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Joint effects of driving factors

Abstract

Understanding the joint effects of earthquakes and driving factors on the spatial
distribution of landslides is helpful for targeted disaster prevention and mitigation in
earthquake-prone areas. By far, little work has been done on this issue. This study
analyzed the co-seismic landslide of the MS 8.0 Wenchuan earthquake in 2008 and
2014. The joint effects and spatiotemporal characteristics of the driving factors in
seismic regions were revealed. Results show that a) between 2008 and 2014, the
dominant driving-factor for landslides has changed from earthquake to rock mass. b)
driving factors with weak driving force have a significant enhancement under the joint
effects of other factors. c) the joint effects of driving factors and earthquake decays
with time. The study concluded that the strong vibration of the Wenchuan earthquake
and the rock mass strength are the biggest contributors to the spatial distribution of
landslides in 2008 and 2014, respectively. It means that the driving force of the
earthquake is weaker than that of the rock mass after six years of the Wenchuan
earthquake. Moreover, the landslide spatial distribution can attribute to the joint
effects of the Wenchuan earthquake and driving factors, and the earthquake have an

enhanced effect on other factors.

Keywords: Geodetector, co-seismic landslide, spatial pattern, triggering factors,

interaction effects, driving force
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Joint effects of driving factors

1 Introduction

Earthquakes are the main triggering factor of landslides (Huang, 2007, Xu and
Xu, 2021). China is an earthquake-prone area, in 2019, there were more than 30
earthquakes of magnitude 5 or above in China (www.cea.gov.cn/cea/index).
Furthermore, China's mountainous area accounts for 69.1% of total land area(Sheng,
1959),the rolling terrain of mountainous area creates a good breeding environment for
the landslide. The combination of frequent earthquakes and mountain topography
provide good prerequisites for landslides, pose a huge threat to the lives and
properties in mountainous areas (Dai et al., 2002, Marano et al., 2010). Understanding
the joint effects of the earthquake and geographical conditions on the spatial
distribution of landslides is helpful for making targeted disaster prevention and
reduction strategies. However, the joint effects have not been fully studied, and the
spatiotemporal characteristics of these joint effects have not been fully revealed.

The spatial distribution of landslides is attributed to many driving factors such as
geomorphology factors, geotechnical properties, and hydrological conditions (Achour
et al., 2017, Hadji et al., 2017, Mahdadi et al., 2018, Anis et al., 2019). These factors
reflect the natural conditions of landslides, and were taken as the basic driving factors
for regional landslide assessment (Fan et al., 2012, Xu et al., 2012, Xu et al., 2012,
Hadji et al., 2013). Many methods have been used to explore the relationship between
driving factors and landslides. For example, correlation matrix, multiple linear and
non-linear regression model, logistic regression, frequency ratio, weights of evidence,
analytic hierarchy process, information value(Hadji et al., 2013, Achour et al., 2017,
Hadji et al., 2017, Karim et al., 2018, Mahdadi et al., 2018, Manchar et al., 2018, Anis
et al., 2019). Besides, machine learning or deep learning methods are also used to
predict the potential for landslides(Lee et al., 2020, Yao et al., 2020), but deep
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learning methods usually are not possible to know the contribution of driving factor
due to the black box algorithms. In these studies, the joint effects of driving factors
are rarely considered. However, landslides are the result of the joint effects of driving
factors (Wang et al., 2018).

In addition to the driving factors that reflect the natural conditions of landslides,
triggering factors are another important factor affecting the spatial distribution of
landslides. Mainly triggering factors include earthquakes (Zhao et al., 2014, Xu C. et
al., 2015, Fan et al., 2019), rainfall (Hadji et al., 2013, Wang et al., 2015,
Vargas-Cuervo et al., 2019), volcanoes (Che et al.,, 2011), and human activities
(Mendes et al., 2018, Persichillo et al., 2018). Driving factors have different effects on
landslides under the influence of different triggering factors (Pantelidis, 2011, Tang,
2015), due to tremendous changes in the environment of geological disasters (Lin et
al., 2004, Lin et al., 2006). Research shown that soft and loose solid material is prone
to mudslides under heavy rainfall (Furuichi et al., 2018), and steep slopes are easier to
collapse and cast under shaking of earthquakes(XU and Huang, 2008). Moreover, the
threshold of rainfall for debris flow decreased in Beichuan and Mianyuan River basin
after the MS 8.0 Wenchuan earthquake (Tang et al., 2009, Yuanjing et al., 2013). That
means the contributions of driving factors were changed under the effect of triggering
factors. It is worth noting that the direct-action time of triggering factors is usually
short, consequently, the joint effect of the triggering factors and the driving factors
also changes with the triggering factors. However, the spatiotemporal characteristics

of these changes were rarely considered.

Two important issues are not addressed well in studying the driving factors of

landslide. First, the joint effects of driving factors are not fully considered. Second,
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the spatiotemporal characteristics of the joint effects are unclear. The aims of this
study are: a) to clarify the joint effects of driving factors and triggering factors on the
spatial distribution of landslides; and b) to reveal the spatiotemporal characteristics of

the joint effects of triggering factors and driving factors after a major earthquake.

2 Data and Methods

2.1 Methods

GeoDetector is a spatial statistical method to measure the spatial stratification
heterogeneous of a geographical phenomenon and to reveal the driving force behind
the geographical phenomenon(Wang and Hu, 2012, Wang et al., 2016). It is widely
used in natural sciences, social sciences, environmental sciences and human health.
The core idea is based on the assumption that if a geographical phenomenon (eg, the
spatial distribution of landslides) is affected by driving factors (eg, rock mass,
earthquake, rainfall), then the spatial stratification heterogeneity of the geographical
phenomenon can be identified by the driving factors or the interactions of the driving
factors(Wang et al., 2010). GeoDetector includes 4 Sub-detectors: factor detector,
interaction detector, risk detector, and ecological detector. The factor detector is
mainly used to detect potential factors that cause a certain geographical phenomenon
(Wang and Xu, 2017). The interaction detector is used to detect the joint effect of
multiple factors on geographical phenomena. The risk detector is used to detect the
risk level of a certain geographical phenomenon in different categories of a driving

factor.
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Joint effects of driving factors

The factor detector was used to detect the driving factors that have a significant
impact on the landslide spatial distribution, and to determine their driving forces (DF).

The principle of the factor detector is as follows:
DF =1-——3%"_ N,o. DF €[0,1] 1)

More detailed of Equation (1) is as follows:

N —
Zruzl:lzj‘:vl/l(]’wi - Vw)z _ SSw

_1_1 ¢m 2 — _ = —
DF =1- gz 2u=1Nwow =1 L -2 SST

)
Where the sum of squares within is

SSW = TR B0, — )’ ©)

and the total sum of squares is

SST = YL@y, — 7)* (4)

Where N is the number of mapping units in the study area (the number of grid or
pixel in the study area). Specifically, taken kernel density map of landslides (KDML)
as the geographical phenomenon, and taken the seismic intensity as a driving factor
(seismic intensity has four categories, and each category corresponds to a level), N is
the number of grid (or pixel) in KDML, N, is the grids (or pixel) number of KDML
within the w-th category of seismic intensity, o2 is the variance of the KDML which
is calculated by formula 4, &2 is the variance of the KDML within the w-th category
of the seismic intensity. y; is the i-th grid (or pixel) value of KDML and y is

average value of the KDML. m is the number of categories of seismic intensity (the
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Joint effects of driving factors
driving factor). y,,is the j-th grid (or pixel) value of the KDML within the w-th
category of seismic intensity, and ¥, is the average value of KDML within the w-th
category of seismic intensity. DF is the driving force of driving factor to the
landslide spatial distribution. 0<DF<I, when DF = 0, which indicates that this
driving factor has nothing to do with the spatial distribution of landslides. The larger

the value of DF is, the stronger the driving force is.

The interaction detector is used to identify the joint effects of two driving
factors. This interaction detector to quantifies the joint effect by combine two driving
factors A and B (e.g., by overlaying geographical layers seismic intensity and rock
mass in GIS to form a new layer C). The attribute of layer C is defined as the
combination of the attributes of layers A and B (Seismic Intensity and Rock Mass).
The driving force (DF) of C is the joint effects of driving factors A and B. therefore,
there are two steps in interaction detector when to calculate the joint effects of driving
factors A and B. First, overlaying A and B to form a new layer C in GIS. Second, take
layer C as the driving factor and take kernel density map of landslides (KDML) as the
geographical phenomenon, then calculate the driving force of C though factor detector

(factor detector was introduced above).

The risk detector is used to detect which categories of the driving factor (eg, )
are at high risk and identifies whether the risk has significant differences among the
categories of factor. The risk can be calculated by the average level within the w-th

category of driving factor, its expression is as follows:
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Vw=—21f )

where y is the value of the KDML, and ¥, is the average value of the KDML
within the w-th category of a driving factor. The significant difference between i-th

and j-th categories can be test by follows:

_ 7w=i_7w=j
t?w:i‘?w:j - B _ 1/, (6)
Var(w=) , Ver(w=))
Nw=i Ny=j

where 7, represents the mean value of KDML within the w-th category of the
driving factor, n,, is the number of grids (or pixel) within the w-th category of
driving factor, and Var represents the variance. Geodetector software and its

principles and detailed tutorials can be downloaded for free at www.geodetector.cn.

2.2 Data

The landslide inventories of 2009 and 2014 in the study area were prepared
through the visual interpretation of remote sensing images and coupled with field
verification, which contain 29210 landslides in 2009 and 4841 landslides in 2014,
respectively. In addition, a total of 8 driving factors were provided by the Institute of
Geology, China Earthquake Administration. Among them, the driving factors include
engineering rock groups, roads, settlements, DEM (Digital Elevation Model), slopes,
and terrain roughness. These driving factors play an important role in the spatial
distribution of landslides(Xu Chong et al., 2015). Triggering factors include

earthquake intensity and precipitation, which are the main causes of landslides in this
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area (Tang et al., 2009, Tang et al., 2011, Chong et al., 2014). The precipitation data

was downloaded from the Data Center of the Chinese Academy of Sciences.

The landslide points in 2009 and 2014 are input into ArcMap to generate a
landslide density map. In addition, the continuous factors (terrain roughness, distance
to road, digital elevation model, slope, and distance to residential area) are reclassified
using the ArcMap's natural breaks method (Fig. 2). Lithology is reflected by rock
mass, and has five classes including harder rock group, hard rock group, soft rock
group, softer rock group, and loose rock group, denoted respectively as A, B, C, D,
and E. The seismic intensity can reflect the strength of the earthquake's impact on
the surface or buildings. The spatial distribution of the seismic intensity in the study
area was divided into 4 levels, according to the national standard GB/T
17742-2008(CEA, 2008),express as 8, 9, 10, and 11, respectively. Finally, each layer
was spatially joined, and its attribute data was exported as the input data of

Geodetector (GeoDetector will be introduced in the method section).

2.3 Study Area

The study area is along with the Duwen Highway in 103°14’' ~ 103°45’E and
30°54" ~ 31°36'N. One of the China's largest urban agglomeration
(Chengdu-Chongging urban agglomeration) is adjacent to this area, which is densely
populated. The area of study area is about 935 km? the Longmenshan fault zone
crosses the study area, indicating an active tectonic setting. On May 12, 2008, the MS

8.0 Wenchuan earthquake (known as the 5.12 Wenchaun earthquake) occurred here.
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The strong shaking loosened the slope structures and reduced resistance to shear stress
in the soil, which increased the susceptibility of landslide. These potential risks
threatened the lives and property in the affected area. Previous studies reported that
secondary hazards in the study area will remain active in the future(Cui et al., 2008).
Therefore, the study area is an ideal place to study the spatiotemporal characteristics
and the joint effects of triggering factors and internal factors after a major earthquake,
and it is valuable reference for the urban agglomerations in mountainous areas to

make targeted planning decisions.

In topography, the study area gradually rises from southeast to northwest, and
transitions from low to medium mountains to high mountains with altitudes from
734m to 5304m. The average slope is 36.4 degrees, and due to the steep terrain,
exposed faces of slopes developed well, prone to geologic hazards such as landslides
and mudslides. The climate of this area belongs to a temperate continental semi-arid
monsoon climate. Due to the large elevation differences, local areas also have obvious
microclimates. The annual average rainfall is between 529 ~ 1332mm, and its spatial
and temporal distribution is uneven. Specifically, the rainfall is concentrated between
May and September, and it in north is relatively higher than that in south. The
Minjiang River is the main drainage in the study area and connects many tributaries.
Precipitation is the main supply of Minjiang River during the flood season, while

groundwater and melting of snow and ice are the main supplies during the dry season.
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In tectonics, the study area lies in the transition zone between the southeastern
margin of the Tibetan Plateau and the western Sichuan Basin. There are three major
fault zones (collectively referred to as the Longmenshan fault zone) that cross the
Duwen Highway in the north-east-south direction. They are the Guanxian-Jiangyou
fault (also known as the Qianshan fault) and the Yingxiu-Beichuan fault (also known
as the central fault) and Maowen fault (also known as Houshan fault). Among them,
the Yingxiu fault is the seismogenic fault of the 2008 MS 8.0 Wenchuan earthquake.
Studies have shown that secondary geological effects in the study area will enter an

active stage of 10-30 years due to the Wenchuan earthquake(Cui et al., 2008).

3 Result

3.1 Changes of landslide density in different categories

The risk levels in categories of a driving factor were calculated though
averaging the value of KDML within each category by risk detector (Fig. 3). From the
perspective of time, the landslide density in 2009 (one year since the MS 8.0
Wenchuan earthquake) was significantly higher than that of 2014 (6 years since the
MS 8.0 Wenchuan earthquake). The decreasing trend of landslide density is consistent
with that of the 2005 Kashmir earthquake (Shafique, 2020). In addition, no matter in
2009 or 2014, the order of categories with high-risk to low-risk is consistent (except
for factor rock mass). For example, the landslide density in categories of DEM order
from high to low in 2009 is: C2> C3> C1> C4 (Fig. 3, rowl; column: 1), consistent

with that of 2014. That means the spatial distribution of landslides were consistent
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with these driving factors. With regards to factor rock mass, landslide density in
Group A is higher than that in Group B in 2009, but the landslides in Group A less
than that in Group B in 2014 (Fig. 3 row: 3, column: 1). According to the thematic
map of the rock mass, it is found that the area of the Group A is very small. Therefore,
when the landslide density in 2014 decreased significantly, there were few landslides

in Group A, which caused the landslide density in the Group A was too low in 2014.

3.2 Changes in driving force

The driving forces of driving factors to the spatial distribution of landslides
were detected by the factor detector (Fig. 4). The driving forces of rock mass,
roughness, slope, DEM, residential area, and road increased in order, and they are
higher in 2014 than in 2009. For the two triggering factors, the driving forces of
seismic intensity and precipitation in 2014 are lower than in 2009. One possible
reason is the rainfall threshold of landslide is lower in 2014, which is consistent with
that the earthquake decreased the rainfall threshold of mudslide(Yu et al., 2021).
Factors with biggest driving forces are rock mass and seismic intensity, and they take
turns to be the dominant factor in 2009 and 2014. That is inconsistent with the
dominant factor of road network in the 2005 Kashmir earthquake induced
landslides(Shafique et al., 2016). That is, the driving force of the MS 8.0 Wenchuan
earthquake on the spatial distribution of landslides has weakened, while that of the

rock mass increased.
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3.3 Changes in the joint effects of driving factors

The joint effects of driving factors were detected by the interaction detector (Fig.
5). Compared with the individual driving force of a driving factor (Fig. 4), the joint
effects have significantly enhanced (Fig. 5). From the perspective of time, except for
the joint effects of DEM and residential area, the joint driving forces of driving
factors in 2014 were stronger than in 2009. Moreover, the joint effects are all higher
than the individual driving forces. Some driving factors with low driving force such as
roughness and slope in Fig. 4, which have a significant enhancement with the joint
effect of rock mass (Fig. 5). The strongest joint effect is the interaction of roads and
rock mass, follow by the interaction of residential and rock mass. That means the
interaction of human activities and geotechnical properties can be one of the main

factors causing landslide.

3.4 Changes in joint effects of triggering and driving factors

The joint effects of triggering and driving factors changed significantly over
time (Fig. 6). As for triggering factor earthquake, the joint effects of earthquake and
driving factors in 2009 were significantly stronger than that of 2014. Moreover, the
joint effects of earthquake and driving factors in 2009 were stronger than that of
precipitation and driving factors. In addition, no matter in 2009 or 2014 the joint
effects of earthquake and rock mass rank the top. That means the MS 8.0 Wenchuan

earthquake is still play an important role in 2014. As for triggering factor precipitation,
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the joint effect of precipitation and rock mass was higher than that of earthquake and
slope in 2014. That means the joint effect of precipitation and rock mass can be one of

the main factors causing landslide in 2014.

4 Discussion

The dominant driving factors changed from earthquake to rock mass after six
years of the MS 8.0 Wenchuan earthquake. In 2009, the first year after the MS 8.0
Wenchuan earthquake, the earthquake has a strong effect on the slope. The driving
force of seismic intensity on the landslide spatial distribution was significantly higher
than that of driving factors. In 2014, the driving force of the earthquake decreased,
and the driving force of the rock mass increased significantly and replaced the
dominant role of earthquake in the spatial distribution of the landslide. Although rock
mass became the dominant factor controlled the spatial distribution of landslides in
2014, the role of the MS8.0 Wenchuan earthquake still cannot be ignored. Because
the driving force of the earthquake was still stronger than that of the other driving
factors except rock mass in 2014, which means the effects of the MS8.0 Wenchuan

earthquake are still strong.

Under the joint effects some factors with weak driving forces have been
significantly enhanced. As for individual driving forces, except for the driving forces
of seismic intensity and rock mass are greater than 0.1, other driving factors are less
than 0.1. When considering the joint effects of driving factors, it is found that except

for the joint forces of SlopeMRoughness is still less than 0.1 (Fig. 5), the driving
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forces of the other driving factors were all significantly enhanced due to the joint
effects and all of them are greater than 0.1. Comparing the joint effects of driving
factors in 2014 and 2009, the joint effects in 2014 are stronger than that of 2009
(except for DEMNResidential), which reflects the fact that driving forces of driving
factors on landslide spatial distribution have strengthened after 6 years of the MS 8.0

Wenchuan earthquake.

Compared with the joint effects among driving factors, there was a bigger
difference in the joint effect between driving factors and earthquake in 2009 and 2014.
The joint effects of earthquake are low in 2014 and high in 2009, but the joint effects
of driving factors (except earthquake) are low in 2009 and high in 2014. It means that
the changes of earthquake play an important role in driving the spatial distribution of
landslides between 2009-2014. In addition, the joint effect of the earthquake is
generally stronger than that of precipitation. It indicates that although 6 years since
the MS 8.0 Wenchuan earthquake, the influence of the earthquake on spatial
distribution of landslides is still higher than that of precipitation. As for the joint
effects of precipitation, it did not have a certain pattern in 2009 and 2014, one
possible reason is the spatial distribution of precipitation are randomly changed in

2009 and 2014.

Limitations exist in this study. First, the method used in this study only
analyzed the driving force or joint effects of driving factors on the spatial distribution

of landslides on a regional scale. When applying the relationship between driving
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factors and landslides in this study on a local scale, it is necessary to combine more
local environmental information for analysis. For example, the regional spatial
distribution of the rainfall can’t fully reflect the local rainfall intensity that may cause
the driving force of intensive rainfall being underestimated. Second, though the
results of two period data have revealed the joint effects and spatiotemporal
characteristics of the landslide driving factors, if more periods of data are included the
more details of spatiotemporal features can be provided. Third, the using kernel
density map of landslide point to represent the spatial pattern of landslide may add
some interpolation error, which may increase the uncertainties of the result. How to

choose a better method to describe the spatial pattern of landslide needs further study.

The relationship between landslides and triggering factors or driving factors at
the regional scale has been explored by many studies, providing insights on how the
driving factors controlled the spatial distribution of landslides. However, few studies
have revealed the joint effects of these factors. In this study, besides the driving forces
of driving and triggering factors were detected, the joint effects of these factors were
also considered. Moreover, the spatiotemporal characteristics of joint effects were
further revealed. These more detailed findings help to develop targeted landslide

prevention strategies.

5 Conclusion

This paper aimed to explore the joint effects and spatiotemporal characteristics

of the driving factors of landslides in the MS8.0 Wenchuan earthquake area. From the
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perspective of time, the landslide density in 2009 was significantly higher than that of
2014, and no matter in 2009 or 2014 the order of high-density to low-density of
categories of each factor is consistent (except for factor rock mass). With regards to
the individual driving force of a driving factor, factors with biggest driving forces in
2009 and 2014 are rock mass and seismic intensity, respectively. As for joint effects
of driving factors, the joint effects of driving factors (except for the joint effects of
DEM and residential area) in 2014 were stronger than in 2009. As for joint effects of
driving factors and earthquake, the joint effects of earthquake and driving factors in
2009 were significantly stronger than that of 2014, and the joint effects of earthquake
and rock mass rank the top. The driving force for the spatial distribution of landslides
has been significantly enhanced under these joint effects. These joint effects and
spatiotemporal characteristics can be used to identify the combinations that with a
significant enhancement effect though comparing the joint effects and individual
driving forces. Therefore, these results are helpful to understand the rules of how an

earthquake action on secondary hazards.
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Table 1. Names, data structures, types, descriptions and factor type of influencing factors.

Data Variable

Variables Name structure type Data description Category
Landslide . The number of landslide points in .
Y Point Polt Frequency each grid in 2009 and 2014. Landslide

Seismic . The seismic intensity of the 2008  Triggering
X1 Intensity Polygon  Discrete MS 8.0 Wenchuan earthquake  factor
Annual average precipitation Triggering

X2 Precipitation Polygon Discrete classification in 2009 and 2014.  factor

X3 Rock Mass ~ Polygon  Discrete The hardness of the rock and soil g:;ltv(; rng
X4 Elevation Raster Continuous Digital elevation model ]I%::'tvol rng
. . . Driving
X5 Roughness Raster Continuous The roughness index of terrain factor
X6 Slope Raster Continuous Extracted from DEM ggt\/c: rng
X7 Road Line Continuous Distance to road Driving
factor
X8 Residential Point Continuous Distance to point Driving
area factor
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Figure legends

Figure 1. Maps showing location of study area and the kernel density of landslide
points in 2009 and 2014.
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Figure 2. Thematic maps of condition factors. (a) Annual average precipitation in
2014, (b) Rock Mass, (c) Digital elevation model, (d) Slope, (e) The seismic intensity
of the MS 8.0 Wenchuan earthquake, (f) The roughness index of terrain, (g) The
distance to road, and (h) the distance to residential area.
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Figure 3. The distribution of landslide density values under different geographic
conditions in 2009 and 2014.
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Figure 4. The driving force of driving factors to the spatial distribution of landslides
in 2009 and 2014.
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Figure 5. The joint effect of driving factors on landslide spatial distribution in
2009 and 2014. (Symbol N represents the joint-effect, e.g ANB represents the
joint effect of A and B)
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Figure 6. The joint effect of driving factor and triggering factor on landslide
spatial distribution in 2009 and 2014. (symbol N represents the joint-effect, e.g
ANB represents the joint effect of A and B)
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