity in regional urban air pollution to delineate regions of joint prevention 

and control. Therefore, we mine the frequent itemsets of common PM2.5 concentration growth (co-growth) 

on the same day between two cities to represent similar patterns of spatiotemporal variation. Co-growth of 

PM2.5 in any two cities indicates consistent pollution patterns, which can be caused by their energy/industry 

structures or geo-climatic environments (Zong et al., 2018). These patterns provide useful information for 

joint prevention and control of pollution. 
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2.2.2. Agglomerative hierarchical clustering 

 

The goal of a clustering algorithm is to divide a dataset into different groups, where the objects have 

higher similarity in the same group and higher dissimilarity with other groups (Peng et al., 2011). In this 

paper, we apply frequent itemset patterns to measure similarity and to use a hierarchical clustering algorithm 

to determine groups (Murtagh and Contreras, 2012). 

The hierarchical clustering algorithm regards each sample in the dataset as an initial cluster and then 

combines the two nearest clusters in each step of the algorithm. The algorithm repeats the above steps until 

the termination condition is reached. The pseudocode of the hierarchical clustering algorithm is displayed in 

Fig. S2 in the appendix. 

To cluster data, we need the distance measure to calculate the similarity between different objects. In 

this study, the distance measure is expressed as Eq. 2. 

1 2 1 2Distance( , ) 1 Support( , )city city city city                          (2) 

where Distance (city1, city2) is the distance value between the two cities, and Support (city1, city2) is the 

support value of the frequent itemset (city1, city2). When the co-growth patterns of PM2.5 concentrations in 

two cities are more similar, the intercity support of the two cities is closer to one, and the distance will be 

close to 0. The two cities with shorter distances should be clustered together. If there are no frequent itemsets 

between two cities, the distance is set to 1, and they would not be clustered into one group. 

According to distances between pairs of clusters, hierarchical clustering algorithms are divided into 

three categories: single-link, complete-link, and average-link algorithms (Cohen-addad et al., 2019). To 

calculate the similarity between groups, the average-link algorithm is used in this study as Eq. 3. 

1 2

1 2

1
D ( , ) ( , )

i j

avg i j

city C city Ci j

C C D city city
C C  

                    (3) 

where Davg (Ci, Cj) is the distance of groups Ci and Cj. |Ci| and |Cj| are the number of cities in Ci and Cj, 

respectively. 

 

2.2.3. Assessment of clustering validity  

 

The q-statistic is widely applied to measure the degree of spatial heterogeneity in ecological phenomena 

(Wang et al., 2016b). The technique can estimate differences among clusters and the similarity within clusters 

and the q-statistic is a reliable metric to assess the spatiotemporal clustering validity of PM2.5 pollution (Chen 

et al., 2019). The q-statistic is calculated with Eq. 4. 

2

1

2
1

L

h h

h

N

q
N




 


                                     (4) 

where q is the value of the q-statistic index and L denotes the number of clusters. Nh and N are the 

number of cities in cluster h and all clusters, respectively. 2

h  and 2  denote the variance in the urban 

PM2.5 concentration in cluster h and all clusters, respectively. The value of the q-statistic occurs in [0,1], 

and a larger value indicates a more efficient regional division of PM2.5 pollution. 

Transformation of the q-statistic index can satisfy a non-central F-distribution, as expressed in Eqs. 

5 and 6, and the F-test can thus be applied to assess the significance of the q-statistic index. 
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where λ denotes the non-centrality parameter and μh is the urban average PM2.5 concentration in cluster 

h. 

 

3. Results 

 

In this section, we investigate the patterns of urban PM2.5 pollution in Chinese cities by using the FP-

growth algorithm and hierarchical clustering algorithm. 

 

3.1. Overview of the PM2.5 concentration 

 

From the perspective of temporal variations, Fig. 1 shows the daily average PM2.5 concentration in 

Chinese cities from 2015 to 2018, which ranged from 20 to 135 μg/m3 across all four years. During these 

four years, the overall pollution level exhibited a downward trend. According to China's national standards, 

as listed in Table S1 (HJ633, 2012), the air quality is classified as excellent when the PM2.5 concentration is 

lower than the first level threshold (35 μg/m³) and polluted when the concentration is higher than the second 

level threshold (75 μg/m³). As shown in Fig. 1, the pollution threshold is exceeded mostly in winter 

(December, January, and February). This indicates that cities in China most commonly suffer from serious 

PM2.5 pollution in winter. On average, nearly 38% of the days in the four years met the first level of the air 

quality standard, and these conditions usually occurred in summer (June, July, and August). 
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Fig. 1. Daily average of urban PM2.5 concentrations in China. 

 

The monthly average PM2.5 concentration is shown in Fig. 2, and during most months, the values 

exhibited a general downward trend from 2015 to 2018. In 2018, the monthly average PM2.5 concentration 

was 20.40% lower than that in 2015. Moreover, the largest and smallest declines in the monthly average 

PM2.5 concentration were 33.95% and 2.64%, respectively, which occurred in September and March, 

respectively. Compared to 2015, the maximum monthly average PM2.5 concentration in 2018 decreased by 

9.24%. The maximum and upper-quartile values of the monthly average PM2.5 pollution level are distinct, 

which indicates the unbalanced distribution of the PM2.5 concentration in China. Moreover, the largest 

quartile deviation occurred in July and August, and the smallest deviation occurred in January and December 

among these four years. This indicates that the air quality imbalance phenomenon among Chinese cities is 

the most serious in winter and the least severe in summer. 
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Fig. 2. Monthly average of urban PM2.5 concentrations in China. 

 

The cities in this study are shown in Fig. 3, and the annual average PM2.5 concentrations from 2015 to 

2018 are represented by different colours, where red, yellow, and green denote serious, medium, and slight 

pollution, respectively. Significant spatial differences in the PM2.5 concentration among cities were observed. 

The highest annual average PM2.5 concentrations mainly occurred in two areas: southwestern Xinjiang and 

the BTH region. Existing research suggests that energy consumption, transport, industry, and population 

growth are the major contributors to serious PM2.5 pollution in the BTH region (Zou and Shi, 2020). In 

contrast to the BTH region, the air quality in Xinjiang Province is largely affected by the Taklimakan Desert 

(Geng et al., 2015). 

According to the standards of the World Health Organization listed in Table S2 (WHO, 2006), the lowest 

standard threshold for the annual average concentration is 35 μg/m³. As shown in Fig. 3, most cities in China 

do not yet reach this standard, which indicates that PM2.5 pollution control remains an urgent problem.
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Fig. 3. Annual average of urban PM2.5 concentrations in China. 

 

3.2. Frequent itemset mining of urban PM2.5 pollution in China 

 

Based on daily average pollution data for each city, we mined associative relationships by the frequent 

itemsets between each pair of cities. By comparing the PM2.5 concentration value on the previous day, we 

first calculated the daily variation value of the PM2.5 concentration in each city from 2015 to 2018. Then, all 

the cities where the daily PM2.5 concentration variation status increased on the same day were collected as 

itemset candidates. Finally, we applied a mining algorithm to efficiently search the frequent itemsets. The 

threshold minsup was set to 0.1 in this study. The identification of frequent itemsets indicated that the PM2.5 

concentration in two cities increased on the same day with a certain degree of probability. In other words, the 

cities among the frequent itemsets exhibited a certain consistency or similarity in terms of their PM2.5 

pollution patterns, where the support values of the frequent itemsets could be adopted as a similarity measure. 

To visualize the frequent itemsets, the cities in this study were assigned IDs from 1 to 338, and these cities 

are located in seven geographic regions of China, as shown in Fig. S3 (North China, Central China, East 

China, South China, Northeast China, Southwest China, and Northwest China, abbreviated as N, C, E, S, NE, 

SW, and NW, respectively). The IDs for each region were numbered as follows: N (1-35), C (36-78), E (79-

156), S (157-195), NE (196-232), SW (233-286), and NW (287-338). 

The frequent itemsets obtained through the mining process are visualized on a map with 338×338 grids 
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(please refer to Fig. 4). The left and bottom coordinates of the grid indicate the IDs of the cities, while the 

right and top coordinates indicate the regions. The colours in each grid cell indicate the support values, where 

red indicates a high support value and blue indicates a low support value. 

 

 

Fig. 4. Frequent itemsets of urban PM2.5 pollution in China. 

 

Regional air pollution exhibits similar spatiotemporal features of air pollutant concentrations (Yao et 

al., 2020), and these features can be used to identify joint control areas. By mining long-term and massive 

data on the urban PM2.5 concentration in China, similar patterns in the variation in air pollutants were found. 

Fig. 4 shows a comprehensive description of the similarity in patterns of the spatiotemporal variation between 

cities across China. The air pollution patterns indicate associative relationships between urban air pollution 

and exhibit obvious regional characteristics. As shown in Fig. 4, the frequent pollution patterns among cities 

are aggregated, especially near the diagonal region. This result reveals significant mutual effects of PM2.5 

pollution between adjacent cities, which is consistent with the findings of previous studies (Lu et al., 2019; 

Zhao et al., 2013). In addition to the cities within a short distance of each other, our results support 

associations between certain cities within a relatively long distance from each other, which complements 

previous findings. 

The results in Fig. 4 demonstrate that there are frequent patterns widely distributed in many cities, 

indicating the features of spatial associative relationships and, in particular, adjacent agglomerations of urban 

PM2.5 pollution. Upon close examination of the seven geographic regions of China, as shown in Fig. 4, we 

observe that most of the pairs of cities within the same region attain higher support values than do those in 

different regions and that the relationships exhibit distinct features in the different regions. For example, 

weak frequent itemsets occurred in the SW and NW regions, which suggests that the association of PM2.5 

Jo
urn

al 
Pre-

pro
of



pollution between cities in these two regions was poor. This phenomenon could be explained by the fact that 

there are basins in these regions surrounded by mountains, which may reduce pollution dispersion and 

weaken the relationships of PM2.5 pollution in these regions (Geng et al., 2015). 

Regionally, air environmental issues are characterized by the fact that the patterns of the variation in air 

quality among the different cities within a region are consistent. Interaction areas with frequent pollution 

patterns can reveal the underlying associations of PM2.5 pollution and capture the regional characteristics of 

PM2.5 pollution. Hence, consistent patterns of air quality variation among cities can be used to identify the 

regional scope of joint pollution control. The relationships among cities enable delineation of the boundaries 

of regional PM2.5 pollution, facilitating the grouping of related cities with frequent patterns into a joint 

control region and amplification of the effects of pollution prevention policies. Achieving this goal calls for 

a clustering approach to help analyse all the relationships from an overall perspective, where cities within the 

same cluster have strong associations, while cities in different clusters have weak associations. This issue is 

examined in the following subsection. 

 

3.3. Clustering results of urban PM2.5 pollution in China 

 

To determine the number of clusters, a distance threshold is defined to measure the dissimilarity between 

objects in the same cluster. If the distance between two objects is below the threshold, these objects belong 

to the same cluster. The threshold is the key parameter of hierarchical cluster analysis, which determines 

how many clusters are generated. Parameter selection depends on the target problem within the context of 

the data under investigation (Estivill-Castro, 2002). In this study, the distance parameter of the hierarchical 

cluster is set to 0.7, which indicates that two objects (i.e., cities) are grouped into one cluster only when the 

similarity in their pollution patterns is greater than 0.3. 
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Fig. 5. Clusters of urban PM2.5 pollution in China. 

 

Through the clustering algorithm, the cities in China can be divided into 13 clusters (more detailed 

information is provided in Table S3 in the appendix). The value of the q-statistic is affected by hierarchical 

differentiation in the data sample and the interpretability of clustering methods regarding the spatial 

heterogeneity among clusters. To evaluate the validity of the clustering results, the q-statistic threshold was 

set to 0.27 by referring to related study on PM2.5 pollution division in China (Chen et al., 2019). Our results 

demonstrate that the q-statistic of the proposed method is 0.29 and P-value is significant at the 0.01 level. 

Compared to the baseline model, the relatively large q-statistic index value indicates that the frequent itemset 

clustering approach is an effective method to properly identify areas for joint pollution control. 

Fig. 5 shows the results of the clustering algorithm where the different colours indicate the different 

clustering partitions, and the results generally agree with Tobler's first law of geography (Tobler, 1970), 

namely, pollution interdependence and aggregation effects are observed for closer cities. Many of the cities 

in southwestern and northwestern China cannot be clustered because of independence of their pollution 

patterns, and these cities are usually isolated by geographical features such as mountains, where pollution is 

mainly caused by local sources. PM2.5 pollution in these regions is less influenced by transmission from cities 

outside these areas (Ye et al., 2018). 

Based on the observations in Fig. 5, the 13 clusters could be roughly categorized into three divisions in 

general. 

1) The first division consists of cluster 1, including Heilongjiang, Jilin, Shanxi, Hebei, Henan, and 
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Shandon provinces, and parts of Anhui, Hubei, Jiangsu, Sichuan, the eastern part of Inner Mongol, 

Beijing, Tianjin, and Chongqing. This region comprises North China and Central China, which are 

the most highly polluted, rapidly developing, and densely populated areas (Song et al., 2016). Due 

to the corresponding meteorological conditions and flat terrain, most cities in these areas share 

similar pollution patterns. For example, it has been reported that dust storms stemming from Inner 

Mongol are one of the major reasons for the formation of PM2.5 pollution in these regions (Cao et 

al., 2014; Tan et al., 2012). 

2) The second division comprises clusters 2, 3, 9, 11 and 12, which are located to the south of the 

first division, including Hunan, Jiangxi, and Zhejiang, and parts of Anhui, Hubei, Jiangsu and 

Shanghai, Guangxi, Guangdong, Yunnan, Guizhou and Fujian. Mountains, lakes and rivers are 

distributed throughout this division, and the weather is usually humid and rainy. Compared with 

the first division, the agglomeration effect is less obvious. Most of the cities in this division feature 

a well-developed economy and dense population. Although there are developed industries, they 

are mainly light industries with less severe pollution. 

3) The third division contains the remaining clusters and is located west of the first division, including 

the western part of Inner Mongol, Ningxia, Gansu, Qinghai, and Xinjiang. In these areas, there are 

many mountains, plateaus and deserts, which may limit the large-scale transmission of air pollution 

between the different cities. The cities in this division are usually less developed, and the 

population density is not very high. 

In summary, there are obvious geoclimatic differences among these three divisions. The line of the 

Qinling Mountains-Huaihe River, the geographical boundary of China, roughly separates the first and second 

divisions. There occurs a temperate continental and monsoon climate to the north and a subtropical monsoon 

climate to the south in China. There are obvious differences in climate, geography, economic development, 

and lifestyles between both sides of the geographical boundary, resulting in spatiotemporal heterogeneity 

in air pollution across China. The line of the Qinling Mountains-Huaihe River is also a boundary of China's 

heating policy, which exerts a notable impact on air pollution (Chen et al., 2013). The third division hosts 

unique natural conditions such as mountains, plateaus and deserts, and its economy is relatively 

underdeveloped. These factors limit large-scale transmission of air pollution and separate the third division 

from the other two divisions. 

Specifically, there are three important urban agglomerations in China characterized by a high population 

density, prosperous economy and heavy pollution, namely, the BTH region, the Yangtze River Delta (YRD), 

and the Pearl River Delta (PRD). Clusters 1, 2 and 3 among the results are mainly composed of these three 

urban agglomerations. As national political and economic centres, these three regions have always been the 

key areas to be considered when designing joint control policies to mitigate pollution. For example, the Air 

Pollution Prevention and Control Action Plan (APPCAP) was released by the Chinese government in 2013, 

and this policy mainly focused on the abovementioned three regions. In addition to these three important 

urban agglomerations, the other cluster areas require more attention and support. The fourth, fifth, sixth, 

seventh, and eighth cluster regions consist of 24 cities located in western Inner Mongol, Gansu, Ningxia, and 

Qinghai. These cities exhibit complex patterns of air pollution due to their industry, geographical conditions, 

and climate. The air conditions in the above regions are seriously impacted by two sand-dust storm areas (the 

Tarim basin region and the Hexi Corridor region) (Wang et al., 2009). Combined with the existing 
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administrative divisions, these five cluster regions could formulate joint management strategies. Most of the 

cities in Guizhou Province and two neighbouring cities in Sichuan Province constitute the ninth cluster region. 

Yunnan Province is affected by the airflow across the Yunnan-Guizhou Plateau and the Bangladesh Plateau, 

leading to a complex pattern of air pollution (Teng et al., 2018). Yunnan Province is divided into cluster 

regions 10, 11, and 12. The thirteenth cluster region is located in northwestern Xinjiang, which is one of the 

most serious air pollution areas in China. This region is the most highly industrialized area in Xinjiang (Turap 

et al., 2018). Air pollution in Western China is concentrated in a few cities in Xinjiang Province, and these 

cities should be treated centrally based on their unique local geographical and economic conditions. 

It should be noted that Fig. 5 reveals PM2.5 pollution patterns in China based on agglomerations, which 

are not simply divided by the administrative areas commonly adopted to design pollution control policies. 

The findings suggest that we should pay more attention to pollution patterns beyond administrative divisions 

and that singular management inefficiently controls air pollution in China. Refined joint control policies 

should be systematically formulated based on the clusters and divisions shown in Fig. 5. The existing control 

measures in the different regions should be adapted according to the pollution patterns. Cities within one 

cluster/division displaying similar air pollution patterns should be subject to unified management measures, 

and specific emission-reduction strategies should be accordingly implemented. This finding can be a 

reference for regional control of PM2.5 pollution in a more integrated way. 

The fact that a city is not located in a given cluster does not suggest that there occurs no air pollution. 

This indicates that the association between its pollution and that in other cities is weak, so joint treatment 

may not be appropriate. 

 

3.4. Implications of the clusters and divisions 

 

The clustering results indicate that PM2.5 pollution in China is mainly divided into three divisions based 

on 13 clusters, which has practical implications for pollution control in China. 

First, the current joint prevention and control areas should be expanded based on the three urban 

agglomerations to manifest their radiation effect. The cities involved in the current “2+26” joint control plan 

are route cities of BTH region air pollution transmission channels and are included in the first division of our 

study. The winter monsoon originating in Inner Mongol exerts an important impact on the air quality in 

downwind areas, i.e., Inner Mongol, the BTH region, and the Huaihe River region (Yang et al., 2018). Based 

on the scope of the first division, the “2+26” plan ignores the transfer of pollutants from Inner Mongol to the 

BTH region. The air quality in the area of the Huaihe River Basin (Hubei, Chongqing, and Sichuan) is 

influenced by North China. These areas should consider entering the above joint control plan in the future. 

The Yangtze River Delta urban agglomeration is a densely populated and well-developed economic centre, 

mainly near Shanghai, with specific cities in Anhui, Jiangsu, and Zhejiang provinces. Affected by emissions, 

geographical features, and climate, air pollution exhibits the characteristics of spatial aggregation in the YRD 

region. Regional joint control of air pollution in the Yangtze River Delta urban agglomeration is of great 

concern (Ma et al., 2019). However, cluster 2 reveals that it is not enough for joint control areas to be 

confined to the interior of the YRD. Central China and Jiangxi Province are the major potential atmospheric 

transport source regions of the YRD region (Ming et al., 2017), and the cities located in Hubei, Hunan, and 

Jiangxi provinces should be combined with the Yangtze River Delta. The cluster 3 regions encompass South 
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China, except for Hainan Island, which is one of the seven geographical regions of China. Local emissions 

and meteorological conditions lead to similar pollution patterns in South China (Wu, 2014). The key areas of 

joint control should be extended from the PRD region towards the whole inland area of South China. Joint 

control strategies should stress transboundary air pollutant transport from Southeast Asia (Ma et al., 2019). 

Then, the core of joint prevention and control policy is to formulate integrated development plans and 

build regional coordination mechanisms based on the characteristics of the divisions. To improve the air 

quality in the whole division, these three urban agglomerations should provide financial and technical support 

to other cities within their division. Adjustment of the energy structure and industrial structure of the division 

is the key to achieving sustainable development and air quality enhancement. For example, the establishment 

of ultra-low emission standards for the steel industry and coal-fired power plants and the implementation of 

coal-to-gas policies are necessary for the first division region (Geng et al., 2021; Li et al., 2020). To enhance 

transboundary cooperation, industrial emission permits, emission information collection systems, air 

pollutant emission standards and treatment technical standards should be jointly established and implemented 

within a cluster or a division. Cities within the same division should pay close attention to the influence of 

meteorological factors and emissions on the air quality. Hence, each division should create unified action 

plans considering air pollution patterns that frequently occur to refine the emission limits of key industries 

and strengthen joint law enforcement. 

It should be noted that the pollution patterns in the third division are relatively independent and that the 

cluster regions are also relatively scattered. Hence, this region is suitable for the development of individual 

and customized joint control strategies. 

 

3.5. PM2.5 pollution joint control in the BTH region 

 

One of the advantages of the frequent itemset clustering approach in this paper is the hierarchy generated 

to elaborate the associative relationships between cities, which could provide different granularity levels for 

scenario analysis. This approach is convenient for both macro-scale analysis of national scenarios and micro-

scale analysis of local scenarios. Since the BTH region is the most important political and economic centre 

in China and greatly suffers from heavy pollution (Wu et al., 2018), it is worth closely examining this region 

and revealing the refined relationships between cities based on above the hierarchy. Many factors, such as 

topography, emission sources, and climate conditions, lead to the interconnection of PM2.5 among different 

cities. Extracting pollution patterns in the BTH region could provide useful information towards joint 

pollution control, which could be optimized from a fine-grained perspective. 
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Fig. 6. Clusters of urban PM2.5 pollution in BTH region. 

 

The 13 cities in the BTH region can be roughly divided into three clusters (please refer to Fig. S4 for 

more details on the hierarchy). As shown in Fig. 6, the cities of Chengde, Beijing, Langfang, Tangshan, 

Qinhuangdao, Baoding, and Tianjin occur in the first cluster, Shijiazhuang, Hengshui, Cangzhou, Xingtai, 

and Handan are located in the second cluster; and Zhangjiakou is separate as the third cluster, mainly because 

the city is isolated by the Yanshan Mountains. 

As shown in Fig. S5, Zhangjiakou city is located between the Taihang Mountains and the Yanshan 

Mountains, where the geography and climate conditions are different from those in the other cities of BTH 

(Wang and Zhao, 2018). Based on the three clusters generated with the frequent itemset clustering approach, 

more targeted joint control policies could be designed. More specifically, there are major differences in 

pollution patterns between the northern and southern BTH regions, which has also been revealed in other 

studies (Wang et al., 2012; Yan et al., 2018). 

The seven cities in the first cluster are west of the Yanshan Mountains and Taihang Mountains. The 

terrain causes pollution to accumulate more easily (Wang et al., 2016c). The five cities in the second cluster 

are located in the lowlands of the Taihang Mountains in the west and near the border of Shandong Province 

(also a heavily polluted area) in the North China Plain, which results in different patterns from those in the 

first cluster. The three cities of Xingtai, Hengshui, and Handan in the second cluster exhibit high PM2.5 

concentrations and are affected mainly by their industry structure, energy consumption, and civilian 

combustion (Wang et al., 2019). In contrast to the cities of Beijing and Tianjin in the first cluster, they contain 

fewer pollution sources associated with traffic (Zhang et al., 2018b). 

At the BTH regional level, industrial structure adjustment and industrial planning considering 

environmental effects are necessary. To improve the overall air quality, equal attention should be paid to both 

the southern BTH region and the northern region where the capital is located. Air pollution control policies 

in the different cluster cities should be based on their characteristics and should be combined with the control 

strategy of the BTH region. Vehicle emission control and new energy vehicle support are appropriate in the 
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first cluster. The cities in the second cluster should limit industrial emissions and upgrade heavy industries. 

Because of the better air quality, the third cluster city is not a focus area of pollution prevention and control. 

 

4. Discussion 

 

The objective of this study is to identify pollution areas for joint control with the frequent itemset 

clustering approach. By accessing a large amount of air pollution data, the spatiotemporal associations of 

PM2.5 among the different urban areas in China were mined to identify joint control areas. The support 

threshold and clustering parameters were adjusted to optimize the resolution of clustering division. This 

technique is an effective and feasible method to identify areas for joint control of PM2.5 pollution. 

To mitigate PM2.5 pollution, the following measures and suggestions are proposed based on our research. 

Due to transboundary transport of PM2.5 pollution, joint control of air pollution in China should be extended 

beyond the limitations of provincial-level administration units, which could be achieved through regulation 

by the central government. The atmospheric environmental capacity of a region should be scientifically 

evaluated as natural capital, which is the cornerstone of effective regional air pollution joint control policies 

(Jin et al., 2016). Total emission quota control within a joint control area could be a feasible strategy to 

achieve national emission reduction targets (Stranlund and Moffitt, 2014). Reduction targets for air pollution 

control within a joint region should be defined systematically, and assessment targets should include a 

reduction target for the whole region and reduction targets for individual cities. Top-level design of regional 

joint control measures should be strengthened and a professional cross-district governance agency should be 

established to monitor control efforts, conduct associated law enforcement and formulate specific joint 

control measures for joint control regions. Due to the economic ties among cities within a region, the 

industrial chain should be upgraded to reduce air pollution based on the characteristics of the regional 

industrial structure. Imposing stricter emission standards and switching to cleaner energy sources are 

effective policies. Because of the negative externalities of air pollution, the rights and obligations of each city 

within a joint control region must be clear, and an ecological compensation system should be established. 

According to the so-called polluter pays principle, identifying the pollution contribution of each city in a 

given region and determining its responsibility for pollution control are important to accomplish effective 

cooperation. To control haze more accurately, more fine-grained regionalization and measures should be 

implemented in joint regions.  

Due to the complexity of PM2.5 generation and transmission, it is difficult to determine joint pollution 

control areas from the perspective of atmospheric dynamics theory (Zhang et al., 2018a). This paper proposes 

an effective approach to solve this challenging problem from a data-driven perspective. The data-driven 

method does not rely on complicated processes, such as the enumeration of external influencing factors and 

analysis of their relationships. By discovering the underlying patterns in actual data, the clustering approach 

revealed spatiotemporal relationships to assist the construction of a proper division of PM2.5 pollution. The 

air pollution relationships between cities were determined by mining co-growth pollution patterns. In general, 

the proposed approach does not require auxiliary data, such as geographical or meteorological data. The 

approach is insensitive to the data distribution and robust to outliers, and it contains only a few parameters, 

which makes it easy to implement. In summary, the proposed approach can delineate the regional boundaries 

of joint air pollution control regions in a cost-effective way. 
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5. Conclusion 

 

The task of air pollution mitigation has attracted broad attention, and joint air pollution control is a 

promising strategy. Identifying cities with associated pollution patterns can advance our understanding of the 

characteristics of PM2.5 pollution and guide the formulation of joint control policies. To assist in regional air 

pollution control, we employed the frequent itemset clustering approach and mined the co-growth pollution 

patterns between cities. Then, we conducted hierarchical clustering to delineate and optimize regional 

boundaries for PM2.5 joint control in China. The clustering results indicated that PM2.5 pollution in China is 

mainly divided into three divisions based on 13 clusters, and these results could provide a useful reference 

for regional air pollution control in China. The proposed method was then applied in the BTH region of China 

to specifically analyse joint pollution control. This study demonstrated that the proposed method can reveal 

PM2.5 pollution patterns and identify PM2.5 pollution joint control areas, thereby providing important 

implications for the design of future clean air policies in China. This study applied a data-driven approach to 

delineate regional joint control areas based on consistent patterns of air pollution variation. This data mining-

based method is highly interpretable and can provide a reference in the field of joint air pollution control. 

Furthermore, the method has no restrictions regarding the data distribution and is quite robust to the presence 

of outliers. The technique is practical and can also be applied to the joint control field considering other 

regional atmospheric pollutants. 
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Appendix 

The following is the supplementary information related to this paper: 

Supplement figures. Fig. S1 and Fig. S2 show the pseudocode of the FP-growth algorithm and the 

hierarchical cluster, respectively. Fig. S3 shows the distribution of 338 cities. Fig. S4 shows a 

hierarchical clustering dendrogram for the BTH region. Fig. S5 shows the BTH region geography. 

Supplement tables. Table S1 and Table S2 show China’s national ambient air quality standards and 

WHO air quality guidelines and interim targets for PM2.5 concentrations. Table S3 shows detailed 

information on the 13 clusters. 
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Table S1. China’s national ambient air quality standards for PM2.5 concentrations. 

PM2.5 24-h mean concentrations (μg/m3) Level of air quality 

≤35 Excellent 

(35,75] Good 

>75 Polluted 

 

 

 

 

 

 

Table S2. World Health Organization ambient air quality standards for PM2.5 concentrations. 

Items Annual concentrations (μg/m3) 

Air quality guideline 10 

Interim target-3 15 

Interim target-2 25 

Interim target-1 35 
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Fig. S1. The pseudocode of the FP-growth algorithm. 

The FP-growth algorithm uses the divide-and-conquer strategy to compress the database whose itemset 

satisfies the minimum support degree into a frequent pattern tree (FP-tree). This process maintains the 

association relation according to each frequent itemset in the item header table, which determines the 

corresponding conditional FP-tree, and mines the frequent itemset until all the FP-trees are mined. The 

algorithm comprises two main steps: 

(1) Compression of the dataset by the construction of FP-trees. 

The database D is scanned once to collect the frequent items of length 1 (i.e., F) and their supports; then F 

is sorted in support descending order as FL, the list of frequent items. The root of an FP tree is created and 

labelled “null”. For each itemset in D, the frequent items are selected and sorted according to the order of the 

FL list. The sorted frequent-item list is then [p | P], where p is the first element, and P is the remaining list. 

Then, insert tree function is called to construct an FP-tree. 

(2) Mining of frequent itemsets based on FP-trees. 

Input: database D and threshold minsup 

FP-tree construction 

1. scan D once, get frequent items F, the list of frequent items FL 

2. create the root of an FP-tree, label it as “null” 

3. FOR itemset in D 

4.   sort frequent-item list [p | P] 

5.   call Insert_tree ([p | P], FP-tree) 

6. ENDFOR 

Insert_tree ([p | P], null) 

7. IF N.item-name=p.item-name 

8.   N’s count = N’s count +1 

9. ELSE 

10.   create node N, N’s count=1 

11. IF P is nonempty 

12.   call Insert_tree (P,N) 

FP-growth(Tree, α) 

13. IF Tree contains a single prefix path P 

14.  FOR each combination of the nodes in P, labelled β 

15.    Pattern=β∪null, support = minimum support of nodes in β 

16.  ENDFOR 

17. ELSE 

18.  FOR each item αi in FL 

19.    pattern β = αi∪α, support = αi.support 

20.    construct β’s conditional pattern-base and then β’s conditional FP-tree Treeβ 

21.    IF Treeβ≠∅ 

22.        call FP-growth (Treeβ, β) 
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For each frequent item in FL, its conditional projection database and FP-tree are constructed. The 

conditional FP-tree construction process is recursively performed until the constructed new FP-tree is empty 

or contains only one path. When the constructed FP tree is empty, its prefix is frequent itemsets; when only 

one path is included, frequent itemsets can be obtained by enumerating all possible combinations and 

appending the prefix of the tree. 

 

 
Fig. S2. The pseudocode of the hierarchical cluster. 

 

 

Input: data set D = {c1, c2…cm} 

distance measure method d 

the number of clustering k 

Process: 

1:  FOR i in (1, m) // Each sample in the data set as an initial cluster 

2:    Ci = (Huang et al.) 

3:  ENDFOR 

4:  FOR i in (1, m) // Initialize the distance matrix M 

5:    FOR j in (i+1, m) 

6:      M (i, j) = d (Ci, Cj) 

7:      M (i, j)= M (j, i) 

8:    ENDFOR 

9:  ENDFOR 

10: Initialize: current clusters number q = m 

11: WHILE q>k: 

12:  SELECT min(M (Cii, Cjj), ii < jj) 

13:  Cii = Cii ∪ Cjj // Combine the two nearest clusters 

14:  DELETE Cj 

15:  FOR j in (jj+1, m) 

16:    Cj = Cj-1 

17:  ENDFOR 

18:  FOR i in (1, q-1) // Update the distance matrix M 

19:    M (ii, j) = d (Cii, Cj) 

20:    M (j, ii) = M (j, ii) 

21:  ENDFOR 

22:  q = q-1 

23: ENDWHILE 

Output: C = {C1, C2…, Ck} 
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Fig. S3. Distribution of the 338 cities. 

 

Table S3. Specific information on the 13 clusters 

Cluster Province City Name 

1 

Anhui Bangbu, Bozhou, Fuyang, Huaibei, Huainan, Suzhou 

Beijing Beijing 

Chongqing Chongqing 

Gansu Longnan, Qingyang, Tianshui 

Hebei 
Baoding, Cangzhou, Chengde, Handan, Hengshui, Langfang, Qinhuangdao, 

Shijiazhuang, Tangshan, Xingtai, Zhangjiakou 

Heilongjiang 
Daqing, Daxinganlingdiqu, Hadongbin, Hegang, Heihe, Jiamusi, Jixi, 

Mudanjiang, Qiqihadong, Qitaihe, Shuangyashan, Suihua, Yichun 

Henan 

Anyang, Hebi, Jiaozuo, Kaifeng, Luohe, Luoyang, Nanyang, Pingdingshan, 

Puyang, Sanmenxia, Shangqiu, Xinxiang, Xinyang, Xuchang, Zhengzhou, 

Zhoukou, Zhumadian 

Hubei Jingmen, Jingzhou, Shiyan, Suizhou, Xiangyang, Xiaogan, Yichang 

Jiangsu Huaian, Lianyungang, Suqian, Xuzhou, Yancheng 

Jilin 
Baicheng, Baishan, Changchun, Jilin, Liaoyuan, Siping, Songyuan, Tonghua, 

Yanbianzhou 

Liaoning 
Anshan, Benxi, Chaoyang, Dalian, Dandong, Fushun, Fuxin, Huludao, 

Jinzhou, Liaoyang, Panjin, Shenyang, Tieling 
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Inner Mongol 
Baotou, Chifeng, Dongdongdongsi, Huhehaote, Tongliao, Wulanchabu, 

Xilinguolemeng, Xinganmeng 

Shaanxi 
Ankang, Baoji, Hanzhong, Shangluo, Tongchuan, Weinan, Xian, Xianyang, 

Yanan, Yulin 

Shandong 
Binzhou, Dezhou, Dongying, Heze, Jinan, Jining, Laiwu, Liaocheng, Linyi, 

Qingdao, Rizhao, Taian, Weifang, Weihai, Yantai, Zaozhuang, Zibo 

Shanxi 
Changzhi, Datong, Jincheng, Jinzhong, Linfen, Lvliang, Shuozhou, Taiyuan, 

Xinzhou, Yangquan, Yuncheng 

Sichuan 

Bazhong, Chengdong, Dazhou, Deyang, Guangan, Guangyuan, Leshan, 

Luzhou, Meishan, Mianyang, Nanchong, Neijiang, Neijiang, Suining, Yaan, 

Yibin, Zigong, Ziyang 

Tianjin Tianjin 

2 

Anhui 
Anqing, Chizhou, Chuzhou, Hefei, Huangshan, Liuan, Maanshan, Tongling, 

Wuhu, Xuancheng 

Guangxi Guilin 

Hubei Dongshizhou, Dongzhou, Huanggang, Huangshi, Wuhan, Xianning 

Hunan 
Changde, Changsha, Chenzhou, Hengyang, Huaihua, Loudi, Shaoyang, 

Xiangtan, Xiangxizhou, Yiyang, Yongzhou, Yueyang, Zhangjiajie, Zhuzhou 

Jiangsu Changzhou, Nanjing, Nantong, Suzhou, Taizhou, Wuxi, Yangzhou, Zhenjiang 

Jiangxi 
Fuzhou, Ganzhou, Jian, Jingdezhen, Jiujiang, Nanchang, Pingxiang, Shangrao, 

Xinyu, Yichun, Yingtan 

Shanghai Shanghai 

Zhejiang 
Hangzhou, Huzhou, Jiaxing, Jinhua, Lishui, Ningbo, Quzhou, Shaoxing, 

Taizhou, Wenzhou, Zhoushan 

3 

Fujian 
Fuzhou, Longyan, Nanping, Ningde, Putian, Quanzhou, Sanming, Xiamen, 

Zhangzhou 

Guangdong 

Chaozhou, Dongwan, Foshan, Guangzhou, Heyuan, Huizhou, Jiangmen, 

Jieyang, Maoming, Meizhou, Qingyuan, Shantou, Shanwei, Shaoguan, 

Shenzhen, Yangjiang, Yunfu, Zhanjiang, Zhaoqing, Zhongshan, Zhuhai 

Guangxi 
Baise, Beihai, Chongzuo, Fangchenggang, Guigang, Hechi, Hezhou, Laibin, 

Liuzhou, Nanning, Qinzhou, Wuzhou, Yulin 

4 

Gansu Baiyin, Dingxi, Lanzhou, Linxiazhou, Pingliang 

Inner Mongol Alashanmeng, Bayannaodong, Wuhai 

Ningxia Guyuan, Shizuishan, Wuzhong, Yinchuan, Zhongwei 

5 Gansu Jiayuguan, Jinchang, Jiuquan, Wuwei, Zhangye 

6 
Qinghai 

Haibeizhou, Hainanzhou 

7 Haidongdiqu, Xining 

8 
Gansu Gannanzhou 

Qinghai Huangnanzhou 
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9 

Guizhou Anshun, Bijie, Guiyang, Liupanshui, Qiandongnanzhou, Qiannanzhou, Zunyi 

Sichuan Liangshanzhou, Panzhihua 

Yunnan 

Zhaotong 

10 Chuxiongzhou, Honghezhou, Kunming, Qujing, Wenshanzhou, Yuxi 

11 Baoshan, Dalizhou 

12 Pudong, Xishuangbannazhou 

13 Xinjiang Bozhou, Changjizhou, Kelamayi, Wulumuqi 

 

 

 

Fig. S4. Hierarchical clustering dendrogram for the BTH region 
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Fig. S5. BTH region geography 
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