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a b s t r a c t

The world has witnessed a surge in renewable power installed capacity in recent years, and there is an
emerging trend of renewable penetration in electricity production. However, there is a lack of quanti-
tative comparative study on disaggregated renewable power sources concerning their generation effi-
ciency performance, regional heterogeneity, development potential, and influencing mechanism in the
existing literature. In the case of China's 30 provinces, this paper evaluates the hydropower, solar power,
and wind power generation efficiency by stochastic frontier analysis method, and then reveals the
distribution characteristics and deployment potential of different renewable sources. Furthermore, from
the perspective of spatial heterogeneity, geographical detector model is utilized to study the influence
mechanism of the generation efficiency of different renewable sources. The main results are as follows.
Firstly, production inefficiency prevails in hydropower, solar power, and wind power generation in-
dustries. The installed capacity, utilized hours, and auxiliary power consumption have positive impacts
on the three renewable energy sources. Every 1% increase in auxiliary power consumption leads to 0.16%
increase in solar power generation, which is quite larger than the increase in hydropower and wind
power. Secondly, on average, hydropower has the highest level of generation efficiency, followed by wind
power and solar power. Kernel density curves indicate the generation efficiency of hydropower, solar
power, and wind power displays distinct aggregation characteristics. Different energy types show sig-
nificant regional differences in deployment potential. Thirdly, annual precipitation accounts for 76% of
the spatial heterogeneity in hydropower generation efficiency, followed by hydropower technology
innovation and power structure. As for solar power generation efficiency, the most important influencing
factors are electricity investment and economic development. By contrast, wind power generation ef-
ficiency is primarily affected by power structure, electricity investment, and urbanization. Additionally,
there exist distinct synergistic effects among different variables. These results provide insightful policy
support for the improvement of renewable power generation efficiency. The study can be extended to the
global scale using country-level data.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The electric power industry is the fundamental industry of the
national economy. Electricity production and sufficient supply
provide an indispensable guarantee for economic development,
social progress, and the improvement of people's living standards
anagement, Wuhan Univer-
[1]. At the global level, coal is the dominant fuel for power gener-
ation, and its share reached 36.4% in 2019 [2]. The power sector is
an important contributor to the growth of global carbon emissions.
For example, in China, the power industry accounts for 40% of total
CO2 emissions and 60% of total SO2 emissions [3]. Given that fossil
energy has serious negative environmental externalities, renew-
able energy has become a priority of energy development strategy
and increasingly important in power production. The power in-
dustry plays an increasingly important role in energy saving and
emissions reduction [4]. The electricity supply is to shift towards a
low-carbon and clean mode. The substitution of renewable
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electricity for thermal power not only reduces the consumption of
fossil energy but also effectively alleviates environmental pollution.

Renewable energy has become a strategic emerging industry in
the world [5]. Among different fuels, renewables provided the
largest increment to power generation (340 TWh) in 2019 [2]. It is
predicted that renewables will overtake coal as the biggest source
of electricity generation by 2025 globally, and renewable power
generationwill make up about 50% of total electricity generation by
2050 [6]. According to the U.S. Energy Information Administration
(EIA),1 from the production perspective, the share of renewables in
global electricity generation was 26.6% in 2018, and renewable
electricity generation showed an increase rate of 79% during
2008e2018. By contrast, from the investment perspective, EIA
indicated that the global renewable electricity installed capacity
accounted for 32.8% of the total power installed capacity in 2018,
indicating an increase rate of 126% from the 2008 level. Obviously,
the development pace of renewable electricity generation is
incompatible with the deployment pace of the corresponding
installed capacity. Efficiency distortion has become a severe chal-
lenge for the sustainable development of renewable power in-
dustry. In this paper, renewable power generation efficiency (RPGE)
refers to achieving maximum power generation under the given
inputs, including installed capacity, utilized hours, and auxiliary
power consumption. At the same time, there exist considerable
regional differences in resource endowment, public policies, tech-
nology, energy regime, and economic development, etc, which
brings great challenges to regional policy formulation for renew-
able electricity. For example, there is evidence to show the spatial
differences significantly influence UK solar photovoltaic (PV)
deployment [7]. There are considerable regional differences in
renewable electricity penetration. Regionally, EIA data show that
Iceland had the largest renewables share of power generation over
90% in 2018, while India and Egypt reported the penetration at 18%
and 9%, much lower than the global average level of 26.6%. Thus, it
is of great significance to make an in-depth understanding of the
regional heterogeneity of renewable power generation and the
underlying influencing factors.

At present, China relies heavily on fossil energy especially coal,
forming a power structure dominated by thermal power generation
[8]. For example, in 2017, thermal power generation contributed
71% of total electricity production in China [9]. China aims to peak
its emissions by 2030 and achieve carbon neutrality before 2060
[10], and it has incorporated the development and utilization of
renewable energy into the legal system. China set the differentiated
responsibility weight of renewable power consumption for each
provincial administrative region in 2019 [11]. The proportion of
non-fossil energy in primary energy consumptionwill bemandated
to reduce to 20% in 2030 [12]. In 2019, China's renewable electricity
installed capacity accounted for 30% of the global renewable
installed capacity [13]. However, generation in China does not
match its installed capacity. From the production perspective,
China's renewable electricity generation contributed a proportion
of 27.9% in its total power production in 2019, while its renewable
electricity installed capacity accounted for 39.5% of the total power
installed capacity [14]. A striking feature of China's renewable
electricity is that there is distinct regional heterogeneity in both
development scale and generation efficiency [15]. It is expected
that the case study of China will provide informative policy im-
plications regarding promoting efficient and sustainable develop-
ment of renewable electricity system, which serves as a benchmark
for other economies in the process of power transition.

This paper focuses on hydropower, solar power, andwind power
1 The data are derived from https://www.eia.gov/international/data/world.
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generation efficiency (i.e., HPGE, SPGE, andWPGE). Taking China as
a case study, this paper aims to quantitatively evaluate HPGE, SPGE,
and WPGE, and reveal their spatial differentiations and influencing
factors. To be more specific, this paper tries to solve the following
pressing issues: (i) How is the generation efficiency performance of
three kinds of renewable sources? And how is the regional differ-
ence in efficiency performance across China's provinces? (ii) How is
the development potential of disaggregated renewable power in
different areas? (iii) What are the primary drivers of three kinds of
RPGE from the perspective of spatial heterogeneity? That is, what
contributes to the regional inequality in HPGE, SPGE, or WPGE? (iv)
What targeted measures should be taken to improve efficiency
performance and mitigate the regional heterogeneity of renewable
power generation efficiency? Solving these problems is helpful to
promoting the sustainable development of the renewable power
industry and the deep decarbonization of the electricity system.
Using the data set of China's 30 provinces, this paper employs the
stochastic frontier analysis (SFA) method to evaluate HPGE, SPGE,
and WPGE. Based on the efficiency evaluation results, we analyze
the distribution characteristics and deployment potential of dis-
aggregated renewable power. Furthermore, this paper investigates
the influencing factors of HPGE, SPGE, and WPGE through
geographical detector, thereby providing an in-depth understand-
ing of conspicuous heterogeneity in HPGE, SPGE, andWPGE among
different provinces.

Several knowledge gaps in the literature are remaining to be
filled. (1) Although previous studies have analyzed the generation
efficiency of renewable energy, there is a lack of comparative
analysis regarding generation efficiency and its influencing factors
between renewable power sources. (2) Little research tries to
quantifying the regional deployment potential of renewable power.
(3) The spatial heterogeneity influencing factors of the generation
efficiency of disaggregated renewable power has not been revealed.
This paper tries to quantitatively attribute the regional inequality in
generation efficiency to the contributions of individual variables.
Compared with the existing literature, this paper not only provides
a comparative analysis of the accurately measured generation ef-
ficiency of disaggregated renewable power, but also quantifies the
deployment potential of disaggregated renewable power in
different areas. In addition, this paper obtains some new and
meaningful findings with regard to the influencing factors of HPGE,
WPGE, and SPGE from the spatial heterogeneity perspective. The
methodology used in this paper has the following several advan-
tages: (1) SFA is less affected by abnormal points and will not have
the same efficiency value of 1. Its reliability and comparability are
better than DEA. (2) The main advantage of SFA is that it considers
the impacts of random factors on output; however, according to the
DEA method, that the actual output is less than the frontier output
is completely due to technical inefficiency. Essentially, in the DEA
approach, the actual output is simply divided into production
frontier and technology inefficiency, and the impacts of random
factors on output are ignored. In fact, the process of renewable
power generation is not only affected by production inefficiency,
but also by random factors such as weather. This is one of the main
reasons why we choose the SFA approach rather than the DEA
method to evaluate disaggregated renewable power generation
efficiency. (3) SFA can analyze the output elasticity of input factors
(i.e., the contribution rate of various inputs to the output) and
investigate returns to scale, while DEA does not set a specific pro-
duction function form, which is equivalent to a black box. (4) Based
on production function, the SFA method has a good economic
connotation. We can get the frontier output of each decision-
making unit, thus obtaining the development potential of dis-
aggregated renewable power in different regions. This is of great
importance for promoting the efficient and sustainable
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development of renewable energy. (5) With several advantages
over traditional regression analysis, the geographical detector is
utilized to capture the driving factors behind the spatial hetero-
geneity of HPGE, SPGE, and WPGE. It provides a new perspective
and scientific decision-making basis for policymakers to under-
stand and narrow regional differences in HPGE, SPGE, and WPGE.
This paper is of great significance in facilitating efficient and sus-
tainable development of renewable power and low-carbon transi-
tion in China's power sector, meanwhile, it also provides a reference
for other economies.

The rest of this study is divided into four sections. Section 2
provides the related literature review. Section 3 introduces the
methodology used in this paper and describes the variables and
their data sources. Section 4 presents the empirical results and
discussion. Section 5 concludes this paper. The final part gives
policy implications, challenges, and recommendations.
2. Literature review

Unlike conventional electricity sources, renewable power gen-
eration has few negative environmental externalities, notably CO2
emissions. Energy use is an important driver of carbon emissions
[16e24]. Climate change mitigation requires a fundamental in-
crease of renewable energy supply [25e28]. Along with continuous
progress in the global energy transition, renewable energy rises
rapidly in energy supply, both in the absolute amount and the
relative proportion [29]. Therefore, extensive studies on renewable
energy are documented in the existing literature [30,31]. Some
scholars focus on the influencing factors of renewable energy
[32,33], in which some scholars investigate the causalities between
renewable energy and economic growth [34e36] or carbon emis-
sions [37e39]. In addition, the development mode of renewable
energy has received extensive attention [40e43].

The studies on the evaluate the power generation efficiency are
conducted at the industry level [44] and power plant level [45e49].
For example, from the perspective of ownership structure, Farer
et al. [50] divide power enterprises in the US into publicly-owned
and privately-owned electric utilities. They utilize the data envel-
opment analysis (DEA) method to measure their technical effi-
ciency and find the technical efficiency of privately-owned electric
utilities is significantly larger than that of publicly-owned utilities.
The efficiency performance of renewable and non-renewable
electricity generation has received some attention. Lam and Shiu
[51] employ the DEA approach to estimate the technical efficiency
of thermal power generation in China. The results show the highest
technical efficiency is recorded in eastern coastal areas and some
provinces with rich coal supply. Furthermore, using the super-
efficiency DEA model, Zhou et al. (2011) evaluate the solar power
generation efficiency in 20 countries during 2010e2016. They find
solar power generation efficiency has positive effects on solar po-
wer generation and solar power storage. In addition, the technical
efficiency of the bioenergy industry is also studied [52]. However,
little attention has been paid to the efficiency of renewable power
generation in China; besides, there is no comparative analysis of
different renewable energy types, which is an important research
topic to be studied. With regard to the efficiency evaluation
method, DEA, as a nonparametric method, has been extensively
3

applied in the literature. The boundary of the production function
measured by the DEA method is definite, so it cannot distinguish
between the influences of random factors andmeasurement errors.
One of its most important shortcomings is that there is no clear
form of the production function, which is equivalent to a black box,
and there is no way to know the contribution rate of various inputs
to production. The SFA method is also commonly used in efficiency
evaluation [53]. When dealing with multi-output issues, this
method is not as convenient as the DEA method. The SFA method
requires that the output be a single variable, multiple outputs need
to be combined into a comprehensive output. When there are too
many input factors, the correlation between these indicators will
affect the reliability of the results.

To improve power generation efficiency, the determinants of
technical efficiency have generated considerable research interest.
The effects of some socio-economic factors have been investigated
in the literature. Sun and Wu [53] utilize an improved SFA method
to analyze the effects of price and quantity regulations on the ef-
ficiency of the power generation sector in China. According to Lam
and Shiu [51], fuel efficiency and the capacity factor have significant
impacts on the technical efficiency of thermal power generation in
China, while foreign investment does not significantly influence
efficiency. There is evidence to show that ownership significantly
influences the efficiency of thermal power plants [54]. By contrast,
Wu et al. [55] find the ownership of the wind farm has no signifi-
cant effect on productive efficiency. Besides, introducing competi-
tion is conducive to facilitating performance improvements in the
electricity generation industry [56,57]. Similarly, Fabrizio et al. [58]
suggest market-based industry structure leads to efficiency gains
compared with a regulated monopoly. In general, environmental
factors will influence renewable power generation. Using a three-
stage efficiency analysis method, Wang et al. [59] demonstrate
temperature plays the most important role in influencing the
operational efficiency of solar photovoltaic plants, however, pre-
cipitation and wind speed have no significant impact. On the
whole, the factors that influence the technical efficiency of power
generation are quite complicated. Compared with thermal power
generation, renewable power generation is more sensitive to
external random shocks and inefficiency factors, such as environ-
mental uncertainty. The driving mechanism of the RPGE deserves
in-depth analysis.

Most scholars adopt different econometric methods to study the
determinants of technical efficiency [52,55]. Nevertheless, the
traditional econometric approach has strictly linear assumptions
and high requirements of data, and it may be ineffective in dealing
with multi-collinearity problems when there are multiple inde-
pendent variables. Moreover, it can only account for the temporal
variations of the variable of interest, but cannot explain the
mechanism of spatial heterogeneity. When studying the interactive
influences of two variables, the econometric model strictly sets the
form of the interaction as a product between two determinants.
The traditional two-stage DEA-Tobit framework cannot consider
the impacts of external random shocks such as environmental
uncertainty, and it fails to reveal the formation mechanism for the
spatial heterogeneity of efficiency.

This paper contributes to the literature in the following ways.
First, it focuses on the regional RPGE and compares the RPGE of
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different renewable sources. Specifically, regional RPGE in China is
quantitatively measured by the SFA method. Second, based on the
evaluation results of RPGE, this paper provides a comprehensive
analysis of the regional deployment potential of three different
renewable sources in China's provinces. In addition, this paper
sheds light on the distribution aggregation characteristics of
China's RPGE by Kernel density estimation. Third, the geographical
detector, originally developed in geographical research, is applied
in this study to identify the contributions of various factors to the
spatial differentiation of RPGE among different regions in China.
3. Methodology and data

3.1. Assessment model of RPGE through stochastic frontier analysis

The production frontier approach (PFA) is currently the main
method in empirical research on efficiency and productivity issues.
This approach is originally developed by Farrell [60] and can be
divided into two major branches, i.e., parametric and non-
parametric estimation methods. The parametric estimation
method constructs a specific production function form and then
estimates the function parameters on the production frontier
through appropriate methods. The parametric PFA includes the
deterministic frontier model [61] and the stochastic frontier model.
The former utilizes linear programming to solve the production
frontier without considering the influences of random factors; the
latter assumes that the production frontier is influenced by both
deterministic and random factors, and it can not only measure the
technical efficiency of the evaluation decision unit, but also inves-
tigate the impacts of external random shocks and inefficiency fac-
tors on potential output. Non-parametric PFA does not specify the
form of production function. Specially, DEA is the most commonly
used non-parametric method. However, the efficiency value ob-
tained by the DEA method may be biased since it does not consider
the impacts of random factors (i.e., uncertainty) on efficiency.
What's more, statistical tests are ignored by the DEA method as
well. As a parametric method, SFA is an important method used in
efficiency evaluation [62]. This study utilizes the SFA approach to
measure the efficiency of renewable power generation in China's 30
provinces.

Stochastic frontier analysis (i.e., SFA) is proposed by Aigner et al.
[63] and Meeusen and Den Broeck [64] independently. The original
model is specified for cross-sectional data. Then, a stochastic
frontier production function model for panel data is developed by
Battese and Coelli [65]. The basic specifications of the SFAmodel are
shown in Appendix A.

Let f ðxi; bÞ ¼ eb0,x1b1,x2b2/xkbk (i.e., production functionwith k
inputs), taking the natural logarithmic transformation of Eq. (A1)
(see Appendix A) will yield:

ln yi ¼ ln f ðxi; bÞþ vi � ui (1)

Different from thermal power generation based on fossil fuels,
renewable power generation needs little raw material. Installed
capacity, utilized hours, auxiliary power consumption are primarily
technical and economic indicators during the process of renewable
power generation. In this paper, renewable power generation is
regarded as the output, while renewable installed capacity, utili-
zation hours, and auxiliary power consumption during the power
generation process are taken as three production inputs. We have
that:
4

ln RPGij¼ b0 þ b1,ln ICij þ b2,ln UHij þ b3,ln APCij þ vij � uij
(2)

Where i represents the region, j denotes the type of renewable
power generation (RPG); IC represents renewable power installed
capacity, UH is utilization hours, APC indicates auxiliary power
consumption of renewable power plants. As the distribution of the
composite disturbance term ðvi �uiÞ is asymmetric, the maximum
likelihood estimation (MLE) method rather than the OLS method is
utilized to estimate the model. Based on Eq. (2), the following
models are to be estimated.

ln HPGi ¼b0 þ b1,ln ICi þ b2,ln UHi þ b3,ln APCi þ vi � ui (3)

ln SPGi ¼ b0 þ b1,ln ICi þ b2,ln UHi þ b3,ln APCi þ vi � ui (4)

ln WPGi ¼b0 þ b1,ln ICi þ b2,ln UHi þ b3,ln APCi þ vi � ui
(5)

Where HPG, SPG, and WPG indicate hydropower, solar power, and
wind power generation, respectively.
3.2. Calculation of frontier and potential renewable power
generation

According to Eq. (A4) (see Appendix A), coupled with the data of
generation efficiency and the actual quantity of renewable energy
generation, we calculate the frontier renewable energy generation
as follows:

HPG*
i ¼

HPGi

HPGEi
(6)

SPG*
i ¼

SPGi

SPGEi
(7)

WPG*
i ¼

WPGi

WPGEi
(8)

Where HPG*, SPG*, and WPG*denote the frontier power genera-
tion in terms of specific energy sources; HPGE, SPGE, and WPGE
represent their power generation efficiency. At the same time,
based on the evaluation of frontier renewable energy generation,
the potential power generation can be obtained by:

DHPGi ¼HPG*
i � HPGi (9)

DSPGi ¼ SPG*
i � SPGi (10)

DWPGi ¼WPG*
i �WPGi (11)

Where dHPG, dSPG, dWPG represent potential power generation of
specific energy sources. The indicator of potential power generation
considers the gap between the frontier and real renewable power
generation.
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3.3. Study on the driving mechanism of RPGE by geographical
detector

Geographical detector [66] is a new tool for the exploratory
analysis of spatial data. In recent years, this method has been
applied in some research on energy and environmental issues
[67,68]. The application of the geographical detector model is to
reveal the reasons for the spatial differentiation of RPGE among
different regions, thereby finding the main driving factors of RPGE.
The theoretical core is to detect the consistency of the spatial dis-
tribution patterns between the dependent variable and the inde-
pendent variables through spatial heterogeneity analysis, obtaining
the explanatory degree of the independent variable to the depen-
dent variable. In other words, if an independent variable has an
important effect on the dependent variable, the spatial distribution
of the independent variable and the dependent variable should be
similar. Compared with traditional statistical analysis methods, the
geographical detector approach has several advantages. First, this
method has no linear assumption. Second, it can reveal the inter-
action between two independent variables on the dependent var-
iable, and can effectively overcome the limitations of traditional
regression analysis methods regarding the product form of inter-
action. Third, this method is particularly effective in addressing the
relationship between the independent variable and categorical
variables. Fourth, it is free from collinearity problems when there
are multiple independent variables. In this paper, RPGE is a
continuous numerical variable, its determinants should be cate-
gorical variables in geographical detector. However, the estimation
results of this approach are sensitive to the classification algorithm
of the data. The main classification algorithms include the equal
interval method, quantile method, K-means, etc.

In the factor detector model, the q-statistic is utilized to evaluate
the impact of a specific factor on RPGE. The larger the q-statistic, the
stronger the influence of the driving factor on the spatial differ-
entiation of RPGE. The q-value is calculated as follows:
Table 1
Variables used in geographical detector models.

Variables Dependent Variable: HPGE

Annual precipitation ✓

Annual sunshine hours
Economic development ✓

Power structure ✓

Environmental regulation ✓

Electricity investment ✓

Financial development ✓

Urbanization ✓

Carbon emissions ✓

Renewable electricity technology innovation ✓

Table 2
The categories of interaction detector.

Criteria

qðxi ∩xjÞ<MinðqðxiÞ;qðxjÞÞ
MinðqðxiÞ;qðxjÞÞ< qðxi ∩xjÞ<MaxðqðxiÞ;qðxjÞÞ
qðxi ∩xjÞ>MaxðqðxiÞ;qðxjÞÞ
qðxi ∩xjÞ ¼ qðxiÞþ qðxjÞ
qðxi ∩xjÞ> qðxiÞþ qðxjÞ

5

q¼1�

PL
l¼1

Nls
2
l

Ns2
¼1� SSW

SST
ðl¼1;2;/; LÞ (12)

Where l indicates the strata of determinantxi, meanwhile, RPGE is
also composed of L strata based on a categorical lðxiÞ. N is the
number of units in China (i.e., 30 provinces), andNl is the number of
units in strata l. s2 is the variance of RPGE in China, s2l is the vari-
ance of RPGE in strata l. SSW represents the within sum of squares,
and SST represents the total sum of squares. The geodetector q-
value reflects the effect of the driving factor on the spatial differ-
entiation of RPGE. The value of q-statistic is between 0 and 1, which
implies xi accounts for 100q% of the spatial heterogeneity of RPGE.
That q ¼ 0 means there is no association between xi and RPGE,
while q ¼ 1 shows RPGE is completely determined by xi. This paper
establishes three geographical detector models. The variables
considered in each model are presented in Table 1.

Interaction detector can be used to investigate the interaction
between two detection factors. Their interaction influence on RPGE
may be larger or smaller than the effect of a single factor. Never-
theless, there are some possibilities that their impacts on RPGE are
independent of each other. Based on Eq. (12), the q-values of xi and
xi (i.e., qðxiÞ and qðxjÞ) are calculated, respectively. At the same time,
the interaction influence of xi and xi, qðxi ∩xjÞ, can also be quanti-
fied. The categories of interaction detector are shown in Table 2.

3.4. Variables and data sources

This paper first utilizes the SFAmethod to estimate RPGE (i.e.) in
China and then reveals the distribution characteristics and
deployment potential of disaggregated renewable power. Further-
more, the geographical detector model is employed to study the
influencing factors leading to the spatial heterogeneity of RPGE. In
the stochastic production frontier model, the output is renewable
Dependent Variable: SPGE Dependent Variable: WPGE

✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

Interaction

Nonlinear weakening (NW)
Univariate weakening (UW)
Bivariate enhancement (BE)
Independent (IN)
Nonlinear enhancement (NE)
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Table 3
Definitions of variables used in the SFA model.

Variables Definition Symbol Data source

Installed capacity Renewable installed capacity IC China Electric Power Yearbook
Utilized hours Hours of capacity utilization UH China Electric Power Yearbook
Auxiliary power

consumption
Electricity consumption of the auxiliary equipment during power
generation process

APC National Energy Administration, China Electric Power
Yearbook

Renewable power
generation

Hydropower, solar power, and wind power generation HPG, SPG,
WPG

China Electric Power Yearbook

Wind power generation
efficiency

Generation efficiency of the wind power industry WPGE Obtained from the SFA model

Hydropower generation
efficiency

Generation efficiency of the hydropower industry HPGE Obtained from the SFA model

Solar power generation
efficiency

Generation efficiency of the solar power industry SPGE Obtained from the SFA model

Table 4
Definitions of variables used in geographical detector model.

Variables Definition Symbol Data source

Meteorological conditions Annual sunshine hours AS China Statistical Yearbook
Annual precipitation AP China Statistical Yearbook

Power structure The share of thermal power generation in total electricity
generation

PS China Electric Power Yearbook

Electricity investment The ratio of electricity investment to GDP INV Almanac of China's Water Power, China Statistical
Yearbook

Financial development The ratio of total loans of banking financial institutions to GDP FD Almanac of China's Finance and Banking, China Statistical
Yearbook

Economic development GDP per capita GPC China Statistical Yearbook
Environmental regulation The ratio of industrial pollution control investment to industrial

added value
ER China Statistical Yearbook on Environment, China

Statistical Yearbook
Carbon emissions Total carbon emissions C Carbon Emission Accounts and Datasets for Emerging

Economies
Renewable electricity technology

innovation
Number of hydropower-related patents granted HTI Baiten database
Number of solar power-related patents granted STI Baiten database
Number of wind power-related patents granted WTI Baiten database

Urbanization The share of urban population in total population URB China Statistical Yearbook

Table 5
Estimation results through the MLE method.

Variables Hydropower Solar power Wind power

Model (1) Model (2) Model (3)

ln IC 0.9853*** (0.0262) 0.9282*** (0.0663) 0.9503 (0.6217)
ln UH 0.9420*** (0.0442) 0.8938*** (0.2025) 0.9731** (0.4448)
ln APC 0.021 (0.0303) 0.1606** (0.0733) 0.0595 (0.6885)
Cons 8.6361*** (0.4456) �8.0284*** (1.7323) 8.7418*** (0.9934)
s2 0.0372** (0.0167) 0.0942 (0.1026) 0.0229 (0.2095)
g 0.9769*** (0.0198) 0.957*** (0.0652) 0.9825 (0.9593)
m �0.3813 (0.2754) �0.0602 (0.5664) �0.0125 (0.9965)
c2 1.4eþ10*** 36.13*** 3.9eþ09***
LOG 37.2992 10.8526 31.7195
LR statistic 10.4925*** 2.4653 13.7878***

Note: (1) Standard errors are presented in parentheses. (2) *** indicates p < 0.01, ** indicates p < 0.05. (3) LOG represents log-likelihood
function value.
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power generation, and the inputs comprise renewable installed
capacity, utilized hours, and auxiliary electricity use during the
power generation process. In geographical detector model, 12 var-
iables are considered to reveal the spatial heterogeneity influencing
factors of RPGE. Renewable power comprises hydropower, solar
power, and wind power. The summary of variables used in this
paper is presented in Table 3 and Table 4. The data set used in this
paper covers China's 30 provinces (except for Hong Kong, Macau,
Taiwan, and Tibet) in 2017 due to data availability and complete-
ness. Specially, the data of renewable power-related patent granted
6

are collected from the Baiten database (i.e., https://www.baiten.cn/
), which provides all kinds of patent information in China. China's
provincial carbon emissions are derived from the CEADs (Carbon
Emission Accounts and Datasets for Emerging Economies) [69]. The
emission inventory includes 47 socio-economic sectors and 17
types of fossil energy-related emission data; compared with other
data sets, its carbon emissions accounting scope is more compre-
hensive, covering emissions related to fossil fuel combustion and
emissions related to the cement production process. The calcula-
tion process of auxiliary power consumption is as follows:

https://www.baiten.cn/
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APC¼RPG$h (13)

Where h represents the power consumption rate of power gener-
ation enterprises, which is obtained from 2018 National Electricity
Price Regulatory Bulletin issued by the National Energy Adminis-
tration [70]. Equivalently, auxiliary power consumption is equal to
renewable electricity generation minus the corresponding on-grid
quantity.
4. Results and discussion

4.1. Results of the SFA model

Table 5 shows the estimation results of the SFA model by using
the maximum likelihood estimation (MLE) approach. All variables
are on the natural logarithm scales. The SFA model is performed
through FRONTIER Version 4.1 developed by Tim Coelli. Specially,
the results of hydropower, solar power, and wind power are pre-
sented inModels (1)e(3) respectively. If the production inefficiency
ui does not exist, then the estimation of the model becomes a
simple least square method. The main method to judge whether
the model is appropriate is to check the value of g. When g is close
to 1, it shows that the composite disturbance term of the frontier
Fig. 1. Geographic distribution of China's hy
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production function mostly comes from the technical inefficiency
variables. In this case, the stochastic frontier model is required.
According to Models (1)e(3), the g statistic is at least 0.957, indi-
cating that the application of the SFA model is appropriate. Pro-
duction inefficiency prevails in the renewable power generation
industry.

As shown in Models (1)e(3), the elastic coefficient of installed
capacity is quite large and positive in all models, but it is not sta-
tistically significant for wind power. It specifies that the increasing
renewable installed capacity plays an important role in promoting
renewable power generation. With the continuous increase of
electricity demand in recent years, China's renewable installed
capacity has grown rapidly. In 2017, the total installed capacity of
renewable electricity in China reached 636.33 million KW. In
addition, the elastic coefficient of utilized hours is positive and it is
statistically significant at least 5% level, showing that utilized hours
are an important factor in increasing hydropower, solar power, and
wind power.

As for auxiliary power consumption, its elastic coefficient is
positive in all models, but it is only statistically significant in Model
(2). Specially, the elastic coefficient of auxiliary power consumption
in Model (2) is distinctly larger than that in Model (1) and Model
(3). It indicates that compared with hydropower and wind power,
every unit increase of solar power generation requires less auxiliary
dropower generation efficiency in 2017.



Fig. 2. Geographic distribution of China's solar power generation efficiency in 2017.
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power consumption. In terms of coefficient magnitudes, the im-
pacts of installed capacity and utilized hours are distinctly larger
than that of auxiliary power consumption. Furthermore, the pro-
duction functions are tested for constant returns to scale. The null
hypothesis that the sum of their output elasticities is 1 can be
rejected. As shown in Table 5, the c2 statistics are all significant,
which suggests that under the condition that the technical level
and factor prices remain unchanged, the output will not increase in
the same proportion if all factor inputs increase by a certain pro-
portion. This also reflects the existence of power generation in-
efficiency to a certain extent.

4.2. Analysis of disaggregated renewable power generation
efficiency

Coupled with the MLE estimation results in Table 5, Frontier 4.1
software can directly give the calculation results of the generation
efficiency of hydropower, solar power, and wind power in China's
provinces. Figs. 1e3 display the spatial distribution characteristics
of HPGE, SPGE, andWPGE, respectively. In terms of the mean value,
hydropower has the highest level of generation efficiency of 0.9378,
followed by wind power (0.9033) and solar power (0.8145). The
8

standard deviation of solar power is larger than that of hydropower
and wind power, indicating there are significant differences in the
SPGE among 30 provinces. There are significant differences in the
generation efficiency of different renewable sources among China's
provinces.

As shown in Fig.1, hydropower generation efficiency varies from
0.702 to 0.9872. Jiangxi has the highest level of hydropower gen-
eration efficiency, while the least level is recorded in Guangdong.
Specifically, in 25 provinces, the hydropower generation efficiency
is larger than 0.9. However, when it comes to solar power, there are
only 11 provinces with SPGE greater than 0.9 (see Fig. 2). The values
lower than 0.7 are reported by five provinces, including Chongqing,
Shandong, Heilongjiang, Jilin, and Liaoning. The group of provinces
with slightly high levels of SPGE between 0.7 and 0.9 contains 14
provinces. As for wind power in Fig. 3, WPGE also displays distinct
spatial heterogeneity across different provinces. WPGE ranges from
0.6888 to 0.9898. WPGE larger than 0.9 is reported by 21 provinces.
The largest WPGE is reported by Shanghai, slightly lower levels of
WPGE are recorded in Tianjin, Inner Mongolia, Jilin, Hainan, and
Gansu.

Fig. 4 plots the distributional differences of HPGE, SPGE, and
WPGE through the Kernel density estimation. As for the wind



Fig. 3. Geographic distribution of China's wind power generation efficiency in 2017.

Fig. 4. Kernel density of HPGE, SPGE, and WPGE.
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Table 6
Results of Spearman and Kendall rank correlation coefficients.

HPGE SPGE WPGE

Spearman's rank correlation �0.1221 0.4218** 0.5869***
Kendall's rank correlation �0.0821 0.3176** 0.4429***

Note: *** and ** indicate the 1% and 5% significant levels, respectively.
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power, the Kernel density curve presents a bimodal shape, which
shows the development of regional WPGE has become polarized.
The provincial WPGE displays distinct agglomeration characteris-
tics and can be divided into two clusters. It can be seen that HPGE
displays three peaks. In detail, the peak on the right is the highest,
indicating most provinces are concentrated in the high-HPGE
group. In addition, the distribution of SPGE presents a more
dispersed pattern, and there is only one low peak. Compared with
Fig. 5. Kernel density of HPGE by

Fig. 6. Kernel density of SPGE by S
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WPGE and HPGE, the value range of SPGE is larger. This means the
spatial distribution of SPGE is more scattered. Different provinces
exhibit significant differences in SPGE. On the whole, SPGE, WPGE,
and HPGE display distinct aggregation characteristics.

On the whole, China's total renewable energy resources are very
rich, but the regional distribution is uneven. For example, the
regional distribution of wind energy resources is uneven, and Inner
Mongolia, Xinjiang, Heilongjiang, and Gansu account for 50% of the
total wind energy resources [71]. Most areas with abundant
renewable energy resources are located in western China where
economic development and transportation are relatively backward.
The distribution of renewable energy in China is unbalanced, and
the geographical obstacles between resource areas and load areas
are relatively large. Besides, due to on-grid access, intermittency,
volatility, and randomness of renewable energy, the curtailment
problems hinder the green transformation of the power industry.
SFA and super-efficiency DEA.

FA and super-efficiency DEA.



Fig. 7. Kernel density of WPGE by SFA and super-efficiency DEA.
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4.3. Comparative analysis between SFA and DEA methods

What is the difference between DEA and SFA results? This paper
compares the results of SFA and super-efficiency DEA (i.e, the BCC
model with variable returns to scale). In this paper, the super-
efficiency DEA model is output-oriented. It can distinguish multi-
ple effective decision-making units whose efficiency value is 1,
which avoids the loss of information in some effective decision-
making units. Since the SFA model assumes that the inefficiency
term is greater than 0, it can also consider the ranking of efficient
DMUs at the function frontier.

Accordingly, a question naturally emerges, is the difference be-
tween DEA and SFA results statistically significant? Different from
the correlation coefficient, the coefficient of rank correlation is
calculated on the basis of rank, which is more suitable for reflecting
the correlation of sequence variables. In this paper, Spearman's and
Kendall's rank correlation coefficients are estimated. According to
the results of rank correlation coefficients in Table 6, both
Spearman and Kendall coefficients of HPGE are not statistically
significant, which shows the null hypothesis that HPGE obtained
through DEA and SFA are independent should be accepted. That's to
say, the two efficiency estimation methods lead to completely
different results for HPGE. The reason is that renewable power
generation is greatly affected by random factors, while the DEA
approach does not consider the influence of random factors, which
results in a large difference between its estimation results and SFA.
For SPGE and WPGE, the statistics are statistically significant at
least at the 5% level, indicating there is a significant correlation
between the results of DEA and SFAmethods. That is to say, for solar
power and wind power, the efficiency assessment results show
minor differences despite different approaches.

To illustrate the difference more clearly, this paper utilizes
Kernel density estimation to shed light on the distribution char-
acteristics of HPGE, SPGE, and WPGE. The results are depicted in
Figs. 5e7. As shown in Fig. 5, the Kernel density distributions of
HPGE by SFA and DEA present significant differences in both
11
skewness and kurtosis. The distribution of HPGE obtained by the
DEA method is relatively even, while the efficiency obtained by the
SFA approach shows a clear agglomeration form. Fig. 6 presents
that the Kernel density distribution of SPGE by DEA is very close to
that by SFA, with a main peak. However, from Fig. 7, it is found that
although the shapes of the two curves are different for WPGE, the
efficiency values are mostly concentrated between 0.6 and 1. As
supplementary evidence, this part analyzes the specific distribution
patterns of HPGE, SPGE, and WPGE, and uncovers how the differ-
ences between the two methods arise. The DEA and SFA methods
evaluate renewable electricity generation efficiency from different
perspectives, and their distributions display distinct differences.

4.4. Analysis of frontier and potential renewable power generation

In the previous section, this paper evaluates China's generation
efficiency of hydropower, solar power, andwind power by using the
SFA method. Inefficiency needs to be further eliminated, and there
is still a large amount of renewable potential remaining to be
exploited. The greater the generation efficiency, the closer the
actual output level is to the frontier out level. Based on the results of
the SFA model, we compare the frontier and potential renewable
power generation among different provinces.

(1) Hydropower

According to Eq. (6), Fig. 8 depicts the frontier hydropower
generation of China's 30 provinces in 2017. Obviously, Sichuan has
the highest levels of frontier hydropower generation (more than
333.5 TWh), followed by Yunnan (261.1 TWh) and Hubei
(154.7 TWh). In addition, among the rest provinces, the group of
provinces with slightly high levels of frontier hydropower genera-
tion between 42.9 TWh to 74.4 TWh includes Guangxi, Guizhou,
Hunan, Guangdong, and Fujian. It can be seen that southwestern
provinces have relatively larger frontier hydropower generation,
while most provinces located in northern China have a minor



Fig. 8. Frontier hydropower generation in 2017 (unit: TWh).
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frontier hydropower generation with little hydropower resources
to develop, including Beijing, Tianjin, Xinjiang, and Inner Mongolia.
However, hydropower generation efficiency is quite high in most
north provinces such as Hebei, Gansu, Xinjiang, Inner Mongolia,
and Ningxia, indicating these provinces have made better use of
existing renewable resources to improve power-generating effi-
ciency and control the excessive growth of installed capacity.

Based on Eq. (9), Fig. 9 presents the potential hydropower
generation in 2017. From a regional perspective, there are distinct
differences in potential hydropower generation among different
provinces. It is found that the spatial distribution of potential hy-
dropower generation is similar to that of frontier hydropower
generation in Fig. 8. The provinces concentrated in north China
generally have lower potential hydropower generation, compared
with those in southern China. Sichuan, Yunnan, and Hubei have a
large level of potential hydropower generation (more than
5.3 TWh). Although Guangdong has a low level of frontier hydro-
power generation, it ranks second in terms of potential hydropower
generation (12.8 TWh), which shows there is still a large amount of
hydropower generation that can be expanded in Guangdong.
12
Furthermore, with both high frontier and potential hydropower
generation, Sichuan, Yunnan, and Hubei have huge room for hy-
dropower growth in the future. Overall, in 2017, the total hydro-
power generation in China was up to 1187.8 TWh, while there are
nearly 1253.9 TWh of hydropower potential yet to be exploited.
Therefore, it is of great importance to promote the deployment of
hydropower and improve the power generation efficiency, espe-
cially in Sichuan, Yunnan, Hubei, and Guangdong.

(2) Solar power

Fig. 10 plots the spatial distribution of frontier solar power
generation in 30 provinces in 2017. There is distinct spatial het-
erogeneity across different provinces. On the whole, the provinces
located in northern China have significantly higher frontier solar
power generation than those located in southern China, which
means most solar power sources are in northern China. For
instance, Inner Mongolia has the greatest frontier solar power
generation of 12.4 TWh. From the geographical perspective, this
division is highly consistent with the Qinling Mountains-Huaihe



Fig. 9. Potential hydropower generation in 2017 (unit: TWh).
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River Line (i.e., Qinling-Huaihe Line), which is an important
geographical boundary in China. In the north and south of this line,
natural conditions, geographical features, agricultural production,
and people's consumption habits are significantly different.

As shown in Fig. 11, the regions with high potential solar power
generation are concentrated in North China, including Shandong,
Hebei, Henan, and Shanxi. For example, the largest value in 2017
was 4.9 TWh reported by Shandong, followed by Hebei (3.1) and
Shanxi (2.1). The three provinces have high frontier and potential
solar power generation, showing photovoltaic resources of these
three provinces should be fully developed and utilized. It is worth
noting that all provinces in southern China generally showboth low
frontier and potential solar power generation. Therefore, southern
China is at no time a focus of photovoltaic power-related policies in
the future.

(3) Wind power

As shown in Fig. 12, most provinces in northern China have a
large frontier wind power. However, in south China, only Yunan has
13
a high level of frontier wind power generation. That suggests
China's wind power resources are mainly concentrated in the
north. In particular, Inner Mongolia has the largest frontier wind
power of 56.5 TWh, followed by Xinjiang (32.7 TWh) and Hebei
(27.4 TWh).

It can be seen from Fig. 13 that most of the provinces have
relatively large potential for wind power in China, but it does not
mean that most provinces have not well developed and utilized
wind power resources. Indeed, the value of potential wind power
generation is low, that is, it merely accounts for a small proportion
of frontier wind power generation. The total potential hydropower
generation in China reaches 21.2 TWh. The highest level of potential
wind power generation is recorded in Shandong (2.4 TWh).
4.5. Influencing factors of RPGE

4.5.1. Factor detection
The application of the SFA method is to evaluate the generation

efficiency of hydropower, solar power, and wind power in China's
30 provinces. From the geographical perspective, China's provinces



Fig. 10. Frontier solar power generation in 2017 (unit: TWh).
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show distinct differences in energy resources, consumption struc-
ture, economic development, and climatic conditions. Due to the
differentiated conditions across different provinces, HPGE, SPGE,
and WPGE present conspicuous spatial heterogeneity and insuffi-
cient development. It is necessary to disclose the influence mech-
anism of HPGE, SPGE, and WPGE in China. The application of
geographical detector is to provide adequate evidence regarding
the issue of what contributes to the spatial differentiation of HPGE,
SPGE, and WPGE, respectively. When using the geographical de-
tector, RPGE is a numerical variable, its determinants should be
categorical variables. In this paper, all independent variables are
numerical variables, they are stratified and discretized into cate-
gorical variables through the quantile method.

Both meteorological and socio-economic factors are considered
in the geographical detector model. Factor detection aims to
investigate the separate impacts of individual factors on HPGE,
SPGE, and WPGE. Table 7 shows the results of the factor detector.
Given possible latent influencing factors and data availability,
different models take into account different influencing factors.
14
Judging from the q-values, individual detection factors show
distinct differences with regard to their effects on the research
objects.

As shown in Table 7, Model (1) displays the impacts of nine
factors on HPGE. The q-statistics are shown in descending order as
follows: Annual precipitation (0.760)> hydropower technology
innovation (0.759)> power structure (0.617)> urbanization (0.401)
> economic development (0.358)> financial development (0.309)>
carbon emissions (0.258)> electricity investment (0.252)> envi-
ronmental regulation (0.193). Specially, annual precipitation has
the largest q-value, and it can account for 76% of the spatial het-
erogeneity in HPGE, indicating annual precipitation is the most
important factor influencing the generation efficiency of hydro-
power. A slightly lower q-value is reported by hydropower tech-
nology innovation, which means the technology factor also takes a
dominant place in explaining the spatial heterogeneity of HPGE.
Therefore, it is of great significance to promote hydropower-related
generation technologies diffusion in regions with low HPGE. In
addition, power structure plays an important role in influencing



Fig. 11. Potential solar power generation in 2017 (unit: TWh).
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HPGE, while other factors, including carbon emissions, electricity
investment, and environmental regulation, have significantly lower
explanatory power for HPGE.

From the detection results in Model (2), the driving strength of
electricity investment on SPGE is the largest, compared with other
factors. That is to say, electricity investment is the most important
factor influencing SPGE, rather than meteorological factor, envi-
ronmental pressure, or technology innovation. The main q-statis-
tics are given in descending order: electricity investment (0.506)>
economic development (0.477)> environmental regulation (0.460)
> power structure (0.409)> urbanization (0.354). The results show
economic development, power structure, and environmental
regulation also have important effects on SPGE. Obviously, envi-
ronmental regulation serves as an effective policy tool in driving
solar power generation. The q-statistic of urbanization is 0.354,
indicating it accounts for 35.4% of the provincial inequality of SPGE.
Besides, financial development, annual sunshine hours, carbon
emissions have little impact on SPGE. Compared with other factors,
the q-value of solar power technology innovation is negligible,
15
which shows China's solar power generation is not limited by the
level of photovoltaic technology. On the whole, solar power gen-
eration efficiency in China is mainly influenced by economic fac-
tors, which means it is of great importance to improve funds
support for the regional deployment of solar photovoltaic power.

Model (3) presents the impacts of eight factors on WPGE. It can
be seen that the q-statistic of power structure is as high as 0.548,
while the q-statistics of other factors are smaller than 0.5, showing
generation efficiency of wind power is primarily affected by power
structure. In this paper, power structure reflects the importance of
thermal power generation in a region. In some regions, thermal
power capacity is surplus and has a substitution effect on renew-
able electricity. It is necessary to reduce the excessive dependence
on thermal power, thereby contributing to the improvement of
WPGE. The results also suggest that electricity investment is the
second-largest influencing factor of WPGE, it can explain 46.2% of
provincial differences in WPGE. That confirms the importance of
increasing power investment in wind power. Furthermore, urban-
ization is also a critical factor that accounts for 42.8% of the regional



Fig. 12. Frontier wind power generation in 2017 (unit: TWh).
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disparities of WPGE. Urbanization is closely related with energy
use. In the process of urbanization, the awakened environmental
awareness limits the scale of thermal electricity generation to some
extent. The small towns facilitate the development of distributed
renewable energy with little transportation costs. As shown in
Model (3), the q-statistics of environmental regulation, financial
development, and carbon emissions are between 0.35 and 0.4, and
their effects are quite close. As for economic development, its
impact is relatively small. Specially, wind power technology inno-
vation has the smallest q-statistic of 0.228, which indicates the
technical factor has the least impact on wind power generation
efficiency in China.
4.5.2. Interaction detection
The interaction detector is performed to reveal the interactive

effects of various factors on HPGE, SPGE, and WPGE in China. The
results show that the interactive effects between any two driving
16
factors present the nonlinear enhancement. The interactive effect
of two factors is always greater than the sum of the effects of in-
dividual factors. When considering the interactions between
different factors, the spatial disparities of HPGE, SPGE, and WPGE
can be explained in a greater proportion.

Compared to a single policy, multi-policy interactions are more
effective in improving power generation efficiency. For example,
given the interactive influences of power structure and environ-
mental regulation, it is feasible to limit the blind expansion of
thermal power and eliminate backward production capacity by
increasing environmental regulations. Also, it is necessary to
reduce the thermal power generation rate and enhancing financial
support jointly. Renewable power projects have huge initial in-
vestments, high risks, and a long cycle, which make project
financing difficult. The traditional financing model cannot
completely solve the problem of the shortage of initial investment
funds. This will inevitably require the development of new



Fig. 13. Potential wind power generation in 2017 (unit: TWh).

Table 7
Results of factor detector.

Variables Model (1) Model (2) Model (3)

Dependent Variable: HPGE Dependent Variable: SPGE Dependent Variable: WPGE

AP 0.760
AS 0.229
GPC 0.358 0.477 0.280
PS 0.617 0.409 0.548
ER 0.193 0.460 0.350
INV 0.252 0.506 0.462
FD 0.309 0.144 0.392
URB 0.401 0.354 0.428
C 0.258 0.200 0.385
HTI 0.759
STI 0.076
WTI 0.228

Note: All variables are defined in Table 4; q-statistics are reported.

B. Yu, D. Fang and J. Meng Energy 234 (2021) 121295

17

Administrator
Highlight




B. Yu, D. Fang and J. Meng Energy 234 (2021) 121295
financing models for the renewable energy industry, thus solving
the problem of insufficient development funds.

5. Conclusions

This study aims to reveal the spatial differentiation and influ-
encing factors of hydropower, solar power, and wind power gen-
eration efficiency in China. The main conclusions of this research
are as follows: (1) Production inefficiency prevails in hydropower,
solar power, andwind power generation industries. The production
functions do not satisfy constant returns to scale. The positive im-
pacts of installed capacity and utilized hours on renewable energy
generation are distinctly larger than that of auxiliary power con-
sumption. Every 1% increase in auxiliary power consumption leads
to 0.16% increase in solar power generation, which is quite larger
than the increase in hydropower (0.02%) and wind power (0.06%).
(2) The generation efficiency of three renewable sources shows
distinct spatial differences and aggregation characteristics among
China's provinces. In terms of the mean value, hydropower has the
highest level of generation efficiency among China's provinces,
followed by wind power and solar power. (3) China has nearly
1253.9 TWh of hydropower potential yet to be exploited. It is of
great importance to promote the deployment of hydropower and
improve the power generation efficiency, especially in Sichuan,
Yunnan, Hubei, and Guangdong. In addition, the provinces located
in northern China have significantly higher frontier and potential
solar power generation than those located in southern China. Be-
sides, wind power resources are mainly concentrated in north
China. (4) Hydropower generation efficiency in China is mainly
influenced by annual precipitation, hydropower technology inno-
vation, and power structure. As for solar power generation effi-
ciency, the most important influencing factors are electricity
investment and economic development. By contrast, wind power
generation efficiency is primarily affected by power structure,
electricity investment, and urbanization. (5) Through the interac-
tion detection of geographical factors, it is believed that there exist
distinct synergistic effects among different variables, indicating the
importance of multi-policy interactions.

6. Policy implications, challenges, and recommendations

This study provides the following policy implications for a high-
efficiency renewable energy system in China. (1) It is necessary to
scientifically plan power construction, increase the utilization
hours and avoid the surplus renewable installed capacity. In addi-
tion, the power plants should reduce the electricity consumption of
auxiliary equipment during power generation process. The
renewable power projects with low operating costs should have
priority access to the grid and are absorbed by the market. China
has abundant coal resources, the long-term dependence on tradi-
tional fossil fuels will significantly affect the energy use patterns.
From the source prevention perspective, there is a need to optimize
the primary energy consumption structure and power supply
structure. (2) It is imperative to increase financial support for
renewable energy projects and adopt some new financial tools to
promote the marketization of renewable energy, such as estab-
lishing renewable energy bidding trading mechanisms and pro-
moting green power certificate transactions. With the deepening of
market-oriented reforms in China's power industry, the original
renewable energy subsidy policies will become increasingly un-
sustainable and the cancellation of protection policies is the general
trend. (3) To gain market competitiveness, renewable power-
generating companies should actively promote technological
progress. Revolutionary technological breakthroughs are urgently
needed in the fields of power generation, peak shaving, power
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transmission, energy storage, and distributed power grids. It is
necessary to establish a market-oriented mechanism for techno-
logical innovation, strengthen the guidance of technological inno-
vation in the power energy industry chain, and increase R&D
expenditures in technological research of the entire power industry
chain. In particular, it is of great urgency to promote the improve-
ment and diffusion of hydropower-related generation technologies.
(4) This paper provides critical policy implications for the devel-
opment of alternative energy sources and the urbanization process
in China. As China's urbanization process advances, the develop-
ment model of small-sized cities and towns is expected to play an
important role in facilitating the development of renewable energy.
For example, the urbanization characterized by a large number of
small towns is conducive to the development of distributed
renewable energy such as wind power and solar photovoltaic po-
wer with little transportation costs. (5) It is imperative to adopt
both economic and administrative environmental regulations to
drive structural transformation in the power industry. Appropriate
environmental regulations, such as emissions trading, resource tax,
and environmental tax, are conducive to suppressing thermal po-
wer capacity, reducing the utilization of high-carbon energy, and
improving renewable electricity technologies.

The regional disparities bring huge challenges to the coordi-
nated development of the renewable power industry in China.
Local conditions should be considered when formulating targeted
policies for improving the generation efficiency of different
renewable sources. It is necessary to improve the deployment of
hydropower and its generation efficiency in Sichuan, Yunnan,
Hubei, and Guangdong. For low-generation efficiency regions, due
attention should be paid to optimize the dispatch and hierarchy of
generation units. Besides, the potential solar power needs to be
tapped, especially in north China where the frontier and potential
solar power are both high. In particular, Inner Mongolia has the
largest frontier wind power, followed by Xinjiang and Hebei.
Therefore, based on the regional characteristics of different energy
types, the individual authority should scientifically plan power
construction and fully exploit the potential of disaggregated
renewable power. The coordinated development of renewable po-
wer is achieving the targets of carbon peak by 2030 and carbon
neutrality by 2060. There is a need to promote the regional allo-
cation, trade, and consumption of renewable electricity with the
interconnection and interoperability of regional power grids.

Given data availability, the study period is up to 2017, which is
expected to be updated in the future. In addition, the research can
be extended to the global scale using county-level data. It is
necessary to consider more input factors, such as labor and total
land area of power plants.
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Appendix A

yi ¼ f ðxi; bÞexpðvi �uiÞ; 0 < ui � 1 (A1)

y*i ¼ f ðxi; bÞexpðviÞ (A2)

s2 ¼s2v þ s2u; g¼ s2u

.�
s2v þ s2u

�
(A3)

TEi ¼
yi
y*i

¼ expð�uiÞ (A4)

Where yi is the actual output of the ith province, y*i indicates the
stochastic frontier output.xi represents the vector of inputs and b

represents the vector of corresponding parameters. ðvi �uiÞ is the
composite disturbance term comprising an idiosyncratic error and
the inefficiency component. vi is the random error term which
represents the random external shocks that may influence the
output, and it follows the iid. Nð0;s2v Þ. vi is independent of the non-
negative technical inefficiency ui which is non-observed. ui may
follow a truncated-normal distribution Nþðm;s2uÞ. The parameter g
represents the proportion of inefficiency term in the composite
disturbance term. TEi denotes technical efficiency, which is
expressed as the ratio of actual output to stochastic frontier output.
In this paper, technical efficiency refers to RPGE. Specifically, TEi is
determined by ui. When ui ¼ 0, then TEi ¼ 1 and there is no
technical inefficiency in the production process, the actual output
can reach the frontier output; when ui >0, then TEi < 1 and there
exists technical inefficiency in the production process, that is, the
actual output level is below the boundary of the production
frontier.
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