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Abstract

Central Yunnan Province is the political, economic, cultural, and transportation hub of Yunnan Province, China. Climate change has
resulted in increased seasonality of global averaged precipitation, temperature, runoff, and evapotranspiration, thereby exacerbating
extreme events such as drought and soil erosion. The simulation and mapping of drought and soil erosion within Central Yunnan Pro-
vince is important for achieving sustainable development. This study constructed a comprehensive drought monitoring model and a soil
erosion model based on multiple sources of remote sensing data, considering numerous drought and soil erosion factors. The temporal
and spatial characteristics of dry-season drought and soil erosion for 2010 to 2018 in Central Yunnan Province were explored, and the
extents of soil erosion in different parts of Central Yunnan Province were quantified using the soil erosion intensity index. The results
showed that: (1) The multi-year average percentage dry-season drought coverage and average drought frequency were 33.98% and
18.33 months, respectively. Although drought frequency was higher in areas with high drought intensity, dry-season drought showed
a long-term weakening trend. (2) Over the study period, the multi-year average soil erosion of Central Yunnan Province was
1,551.45 t km~>yr~". Soil erosion showed an initial overall increasing trend, followed by a decreasing trend, dominated by micro erosion,
mild erosion, and moderate erosion, whereas the mountains and valleys in north and southwest parts of Central Yunnan Province expe-
rienced severe erosion. Vegetation coverage and slope were identified as the main factors driving soil erosion. (3) The soil erosion inten-
sity index was a good indicator of soil erosion severity across different spatial scales and different drought grades. The soil erosion
intensity index showed a positive relationship with drought grade. The correlation coefficients between soil erosion intensity and drought
frequency and between soil erosion intensity and drought intensity were 0.2623 and —0.2679, respectively. This study demonstrated that
drought affects soil erosion and that water and soil conservation measures such as afforestation and vegetation greening are beneficial to
mitigating soil erosion and drought in Central Yunnan Province.
© 2021 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Climate change has altered the frequency of the
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floods are becoming more frequent and extreme (Konapala
et al., 2020; Shao and Kam, 2020). Drought broadly refers
to persistent water deficits over land (Shao and Kam, 2020)
and long-term drought can result in crop failure, food
shortages, famine, land degradation, and other social and
environmental problems (Jiao et al., 2019). Drought is
regarded to be the most complex and destructive category
of natural disaster globally (Javed et al., 2020). Soil erosion
is a process of soil migration under specific spatiotemporal
scales (Lee et al., 2020) and is considered among the most
serious environmental challenges facing humanity (Wang
et al., 2019). Soil erosion is exacerbated by the frequency
of natural disasters such as floods and droughts, whereas
severe soil erosion can worsen the ecological environment,
thereby promoting the occurrence of droughts and floods
(Zhang et al., 2016). Therefore, soil erosion has a direct
causal relationship with droughts and floods. In addition,
drought and soil erosion exacerbated by climate change
result in environmental, economic, and social challenges
at a global level (Zhang et al., 2016).

The frequency and intensity of droughts have increased
globally in recent decades (Liu et al., 2021; Wang et al.,
2020). This trend has been linked to increases in water
demand and the complex changes in hydrological and cli-
matic factors (Balti et al., 2020; Jehanzaib et al., 2020).
Quantifying drought severity remains a challenge as
drought severity cannot be measured directly (Santos
et al., 2021). Consequently, meteorological drought and
remote sensing indices have become the most widely used
drought monitoring methods (Yu, 2020). Due to their
maturity and high accuracy, meteorological drought
indices are widely used for drought analysis across multiple
temporal scales (Santos et al., 2021; Yao et al., 2018).
Drought indices include the standardized precipitation
index (SPI) (McKee T B et al., 1993) and the standardized
precipitation evapotranspiration index (SPEI) (Vicente-
Serrano et al., 2010). However, drought analysis through
interpolation methods generally does not reflect spatial
changes (Yu et al., 2020). Remote sensing methods have
diversified since the 1970s, and single indices such as the
vegetation condition index (VCI) (Kogan, 1990), tempera-
ture condition index (TCI) (Kogan, 1995), and tropical
rainfall condition index (TRCI) (Yu and Wang, 2020) are
widely used in remote sensing-based drought monitoring.
However, the results of drought monitoring are not com-
prehensive and suffer from time lags when only focusing
on a single aspect, such as soil or vegetation (Shen et al.,
2019). Therefore, many studies have considered a variety
of factors for the construction of a comprehensive drought
model (Ji et al., 2018; Yu et al., 2019). For example, the
vegetation health index (VHI), constructed through an
integration of VCI and TCI, achieved drought monitoring
results that were closer to the actual drought situation com-
pared to that achieved through the use of a single index
(Bento et al., 2018). However, precipitation is one of the
factors affecting regional drought that has not been
considered within a comprehensive drought index, and
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the integration of precipitation, VCI, TCI, and other fac-
tors within the construction of a comprehensive drought
model can improve the monitoring of the complex process
of drought evolution (Ji et al., 2018).

The increased frequency in drought as a consequence of
climate change has resulted in the aggravation of soil ero-
sion rates (Ciampalini et al., 2020). Traditional soil erosion
estimation is mainly based on small areas or runoff exper-
iments (Li et al., 2011). Although studies using these tradi-
tional estimation methods achieved highly accurate results,
these methods have several disadvantages, include difficulty
in acquiring data and expensive testing and analysis (Li
et al., 2011). Therefore, it is difficult and costly to apply
these traditional approaches to large-scale regions
(Safwan et al., 2021; Teng, 2017). Soil erosion models are
the most extensive and effective methods for quantitatively
studying research soil erosion. Among these models, the
empirical statistical soil erosion models include the Univer-
sal Soil Loss Equation (USLE) and the Revised USLE
(RUSLE) (Wischmeier and Smith, 1965). Many studies
have improved and perfected soil erosion models based
on these equations in combination with local soil erosion
conditions. For example, Kebede et al. (2021) estimated
soil loss at a watershed level using the RUSLE coupled
with a geographic information system (GIS) tool. Qin
et al. (2018) modified the RUSLE by adding a parameter
representing the effective contribution of the existing slope
length to construct a new soil erosion model (RUSLE-L).
Rajbanshi and Bhattacharya (2020) combined the RUSLE
with sediment delivery ratio models to generate spatial
dimensions of soil erosion and specific sediment yields in
Konar River Basin, India. Although the RUSLE was
developed based on soil erosion experiments for catch-
ments in the United States, some studies have investigated
the adaptability of the RUSLE parameters for different
geomorphic features (such as karst, mountains, and hilly
and intricate plateau regions) (Gao and Wang, 2019; Jin
et al., 2021; Li et al.,, 2019), different land use types
(Almohamad, 2020; Wu et al., 2021), different soil types
(Bircher et al., 2019; Huang et al., 2019), different slopes
(Zhao et al., 2021), and different countries and climatic
regions (Gharibreza et al., 2021; Pal and Chakrabortty,
2019; Prasannakumar et al., 2011; Teng et al., 2019). These
studies demonstrated that the RUSLE model achieved
good performance. Therefore, the current study applied
the RUSLE model to Central Yunnan Province to estimate
the soil erosion.

Yunnan Province forms the southwest border of
China, and is known to experience frequent natural dis-
asters due to its complex topography, remarkable stereo-
scopic climate, extensive distribution of karst landform,
and unique geological structure (Zhou and Yang,
2013). Central Yunnan Province is the economic hub
of Yunnan Province, and includes the cities of Kunming,
Yuxi, and Qujing and Chuxiong Prefecture (Yu et al.,
2014). Central Yunnan Province is also positioned in a
focal point of disasters in the province and may
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experience both drought and soil erosion within a single
year. At the same time, the economic development of
Central Yunnan Province is related to the development
of Yunnan Province and Southwest China. Previous
studies on drought or soil in Central Yunnan Province
have focused on individual disasters (Javed et al., 2020;
Liu et al.,, 2020; Nepal et al., 2021; Yu et al., 2020).
However, drought and soil erosion have a certain causal
relationship. For example, soil erosion changes the
hydraulic and physical properties of soil, and such
changes will in turn, influence the infiltration of rainwa-
ter and surface runoff and thus, increase the likelihood of
soil drought (Li et al., 2021). Sidiropoulos et al. (2021)
indicated that extended drought periods may cause soil
exposure and ecrosion and the degradation of land.
Santra and Santra Mitra (2020) observed that the mean
rate of soil loss for the areas in which drought is very
frequent is almost double that of the areas in which
the frequency of drought is very low. Studies on the rela-
tionship between soil erosion and drought in Central
Yunnan Province remain limited. For example, Jia and
Lu (2012) found that owing to the destruction of forests
and wetland ecosystems in Yunnan Province, there is no
conserved water to apply in the dry season, and soil ero-
sion frequently occurs during the rainy season, resulting
in the deposition of sediment in reservoirs, a reduction
in effective storage capacity, and a reduction in the abil-
ity to store water. However, the relationship between
drought and soil erosion has not been described.

Therefore, the present study aimed to simulate and map
drought and soil erosion in Central Yunnan Province to
identify the relationship between soil erosion and drought.
The results of the present study can contribute to the
assessment of risks of natural disaster and can contribute
to soil conservation. The objectives of the current study
were to: (1) evaluate and plot the spatial distribution of
drought in Central Yunnan Province through analyzing
drought intensity, drought frequency, and change in
drought from 2010 to 2018; (2) simulate and analyze soil
erosion in Central Yunnan Province for 2010, 2015, and
2018 through the use of the RUSLE, and; (3) use the soil
erosion intensity index to analyze soil erosion in different
counties and under different drought grades.

2. Study area

Central Yunnan Province is the economic hub of Yun-
nan Province and is located between 100°43'-104°50'E
and 23°19-27°03'N, with a total area of 94,558 km?
(Fig. 1). Central Yunnan Province is dominated by moun-
tains and inter-mountain basins with a gentle terrain and a
mid-subtropical monsoon climate. The temperature of
Central Yunnan Province decreases with altitude. The
region has a remarkable stereoscopic climate with distinct
dry and wet seasons. The dry season extends from Novem-
ber to April of the following year, and only accounts for

Advances in Space Research xxx (Xxxx) xxx

15% of annual precipitation. Therefore, this region tends
to experience frequent droughts. The rainy season extends
from May to October and shows an uneven spatial
distribution of rainfall. Central Yunnan Province tends to
experience regional heavy rainfall events or single rain-
storm events that contribute to soil erosion. For example,
Yunnan Province has suffered severe one in 100-year
drought disasters during autumn, winter, spring, and early
summer since the autumn of 2009, which has affected half
of the population of the province and has reduced spring
grain production by 50%. At the same time, the number
of isolated rainfall events in the province during the flood
season of 2010 decreased compared to that of the same per-
iod in previous years, although the intensity of rainfall was
higher. The intensities of heavy rainfall events recorded at
some sites in Central Yunnan Province, including at Mal-
ong, Songming, and Chenggong, all exceeded the historical
maximums, and the rainfall was concentrated over rela-
tively short periods, resulting in severe soil erosion (Zhao
and Huang, 2012).

The dominant types of forest vegetation in Central Yun-
nan Province include evergreen broad-leaved forests, decid-
uous broad-leaved forests, and Yunnan pine forest, with an
overall collective coverage rate of ~ 53.8%. The strata in
Yunnan Province are well developed, which has exposed
layers from the Proterozoic to Quaternary (Zhang, 2020).
The main stratigraphic lithologies are as follows. (1) The
Cenozoic is primarily composed of continental sandstone,
argillaceous sediments, and local intercalation of lignite
or peat. It includes glutenite, fine silt, clay, sandy clay with
lignite and clay with peat in the Quaternary, as well as tra-
chyte, tuff, sandstone, coarse sandstone, shale, limestone
and basalt in the Tertiary. The rocks described above are
soft, have weak resistance to weathering and corrosion,
and are mostly broken and loose. Therefore, they are easily
stimulated by the external environment and can easily
induce geological disasters, such as landslides and mud-
slides. (2) The Mesozoic is dominated by continental sand-
stone and mudstone. In particular, marl, sandstone,
limestone, and purple-red shale intercalated with basalt in
the Jurassic, are primarily distributed in Central Yunnan
Province. (3) The Paleozoic is dominated by marine car-
bonate rocks and intercalated marine and continental clas-
tic rocks. (4) The Proterozoic primarily includes dolomitic
sandstone and quartz sandstone in the Sinian. In addition,
due to its unique geotectonic setting, Central Yunnan Pro-
vince contains strongly developed faults and folds. For
example, geological disasters appear to be concentrated
along the Xiaojiang, Puduhe, Luoci-Yimen, Yuanmou-
Lvjujiang, Muding, and Xuanwei fault zones and along
other active faults and nearby fold development zones
(Ding et al., 2011). The soil types of the region are mainly
Calcic Vertisols, Haplic Alisols, Haplic Acrisol, and Haplic
Luvisol (WRB, 2014). Although these soils have high water
permeability and can accommodate higher amounts of
atmospheric precipitation, they have low water storage
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Fig. 1. The geographical location of Central Yunnan Province: (a) Map of China showing the position of Yunnan Province, (b) a digital elevation model
(DEM) of Yunnan Province, and (c) the distribution of meteorological stations in Central Yunnan Province and surrounding cities.

and effective reservoir capacities and poor water retention.
As a result, agriculture in these areas is vulnerable to
drought (Ding et al., 2018).

3. Materials and methods
3.1. Data

Yunnan Province suffered not only a severe drought
during 2010, but also severe geological disasters, with Cen-
tral Yunnan Province particularly affected. Therefore, the
starting point of the current study was November 2009,
and remote sensing data and meteorological data were
combined to study the dry-season drought and soil erosion
conditions in Central Yunnan Province from 2010 to 2018.

3.1.1. Comprehensive drought monitoring data

Drought monitoring data obtained in the current study
included: (1) Moderate Resolution Imaging Spectrora-
diometer (MODIS) remote sensing MOD11A2_LST data
and MODI3A3_NDVI data, representing land surface
temperature (LST) and the normalized difference vegeta-
tion index (NDVI), which were used to calculate the tem-
perature condition index (TCI) and vegetation condition
index (VCI), respectively. These indices were used as indi-
cators within the construction of the comprehensive
drought monitoring program. Since TCI assumes that
drought events reduce soil moisture and result in surface
thermal stress (Kogan, 1995), higher temperatures are
regarded as a signal of drought. The VCI can compensate
for the tendency of the NDVI to overestimate and
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underestimate vegetation in low and high vegetation cover
areas, respectively, and can reduce the influence of geo-
graphic and ecological factors other than moisture on the
spatial variability of NDVI. (2) The current study used
the Tropical Rainfall Measuring Mission (TRMM) 3B43
version 7 monthly data product obtained using TRMM
multi-satellite precipitation analysis (TMPA), which was
downscaled to a spatial resolution of 1 km x 1 km (Yu
et al., 2020) to calculate the TRCI as one of the indicators
for constructing the comprehensive drought monitoring
program.

3.1.2. Soil erosion model data

The data collected in the current study for soil erosion
modeling included: (1) Advanced Spaceborne Thermal
Emission and Reflection Radiometer Global Digital Eleva-
tion Model (ASTER GDEM) data were used to calculate
the slope length and steepness (LS) factor. (2) Landsat data
were used for calculating vegetation cover, the manage-
ment (C) factor, and the conservation practice (P) factor.
(3) Monthly meteorological precipitation data from 65
meteorological stations were used to calculate the rainfall
erosivity (R) factor. The above 65 meteorological stations
consisted of 39 meteorological stations administered by
Kunming City, Chuxiong Prefecture, Yuxi City, and Quj-
ing City and 26 additional meteorological stations admin-
istered by the China Meteorological Data Service Center
(http://data.cma.cn/). Among the meteorological station
data used in the present study, precipitation data for each
meteorological station extended from 20:00 to 8:00 and
8:00 to 20:00, and the data also included cumulative precip-
itation from 20:00 to 20:00. These daily precipitation data
were accumulated to monthly. (4) Soil data used in the pre-
sent study were based on the Harmonized World Soil
Database version 1.1, obtained from the Cold and Arid
Region Science Data Center (http://westdc.westgis.ac.cn).
The soil data had a spatial resolution of 1 km x 1 km
and were used to calculate the soil erodibility (K) factor.
(5) Field survey data of land use types in 2018 were
obtained for Chuxiong Prefecture (Shuangbai County),
Yuxi City (Counties of Xinping, Tonghai, Huaning and
Chengjiang), Kunming City (Xundian County) and Qujing
City (Luoping County). In addition, the current study used
a remote sensing-based survey of soil erosion status in
Yunnan Province in 1999.

3.1.3. Elevation data

Basic geographic data were obtained from the ASTER
GDEM V2 with a spatial resolution of 30 m x 30 m and
were used to calculate the LS factor. Temperature and
precipitation showed differences among the different ele-
vations, thereby also affecting the conditions for drought
(Zhang et al., 2017). Therefore, elevation data resampled
to 1 km x | km was included as one of the driving fac-
tors for the construction of a comprehensive drought
model.
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3.2. Methods

3.2.1. Comprehensive drought monitoring model

Pearson proposed principal component analysis (PCA)
for the study of random variables (Pearson, 1901). PCA
has been applied in drought research with good results
(Du et al., 2013; Mathbout et al., 2018). For example,
Du et al. (2013) used PCA to correlate a comprehensive
drought index constructed using VCI, TCI, and TRCI with
SPI. This index improved the monitoring of meteorological
drought while also maintaining the vegetation drought
monitoring function of VCI and can also be used to mon-
itor agricultural drought. However, while PCA considers
the weight of information, it ignores the weight of impor-
tance of information within the subjective evaluation of
the value of index weight coefficients. Saaty (1988) pro-
posed the analytic hierarchy process (AHP), which has
been shown to reasonably contribute prior knowledge to
the evaluation process and has achieved good results in
drought research (Han et al., 2016; Rahmati et al., 2020).
However, AHP ignores the interrelationship between the
indicators reflected by the objective data of the sample,
and the error of subjective knowledge also impacts the
accuracy of the results.

Therefore, the current study used precipitation, vegeta-
tion growth status, surface temperature, and elevation fac-
tors as indictors within the construction of the drought
model. A comprehensive drought monitoring model for
Central Yunnan Province was constructed by combining
PCA and AHP, retaining the objective information of the
sample, and integrating existing knowledge and experience
to determine the weight coefficient of drought indicators.

The expression of the comprehensive drought index
(CD]) is:

CDIJ; = % (PDI; + ADI) (1)
PDIjj = w; x VCI 4+ w, x TCI 4+ w3 x TRCI 4 wy

x DEM (2)
ADI =0.16 x VCI + 0.25 x TCI + 0.48 x TRCI

+0.11 x DEM (3)

In Eq. (1) to Eq. (3), CDIj represents the comprehensive
drought index model in the i-th year and the j-th month,
with a value ranging from 0 to 1 and a negative relationship
between the magnitude of CDI and drought severity,PDIj;
is the PCA drought index model in the i-th year and the j-th
month, with a value ranging from 0 to 1, and a negative
relationship between the magnitude of PDI and drought
severity, ADI is the optimal analytic hierarchy process
drought index,w;, w,, w3, and w, are the weight coefficients
of VCI, TCI, TRCI, and elevation, respectively, and
Wi + Wy + w3 + wg = 1. More details on the construction
of the model and the calculation of specific parameters
can be found in the literature (Yu, 2020).
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Within the verification of the CDI model, past studies
have shown that CDI and SPI/SPEI are highly and signif-
icantly correlated at P < 0.01, and that there is a higher cor-
relation between CDI and SPI. Moreover, there were
relatively high correlation coefficients between the Kun-
ming, Yuxi, and Yuanjiang stations in Central Yunnan
Province, and CDI is better able to express meteorological
drought (Yu, 2020). The drought grade was classified
according to SPI, allowing the CDI drought grade to be
obtained (Table 1). Finally, the evolutions in drought
intensity, drought frequency, and drought change during
the study period were analyzed.

3.2.2. Soil erosion model

Soil erosion in Central Yunnan Province was simulated
using the RUSLE. The RUSLE is characterized by a sim-
ple structure, clear physical meaning of parameters, simple
calculation, and strong practicability. The RUSLE expres-
sion is:

A=RxKxLSxCxP 4)

In Eq. (4), A is the annual average soil erosion yield (t
hm2-yr~!; after multiplying by 100, the unit is converted
to t km 2-yr'); R is the rainfall erosivity factor (MJ-mm
hm2h~".yr"), K is the soil erodibility factor (t-h MJ~'-
mm "), LS is the slope length and steepness factor, C is
the vegetation cover management factor, and P is the soil
and water conservation factor. More details on the calcula-
tion of the R, K, LS, C, and P factors can be found in the
literature (Liu et al., 2020). The soil erosion in the Central
Yunnan Province was categorized into six levels according
to the SL190-2007 “‘soil erosion classification standard”
issued by the Ministry of Water Resources of the People’s
Republic of China (Table 2).

By comparing the extent of soil erosion obtained by
RUSLE with that determined by a report of soil erosion
in Yunnan Province using remote sensing, Liu (2019)
found that the proportion of soil erosion of Central Yun-
nan Province in 2000 was consistent with that of the remote
sensing investigation in 1999 and that changes to the area
of total erosion was consistent with the actual erosion
situation.

3.2.3. Soil erosion intensity index (SEII)

A comprehensive index that can reflect the intensity of
soil erosion is needed to compare and analyze the soil ero-
sion in different spatial units of a catchment. The value of
this index reflects the severity of soil erosion, which can be
expressed by a SEII, which is calculated as:

Table 1

Categorization of the comprehensive drought index used in the current study.
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SEIL; = 100 x Y~ w; x Ay/S; (5)
il

In Eq. (5), SEII; is the soil erosion index of the j-th
drought grade or county, and the value is positively related
to the severity of soil erosion, w; is the graded value of soil
erosion intensity of grade i, A is the soil erosion area of
the j-th drought grade or county, and S; is the area of the
j-th drought grade or county. The grading values of micro,
mild, moderate, strong, extremely strong, and severe soil
erosion are 0, 2, 4, 6, 8, and 10 respectively, with the value
having a positive relationship with the contribution to the
soil erosion index.

4. Results
4.1. Analysis of drought change

Eq. (1) was used to calculate the comprehensive drought
index (CDI) from November 2009 to April 2018, and pixels
showing light drought were recorded as drought pixels.
Drought coverage of Central Yunnan Province was calcu-
lated as the percentage of monthly drought in the total
number of pixels (Fig. 2a). As shown in Fig. 2a, droughts
occurred in all months except January 2015, November
2016, and April 2017, and were particularly prevalent in
January 2010 and February 2011. The annual average
drought coverage was obtained through aggregation of
the monthly drought coverage. The percentage average
drought coverage for multi-year dry-season droughts
reached 42.81% before 2014 and decreased thereafter.
The maximum percentage multi-year dry-season average
drought coverage was in January at 64.10%, followed by
February at 46.22%, with November experiencing the
smallest drought coverage of 9.23%.

The average CDI of each month was calculated to
obtain the average drought intensity of the dry season from
2010 to 2018 (Fig. 2b). Based on this measure, extreme and
severe droughts over many years were mainly concentrated
in the counties of Yuanmou, Yongren, Xinping, and Yuan-
jlang and in Kunming City, and the remaining areas mainly
experienced light to moderate drought intensities. These
results combined with the frequency of droughts shown
in Fig. 2¢ indicated that areas experiencing high-intensity
drought also showed higher frequencies of drought. The
average dry season frequency of droughts during the
54 months from November 2009 to April 2018 was
18.33 months. There were mainly three regions in which
droughts were experienced at a frequency exceeding 40,
namely the counties of Yuanmou, Yongren, and Wuding
in Chuxiong Prefecture, Shuangbai, Xinping, and Yuan-

Level No drought Light drought

Moderate drought

Heavy drought Extremely drought

CDI 0.36 < CDI 0.33 < CDI < 0.36

0.30 <CDI <£0.33

0.27 < CDI < 0.30 CDI < 0.27
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Table 2
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Soil erosion classification standard according to the SL190-2007 “soil erosion classification standard” issued by the Ministry of Water Resources of the

People’s Republic of China.

Level Average modulus of soil erosion (t/(km>-a)) Average loss thickness (mm/a)
Micro <500 0.37

Mild 500-2,500 0.37-1.9

Moderate 2,500-5,000 1.9-3.7

Strong 5,000-8,000 3.7-5.9

Extremely strong 8,000-15,000 5.9-11.1

Severe >15,000 >11.1
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Fig. 2. Drought characteristics of Central Yunnan Province, China from 2009 to 2018. (a) Drought coverage of Central Yunnan Province during the dry
season; (b) Mean value of the multi-year, dry-season comprehensive drought index (CDI); (c¢) Drought frequency (times); (d) Mann-Kendall (M—K) trend

test of CDI during the dry season.

jlang in Yuxi City, and in Kunming City. The frequency of
droughts in the central part of Central Yunnan Province
was also relatively high, with most areas experiencing
droughts at frequencies exceeding 20, whereas the cities
of Jinning and Anning as well as Huize County experienced
relatively low frequencies of droughts.

Fig. 2d shows the changes in dry season CDI in Central
Yunnan Province over many years, as calculated through
the Mann-Kendall (M—K) trend test. The results showed
an increasing trend in CDI, whereas there was a weakening
trend in drought. The proportion of total area in which
CDI increased was 64.34% (P < 0.1), among which the pro-
portions of total area in which there were significant
(P < 0.05) and highly significant (P < 0.01) increasing
trends in CDI were 39.30% and 5.07%, respectively, con-
centrated in the east and northeast.

4.2. Analysis of soil erosion

The average soil erosion values for Central Yunnan Pro-
vince for 2010, 2015, 2018 obtained using the RUSLE were
1,769.54 t km Zyr !, 1,884.56 t km Zyr ', and
1,000.25 t km Zyr !, with a multi-year average of
1,551.45 t km2yr~ !, thereby falling into the mild erosion
category (Fig. 3a—c). There was an initial increase in soil
erosion, with the maximum occurring in 2015, followed
by a decrease, with most areas mainly experiencing micro
and mild erosion. Extremely strong and severe erosion
was mostly distributed in the mountains and river valleys
in the north and southwest of Central Yunnan Province.
The spatial distribution of soil erosion intensity showed a
significant correlation with the topography of the region.
As shown in Fig. 3d-f, the Soil Erosion Intensity Index
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Fig. 3. Spatial distribution of soil erosion (a, b and ¢ represent 2010, 2015, and 2018, respectively) and soil erosion intensity index (SEII) of each county (d,

e, and f represent 2010, 2015, and 2018, respectively) within Central Yunnan Province, China from 2009 to 2018.

(SEII) analysis of soil erosion in various counties during
2010 indicated that SEII values of over two-thirds of the
counties were 100. Among them, Yuanjiang County expe-
rienced the highest soil erosion, with an SEII value of
289.34. The SEII values of most counties by 2015 had
increased compared with that of the previous period, with
further increases in soil erosion. Soil erosion in the other
counties decreased slightly by 2018, except in Yuanmou
County in which SEII increased.

Calculation of the transfer in erosion grade between
adjacent years (Table 3, Table 4) indicated that there was
a decreasing trend in mild and moderate erosion in the area
from 2010 to 2015. Although a net increasing trend in the
area of micro erosion was maintained, the areas of strong,
extremely strong, and severe erosion increased by
191.26 km? 316.19 km? and 194.36 km? respectively,

Table 3

and soil erosion showed a deteriorating trend. Overall, soil
erosion decreased from 2015 to 2018, and although micro
erosion showed an increasing trend, the remaining areas
of intense erosion showed a net decrease in area. This indi-
cated that soil erosion was effectively mitigated, and there
was an overall improvement in the ecological environment
of Central Yunnan Province.

4.3. Soil erosion under different drought grades

Soil erosion under different drought grades was ana-
lyzed using the SEII (Table 5). The results showed that
the proportion of total area experiencing drought in 2010
reached 66.50% and that the largest value of SEII was that
under the extreme drought grades. Although drought
accounted for a relatively small proportion of total area

Changes in soil erosion (km?) of various grades in Central Yunnan Province, China from 2010 to 2015.

Level 2010 Soil erosion mutual transformation area from 2010 to 2015 Period decrease
Micro Mild Moderate Strong Extremely strong Severe

Micro 56291.06 47512.93 5858.79 1618.06 639.66 356.65 304.97 8778.13

Mild 18112.15 7123.62 6901.98 2775.69 912.44 315.70 82.72 11210.17

Moderate 10347.84 1965.82 2887.48 3266.62 1603.18 522.31 102.44 7081.23

Strong 5267.43 595.99 795.13 1340.14 1524.64 883.10 128.43 3742.79

Extremely strong 3176.64 354.46 229.67 397.84 698.36 1155.63 340.68 2021.01

Severe 1362.88 325.56 43.59 55.88 80.42 259.43 598.01 764.87

Period increase 10365.45 9814.65 6187.61 3934.06 2337.20 959.23

Increase - decreases 1587.32 —1395.52 —893.62 191.26 316.19 194.36
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Changes in soil erosion (km?) of various grades in Central Yunnan Province, China from 2015 to 2018.

Level 2015 Soil erosion mutual transformation area from 2015 to 2018 Period decrease
Micro Mild Moderate Strong Extremely strong Severe

Micro 57878.67 53382.07 3040.09 939.03 346.68 147.88 22.92 4496.59

Mild 16716.65 9539.22 5349.64 1361.29 354.00 101.79 10.70 11367.01
Moderate 9454.21 3691.37 2585.07 2214.93 750.06 195.50 17.27 7239.28
Strong 5458.70 1573.51 996.35 1497.03 1000.92 364.54 26.35 4457.79
Extremely strong 3492.82 872.96 378.54 609.35 793.64 735.03 103.30 2757.79
Severe 1556.95 645.75 115.26 129.07 139.27 289.12 238.48 1318.48
Period increase 16322.82 7115.30 4535.78 2383.65 1098.84 180.54

Increase - decreases 11826.23 —4251.71 —2703.50 —2074.14 —1658.95 —1137.93

Table 5

The percentage of soil erosion (%) and soil erosion index under different drought levels within Central Yunnan Province, China from 2010 to 2018.

Year Drought Level drought/% Micro Mild Moderate Strong Extremely strong Severe SEII

2010 No drought 33.50 69.79 15.81 7.60 3.46 1.87 1.03 108.06
Light drought 27.96 57.89 21.38 11.40 5.38 2.59 0.96 150.92
Moderate drought 15.22 51.82 23.81 13.51 6.56 3.25 0.91 176.11
Heavy drought 15.93 46.48 25.85 14.41 7.85 421 1.10 201.12
Extremely drought 7.39 34.73 21.91 17.63 12.18 9.80 3.21 297.93

2015 No drought 94.71 61.14 18.47 10.10 5.45 3.08 1.26 147.30
Light drought 4.69 29.00 22.15 18.61 13.99 11.26 3.72 330.01
Moderate drought 0.50 22.39 16.96 14.78 17.17 16.96 9.13 423.04
Heavy drought 0.10 21.43 19.39 15.31 15.31 16.33 11.22 434.69
Extremely drought 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2018 No drought 89.25 76.54 12.41 6.20 2.77 1.23 0.23 78.40
Light drought 5.11 50.76 20.18 14.42 8.31 4.83 0.86 195.19
Moderate drought 2.66 38.83 21.36 15.97 11.92 8.55 1.99 266.40
Heavy drought 1.65 29.76 20.40 17.09 14.10 10.53 4.48 322.81
Extremely drought 1.33 24.11 18.69 19.09 14.40 12.06 4.05 337.06

in 2015, and there were no incidents of extreme drought,
SEII showed an increasing trend with increased drought
grade, and the SEII value in 2015 exceeded that under
the same drought grade in 2010. Similarly, the change in
SEII in 2018 was consistent with those during the two pre-
vious periods. Overall, the drought intensity showed posi-
tive relationships with the SEII and soil erosion.

5. Discussion
5.1. Drought characteristics and models

According to Chen (2018, 2020); Zhao and Huang
(2012); Zhao and Huang (2014); Zhao and Huang (2016),
Kunming City, Chuxiong Prefecture, Yuxi City, and Quj-
ing City suffered continuous droughts in autumn, winter,
and spring during 2010. These droughts were of long dura-
tion and wide spatial coverage and represented the most
serious drought disasters since meteorological records
began. Kunming City and the Yuxi, and Chuxiong prefec-
tures experienced droughts for five consecutive years from
2009 to 2014, during which precipitation and temperature
were lower and higher than that in previous years, respec-
tively. The El Nino event from 2014 to 2016 resulted in a
relatively severe early summer high temperature and
drought in 2015. However, Central Yunnan Province

received above average rainfall 2015, characterized by iso-
lated rainstorms, frequent flood disasters, and low inci-
dence of drought. Conditions in 2017 included greater
rainfall, lower temperature, and lower average sunshine
hours than that in previous years, resulting in mainly low
levels of drought. No precipitation occurred in most parts
of Yunnan Province in January 2018, whereas precipitation
during February 2018 decreased by 50%, resulting in a
more serious drought. Above average precipitation in
March effectively alleviated the development of drought
in most areas (http://www.weather.com.cn/). In addition,
Yu (2020) indicated that the percentage drought coverage
in Yunnan Province during 2009-2014 exceeded that dur-
ing 2015-2018, and with high frequency droughts occur-
ring in Chuxiong Prefecture, Kunming City, and Yuxi
City, consistent with the drought characteristics in Fig. 2
of the present study.

A comprehensive drought index that considers multiple
factors is better able to capture the complex process and
various effects of drought compared with a single drought
index (Jiao et al., 2019). Principle component analysis
(PCA) can effectively integrate multiple correlation vari-
ables into a few variables, which not only reduces the diffi-
culty of analyzing the problem, but also minimizes the loss
of valuable information in the variables, thereby ensuring
the accuracy of the analysis results (Pearson, 1901).
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Therefore, PCA is widely used in drought research (Arun
Kumar et al., 2021; Kim et al., 2021). The current study
used factor analysis to effectively compress and reduce
the dimension of the datasets of the four indicators [tropi-
cal rainfall condition index (TRCI), vegetation condition
index (VCI), temperature condition index (TCI), elevation].
PCA was conducted to obtain the weight coefficient of each
index month (normalized weight coefficient), following
which the PCA drought index (PDI) model was obtained.
The temperature vegetation drought index (TVDI) has
been more widely used in the drought model compared
to in more extensive and more mature drought models
(Chen et al., 2017; Hou and Zhang, 2017), with TVDI used
within verification by PCA and analytic hierarchy process
(AHP). There was a relatively high correlation between
PDI and TVDI. For example, the correlation coefficient
between PDI and TVDI in January 2018 was —0.785
(P < 0.01) (Table 6). Therefore PDI was better able to
express the agricultural drought situation (Kulkarni
et al., 2020). Although PCA can completely rely on the
objective information of the sample, using PCA to obtain
a reflection of the actual situation is difficult as it ignores
subjective value judgments.

AHP is a mathematical quantification based on the
empirical knowledge of the decision maker and assesses
the relative importance of each level of elements, following
which each sample is evaluated and ranked (Wei et al.,
2020). The 5-level scaling method was used in AHP to con-
struct the assessment matrix (Yu, 2020). The correlation
coefficients between the four indicators (TRCI, VCI, TCI,
and elevation) and standardized precipitation index / stan-
dardized precipitation evapotranspiration index (SPI /
SPEI) were used as references of the relative importance
of each indicator, and the relative importance of each indi-
cator was determined by combining the research experience
and the characteristics of each indicator (Du et al., 2013;
Wang et al., 2018). The final constructed optimal analytic
hierarchy process drought index (ADI) showed a good cor-
relation with TVDI. For example, there was a significant
correlation between ADI and TVDI in January 2018 with
a correlation coefficient of — 0.394 (P < 0.01) (Table 6).
Although AHP can reasonably add prior knowledge into
the evaluation process, it ignores the interrelationships
between the indicators reflected by the objective data of
the sample, and the error in subjective knowledge will also
have a greater impact on the accuracy of the results (Kim
et al., 2021).

Table 6

Correlation coefficients between temperature vegetation drought index
(TVDI) and three drought models (January 2018) for Central Yunnan
Province, China.

Drought model PDI
R —0.785%*

ADI
—0.394%*

CDI
—0.810%*

Note: ** indicating significance at P < 0.01
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The results of the CDI model showed a significant
(P <0.01) correlation with SPI/SPEI. The correlation coef-
ficient between CDI and TVDI exceeded those between
PDI and TVDI, ADI and TVDI (Table 6). In addition,
past studies have shown that drought monitoring using
the CDI provides results that are more consistent with
actual drought conditions compared to those of other
drought indices (Ji et al., 2018; Yu, 2020). Therefore, the
present study constructed a more realistic CDI by combin-
ing the objectivity of the PCA with the subjectivity of the
AHP. In general, the use of the CDI in drought monitoring
has been more successful in reflecting agricultural and
meteorological droughts as compared to the use of single
drought indices such as the PDI and ADI (Yu, 2020).

5.2. Soil erosion factors and verification

Although a more realistic simulation of soil erosion
was obtained through the Revised Universal Soil Loss
Equation (RUSLE) with consideration of important fac-
tors affecting erosion such as precipitation, soil, topogra-
phy, vegetation coverage, and water and soil
conservation measures, the spatial distribution of some
erosion factors was uneven. As shown in Fig. 4a, the
value of the rainfall erosivity (R) factor was low in the
northeast corner of Central Yunnan Province and high
in the southeast, southwest, and northwest corners. How-
ever, the R factor in Qujing City increased from north-
west to southeast, which could be attributed to the
large area of the city, the overall topography showing
an inclination from northwest to southeast, and the dis-
tribution of the river system in the southeast being more
developed than that in the northwest. However, Kun-
ming and Yuxi appeared to be affected by the Dianchi,
Fuxian, and Qilu lakes, resulting in relatively small dif-
ferences in rainfall and consequently relatively uniform
R scores. As shown in Fig. 4b, the maximum values of
the soil erodibility (K) factor in the counties of Huize,
Xinping, and Eshan showed a patchy distribution. This
result could be attributed to the maximum area of the
K factor in Huize County being dominated by yellow
brown soil, whereas the counties of Xinping and Eshan
are dominated by red soil. This result shows that the
spatial distribution of the maximum value of the K fac-
tor had a weak correlation with soil types, and the soil
texture and organic carbon content in the region may
play a dominant role in soil erosion. The K factor is also
closely related to climate change. For example, soil
erodibility is exacerbated by decreased precipitation,
increased evapotranspiration, and more prolonged dry
periods, resulting in some areas being more susceptible
to erosion (Baskan, 2021). Furthermore, hydrophobicity
drastically reduces the affinity of soil for water after pro-
longed drought periods (Gimbel et al., 2016). Therefore,
obtaining more realistic future predictions of soil erosion
requires the consideration of the effects of drought,
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Fig. 4. The spatial distributions of the different factors within the Revised Universal Soil Loss Equation (RUSLE) for Central Yunnan Province, China
for 2018. (a) rainfall erosivity (R) factor; (b) soil erodibility (K) factor; (c) slope length and steepness (LS) factor; (d) vegetation cover management (C)

factor; (e) soil and water conservation (P) factor.

which can be achieved mainly through improving the K
factor in hydrological models.

Past studies have found that slope length affects soil ero-
sion (Tsegaye and Bharti, 2021). As shown in Fig. 4c, the
spatial distribution of the slope length and steepness (LS)
factor in Central Yunnan Province is basically consistent
with the overall topography. An increase in the LS factor
corresponded with heightened erosion due to increased
velocity of water flow (Haan et al.,, 1994; Piyathilake
et al., 2021). The present study used the approach of Liu
et al. (2000) to estimate the LS factor for the RUSLE.
McCool et al. (1987) provided a methodology for estimat-
ing LS with a broader field of applicability, thereby allow-
ing the estimation of soil erosion from various terrains (e.g.
rangelands, forests, disturbed sites, and steep slopes). The
use of this approach has shown good performance in esti-
mating soil erosion (Efthimiou et al., 2020).

The dimensionless vegetation cover management (C)
factor is an important erosion factor reflecting the influence
of different vegetation coverage on soil erosion (Phinzi and
Ngetar, 2019). The value of the C factor is inversely pro-
portional to degree of local vegetation coverage since den-
ser vegetation strongly protects against soil erosion
(Efthimiou et al., 2020). Besides for lakes, the results of
the current study showed that areas with higher C values
were prone to soil erosion (Fig. 4d).

The dimensionless soil and water conservation (P) factor
is one of the most difficult factors to determine (Tian et al.,
2021) and represents the ratio of the amount of soil loss
over a certain period time, with a value ranging from 0
to 1 (Peng et al., 2018). As shown in Fig. 4e, most areas
had high P values ranging from 0.8 to 1, indicating that
most parts of Central Yunnan Province are prone to soil
erosion. The determination of the P value in the RUSLE
mainly depended on land use types (Behera et al., 2020).
The high accuracy of the land cover classification in Cen-
tral Yunnan Province of 72.24% allowed the P factors for
Central Yunnan Province to be calculated (Liu, 2019).

In addition, the factor detector in the geographic detec-
tor was used to explore the correlation and difference
between the four natural factors of vegetation coverage,
slope, elevation, and annual precipitation (Wang et al.,
2010), as well as the spatial distribution of soil erosion from
2010 to 2018 (Table 7). The q value was used to evaluate
the degree of influence, with its value ranging from 0 to 1
(Wang et al., 2010), and with positive relationships with
the significance of the spatial divergence of soil erosion
and the degree of influence of natural factors. As shown
in Table 7, vegetation coverage factors played a leading
role in the influence of the distribution of soil erosion inten-
sity, with q values exceeding 0.28, and the intensity of soil
erosion in high vegetation coverage areas being relatively
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Advances in Space Research xxx (Xxxx) xxx

The influence of natural factors on soil erosion intensity within Central Yunnan Province, China from 2009 to 2018.

Region Year Vegetation coverage Slope Elevation Annual precipitation
Kunming 2010 0.30 0.13 0.01 0.01
2015 0.29 0.09 0.01 0.02
2018 0.28 0.07 0.02 0.03
Yuxi 2010 0.36 0.11 0.09 0.01
2015 0.36 0.08 0.04 0.02
2018 0.32 0.03 0.05 0.06
Qujing 2010 0.28 0.11 0.00 0.01
2015 0.30 0.06 0.00 0.02
2018 0.29 0.03 0.00 0.05
Chuxiong 2010 0.40 0.08 0.05 0.00
2015 0.41 0.07 0.04 0.01
2018 0.41 0.05 0.03 0.00

low. Therefore, the reduction in soil erosion through vege-
tation restoration is extremely important for sustainable
development. The degree of influence of slope on soil ero-
sion was slightly smaller than that of vegetation coverage,
with a maximum q value of 0.13. Slope affected the speed
of water flow and the direction and quantity of surface run-
off. Therefore, there was a positive relationship between
slope steepness and the affect by surface runoff
(Olorunfemi et al., 2020). The influence of altitude and
annual rainfall was small (Table 7).

The simulations of soil erosion obtained in the current
study were compared to those obtained by Ding et al.
(2018) using the Chinese Soil Loss Equation (CSLE) to
estimate the land erosion status of Yunnan Province in
2015 (Table 8 and Table 9). The results showed that the
two methods obtained similar areas of total soil erosion
and area proportions of each erosion intensity grade, indi-
cating that the RUSLE model performed well in estimating
the soil erosion status of Central Yunnan Province when
compared with the CSLE model, consistent with the con-
clusions obtained by Peng et al. (2018). In addition, past
studies have shown that the RUSLE provides an efficient
method of estimating soil erosion in complex areas with
irregular precipitation and ecological fragility (da Cunha
et al., 2017; Li et al., 2020; Peng et al., 2018).

The average soil erosion from 2010 to 2018 showed a
general trend of first increasing to 1,884.56 t km Z.yr~!
and then decreasing to 1,000.25 t km>-yr~' (Fig. 3). Both
the modulus and area of soil erosion reached their ten-year
minimums in 2018 (Liu et al., 2020). This result could be
attributed to the gradual improvement in various types of
infrastructure in Central Yunnan Province as well as an
increasing awareness of environmental protection among

Table 8

Comparisons of areas of Central Yunnan Province experiencing different
categories of soil erosion in 2015 as a proportion (%) of total area as
simulated in the study by Ding et al. (2018) and in the current study.

Comparison Micro erosion Total soil erosion
Ding et al. (2018) 67.88 32.12
In our study 61.21 38.79

the population. Sustainable development in the Central
Yunnan Province has been promoted though water and
soil conservation measures and effective reductions in activ-
ities that are damaging to the ecology, resulting in reduc-
tions in soil erosion and clear advancements in drought
resistance and disaster reduction.

5.3. Changes in drought characteristics under different soil
erosion grades

The process of soil erosion results in destruction of veg-
etation and soil structure (Xu et al., 2016), and the imbal-
ance between precipitation and surface water/groundwater
results in water shortages and hydrological drought (Shi,
1996). The imbalance between soil water and crop water
demand results in water shortages and agricultural
droughts (Shi, 1996). The destruction of forest vegetation
decreases its unique function of regulating surface temper-
ature and air humidity (Pickering et al., 2021). The soil
temperature of a barren slope and the temperature of the
near soil layer increases under the scorching sun, resulting
in excessive evaporates rates, which can easily lead to
drought (Blanken, 2014). Moreover, the loss of water, soil,
and fertilizer results in poor water conservation capacity of
sloping farmland, which also aggravates the occurrence of
drought. The destruction of the soil layer decreases the
water storage capacity of the vegetation and the soil system
in areas experiencing high soil erosion (Magesh and
Chandrasekar, 2016). In addition, soils under drought con-
ditions are prone to hydrophobicity (Gazol et al., 2018;
Gimbel et al., 2016), thereby hindering the infiltration of
surface water after rainfall and intensifying surface runoff
and soil erosion (Ahn et al., 2013; Zhao et al., 2011).

The multi-year average soil erosion across 2010, 2015,
and 2018 and the changes in multi-year dry-season drought
characteristics under each erosion grade and the correla-
tion coeflicient between soil erosion and drought character-
istics were calculated (Table 10). The frequency of drought
increased with increasing soil erosion intensity from 17.00
to 30.20. The correlation coefficient between soil erosion
intensity and dry-season drought frequency was 0.2623,
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Comparisons of areas of Central Yunnan Province experiencing different categories of soil erosion over many years as a proportion (%) of total area as

simulated in the study by Ding et al. (2018) and in the current study.

Comparison Mild Moderate Strong Extremely strong Severe
Ding et al. (2018) 64.39 17.00 9.28 6.46 2.87
In our study 45.58 25.78 14.88 9.52 4.24
Table 10

Relationship between droughts and soil erosion within Central Yunnan Province between 2009 and 2018.

Grades Erosion area (km?) % of area Mean drought frequency Mean CDI
Micro 71,560,878 68.99271 17.00 0.40

Mild 18,841,033 18.16487 20.02 0.39
Moderate 8,299,306 8.001462 22.35 0.37
Strong 3,710,674 3.577506 24.27 0.36
Extremely strong 1,152,362 1.111006 28.27 0.34
Severe 158,121 0.152446 30.20 0.33
Drought characteristics drought frequency Mean CDI

R 0.2623 —0.2679

Abbreviations: CDI: comprehensive drought index.

whereas that between soil erosion intensity and drought
intensity was — 0.2679, indicating a positive relationship
between the intensity of soil erosion and the frequency
and intensity of drought. Consistent with the results of
the present study, Santra and Santra Mitra (2020) obtained
correlation coefficients between soil erosion and drought
frequency and between soil erosion and the average annual
drought monitoring index of 0.2049 and 0.2719, respec-
tively, indicating that the increase in soil erosion was clo-
sely related to the frequency and intensity of drought.

Conversely, as shown in Table 5, drought may also
increase soil erosion. Soil water content is reduced during
drought disasters, and soil moisture is insufficient to main-
tain the needs of vegetation growth, resulting in the death
and decomposition of vegetation and crops (Yang et al.,
2018). During subsequent floods, excessive groundwater
levels result in soil saturation, leading to the inhibition or
even death of crop roots (Hubbard and Wu, 2005). Since
the soil has lost the binding action of vegetation roots
due to the preceding drought, heavy rainfall events result
in increased mobilization of soil, leading in increased soil
erosion intensity.

Soil erosion in Central Yunnan Province increased the
frequency of flood and drought disasters, which further
weakened the functioning of ecosystem soil conservation
services, thereby intensifying the intensity and speed of soil
erosion and forming a positive feedback mechanism. The
improvements in soil and water conservation measures in
Central Yunnan Province have resulted in the gradual
improvement in the ecological environment, an increased
water storage capacity of the land, and decreases in soil
erosion and drought (Liu et al., 2020). Therefore, effective
mitigation of floods and droughts requires sustainable eco-
logical development as well as water and soil conservation
measures.

6. Conclusions

The current study focused on the Central Yunnan Pro-
vince as the economic hub of Yunnan Province. PCA and
AHP were applied to determine the weight coefficients of
each drought index based on MODIS, TRMM, and
DEM data. The CDI was then constructed and used to
explore the dynamics of drought during the dry season over
the past decade. The RUSLE was used to quantitatively
characterize the soil erosion status of Central Yunnan Pro-
vince from 2010 to 2018. Finally, the SEII was used to
analyse the soil erosion status of each county under differ-
ent drought grades. The present study came to the follow-
ing conclusions:

(1) The CDI constructed by considering multiple
drought factors and combining subjective and objec-
tive methods was a reliable indicator for drought
assessment. The average drought coverage percentage
and average drought frequency of the Central Yun-
nan Province were 33.98% and 18.33 times, respec-
tively. Although there was a higher drought
frequency in areas with high drought intensity, dry
season drought showed a weakening trend for many
years, which was most significant in the northeast
Central Yunnan Province.

(2) Soil erosion generally showed a trend of first increas-
ing and then decreasing. Soil erosion intensities were
mainly micro, mild, and moderate, and soil erosion
showed an improving trend. The vegetation coverage
factor and slope had a greater influence on the distri-
bution of soil erosion intensity, and dynamic moni-
toring of these two factors could be used to identify
the general trend in the spatial distribution of soil
erosion.
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(3) SEII was shown to be a good indicator of the severity
of soil erosion in each county. High values of SEII
were mainly concentrated in the southwestern and
northern parts of Central Yunnan Province, and SEII
showed a trend of first increasing and then decreasing
in most counties from 2010 to 2018. In addition, SEII
could be used to characterize soil erosion in areas
with different drought grades. The SEII value
increased with the increasing drought grades.

Central Yunnan Province tends to be a focal point of the
frequent natural disasters in Yunnan Province. Therefore,
the relevant regulatory agencies should strive to improve
natural disaster prevention and mitigation measures in
Central Yunnan Province. Some proposed measures
include: (1) Monitoring of natural disasters, with particular
attention on the dynamics and evolution of drought and
flood. (2) A strengthening of natural disaster emergency
response capabilities. (3) An increased focus on heightening
public awareness of natural disaster prevention and
mitigation.
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