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Highlights 

 Independence and interaction effect of influencing factors of land surface 

temperature (LST) were measured and quantified based on geo-detector. 

 The driving mechanism of time inconsistency between different seasons as 

well as day and night of regional heat island (RHI) was explored based on a 

variety of statistical analysis methods. 

 There were seasonal variations in the influencing factors on LST and time 

inconsistency of RHI. 

Abstract: The urban heat island (UHI) effect is causing a series of environmental, 

energy and health problems. Studies on UHI are on the rise; however, some 

limitations still exist, such as the poor interaction of factors affecting land surface 

temperature (LST) and restriction of linear hypotheses from research method. To 

overcome these problems, we used geo-detector to measure the independent and 

interactive impacts on spatial heterogeneity of LST, and performed Spearman 

correlation, ordinary least-squares regression, all-subsets regression, and hierarchical 

partitioning analysis to explore the driving mechanism of time inconsistency of 

regional heat island (RHI). The results showed the most significant layers affecting 

                                                   
1
 Abbreviations: LST: land surface temperature; RHI: regional heat island; UHI: urban heat 

island. 
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spatial heterogeneity of LST in different seasons were landscape composition and 

biophysical parameters during daytime of relatively hotter seasons, climate conditions 

during winter daytime, climate conditions and biophysical parameters during 

nighttime, respectively. The wetlands proportion and albedo significantly influenced 

the time inconsistency of RHI between day and night. The dominant factors of time 

inconsistency of RHI between seasons were ΔNDVI, Δalbedo, Δalbedo, and 

Δsunshine duration during daytime, and Δsunshine duration, farmland proportion, 

Δair temperature, and forest land proportion during nighttime, respectively. These 

findings contribute to make scientific UHI adaptation strategies and promote 

sustainable development of cities and society. 

Keywords: regional heat island; spatial heterogeneity; time inconsistency; seasonal 

variation 

 

1. Introduction 

 

In 2018, more than 55% of the world's population lived in cities, and this 

proportion is expected to increase to 68% by 2050 (UN, 2018). The rapid and drastic 

urbanization process, especially in developing countries, has greatly accelerated the 

transformation of natural landscape into more impervious surface within the urban 

areas, which, in turn, alters the radiative, thermal, moisture, roughness, and emission 

properties (Mathew et al., 2016). Surface modifications from urbanization have 

resulted in urban heat island (UHI) (Estoque et al., 2017). The urban heat island (UHI) 

effect, defined as the phenomenon that temperature in urban areas is higher than that 

in rural areas (Oke, 1973), has resulted in the intensification of extreme weather 

events (Patz et al., 2005; Zhong et al., 2017), an increase in energy consumption 

(Hirano et al., 2012; Santamouris et al., 2013; Yadav et al., 2017), the deterioration of 

air quality (Stathopoulou et al., 2008; Diem et al., 2017), adverse effects on health, 

and a rise in heat-related deaths (Tan et al., 2010; Heaviside et al., 2016; Arifwidodo 

et al., 2020). Conversely, UHI may have some benefits, including less energy 
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consumption for heating (Sun et al., 2014), improving the outdoor comfort, and 

reducing the road weather hazards (Stewart and Oke, 2012) and cold-weather related 

deaths (Macintyre et al., 2021) in cold climate. Understanding the mechanisms 

influencing land surface temperature (LST) plays an important role in the 

development of UHI adaptation strategies and helps to create eco-friendly and 

environmentally sustainable urban areas. 

UHI research can be divided into three categories: the urban canopy layer (UCL), 

urban boundary layer (UBL), and surface urban heat island (SUHI) (Voogt and Oke, 

2003). The UCL is an atmospheric heat island extending upwards from the surface to 

about mean building height (Voogt and Oke, 2003). The UCL heat island mainly relies 

on data from surface meteorological stations, field measurements, and model 

simulations to evaluate temporal and spatial changes (Ali et al., 2016; Li et al., 2019), 

influencing factors (Kotharkar et al., 2019), and impact on SUHI (Greene et al., 2018). 

However, the poor density induced by the small number of meteorological monitoring 

stations has limited the development of research on UCL. UBL heat island is also one 

of atmospheric heat islands and locates above the UCL (Oke., 1976). The UBL heat 

island is observed by special platforms, such as radiosondes, aircrafts, weather 

stations, and flux towers (Voogt and Oke, 2003). Studies on UBL heat island primarily 

rely on modeling (Oke, 1982), such as the Weather Research and Forecasting (WRF) 

model (Wang et al., 2019) and National Center for Atmospheric Research (NCAR) 

Mesoscale Model (Tong et al., 2005). SUHI is represented by thermal radiance 

received from the remote sensor (Voogt and Oke, 2003). Remote sensing images are 

used to determine LST to quantify the temporal and spatial characteristics (Liu et al., 

2020), influencing factors (Li et al., 2011; Zhou et al., 2014; Peng et al., 2018), and 

mitigation strategies (Deilami et al., 2018). The easy access, wide spatial distribution, 

and significantly high temporal resolution of remote sensing promoted the 

development of research on SUHI (Peng et al., 2018). 

The previously reported influencing factors of LST fall under four categories, 

namely, landscape metrics (Li et al., 2011; Chen et al., 2014; Estoque et al., 2017; Li 
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et al., 2017; Yang et al., 2017), socio-economic indicators [population, gross domestic 

product (GDP), and nighttime lights] (Zhou et al., 2014; Cui et al., 2016; Hu et al., 

2019; Li et al., 2020a), climate conditions (Zhou et al., 2014; Du et al., 2016; Rui et 

al., 2018; Li et al., 2020b), and biophysical parameters (normalized difference 

vegetation index, albedo, and digital elevation model) (Li et al., 2011; Chen et al., 

2012; Zhou et al., 2014; Guo et al., 2015; Li et al., 2020b). 

It is known that LST is influenced by several factors. Numerous statistical 

methods were used to explore the relationship between LST and the influencing 

factors, among which ordinary least-squares (OLS) regression is a common method 

(Deilami et al., 2018; Peng et al., 2018). However, there are still several limitations in 

the previously used methods. First, most of the methods used to investigate LST and 

its influencing factors were based on linear assumptions. It is difficult to detect the 

influence mechanism of LST based on linear assumptions because of the complexity 

of the spatial distribution of LST (Hu et al., 2020). Second, the spatial heterogeneity 

of LST is the outcome of the conjoint effect of various factors instead of being caused 

by a particular influencing factor (Peng et al., 2018). Previous studies have failed to 

solve interactions and collinearity problems among different influencing factors (Peng 

et al., 2012; Zhou et al., 2014; Zhou et al., 2019; Zhou et al., 2020), thus substantially 

hindering insight into the influence mechanism of LST, affecting the accuracy of 

research results and the formulation of UHI mitigation strategies. Third, most 

previous studies have focused on single or several large cities, and LST of urban 

agglomerations is poorly understood (Zhou et al., 2018). Finally, prior studies have 

not been able to incorporate the effects of these types of influencing factors on UHI 

(Peng et al., 2018), and explore the driving mechanism of time inconsistency between 

the UHI in different seasons as well as day and night. 

In this study, RHI is defined as the relatively high LST classification in urban 

agglomeration (Yu et al., 2019). Moreover, time inconsistency of RHI refers to the 

dissimilarity between different seasons as well as night and day—ΔRHI—which is the 

difference between two-time nodes in the same spatial unit. The main purpose of this 
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study is (1) to compare the spatial characteristics of high temperature regions in 

different day and night of seasons based on standard deviation ellipse (2) to explore 

the spatial heterogeneity of LST and interaction of factors influencing LST based on 

the geo-detector (3) to quantify the relationship between the time inconsistency of 

RHI and potential driving factors based on Spearman correlation, ordinary 

least-squares regression, all-subsets regression, and hierarchical partitioning analysis. 

Therefore, this study is expected to provide urban planners and policy makers with the 

basic understanding of the mechanisms that influence LST to develop sustainable 

urban planning and policies to mitigate the effects of UHI. 

 

2. Materials and Methods 

2.1 Study area 

 

The urban agglomeration in the middle reaches of the Yangtze River (UAMRYR) 

is located in the Hubei, Hunan, and Jiangxi provinces in central China 

(110°15-118°29E, 25°59-32°64N), and is a crucial part of the Yangtze River 

Economic Belt in China, including 31 cities (Fig. 1a). As a national urban 

agglomeration formed by Wuhan city circle, urban agglomeration around 

Changzhutan and Poyang Lake urban agglomeration, the UAMRYR covers an area of 

approximately 326,100 km
2
, and the GDP reached 805.7 billion RMB Yuan (Chinese 

currency) in 2018, with a population exceeding 125 million in 2018 (Dai et al., 2020). 

The UAMRYR has a subtropical monsoon climate with abundant rainfall and 

sunshine. Terrain is generally low in the middle and high all around, and water 

resources are abundant (Chen et al., 2019), including the Yangtze River, Dongting 

Lake, and Poyang Lake. Fig. 1b showed land cover of the study area in 2010. 
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Fig. 1 Location and land cover of the study area. 

Note: a is location map of the study area, and b is the land cover map of the study 

area. 
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2.2 Multi-source data 

 

The following data were used to examine the interrelation between impact 

factors and LST in this study: 

1. The LST was derived from the China 1-km LST monthly synthetic product 

(MYDLT1M, Terra) in 2010. The dataset covers all the land boundaries of China and 

was synthesized from a reliable and cloudless MOD11A1 dataset using the average 

value method. The missing value in the dataset was filled by the average value of the 

data in the nearby one to two years. The data was extracted from the geospatial data 

cloud of the Computer Network Information Center of The Chinese Academy of 

Sciences (http://www.gscloud.cn/). 

2. Land use and land cover (LULC) products were come from ―China Cover 

2010‖ dataset, which was interpreted using the object-oriented method at a spatial 

resolution of 30 m in 2010. The dataset was divided into six categories: (1) forest land 

(including broad-leaved forest, coniferous forest, mixed forest, shrub forest, garden), 

(2) grassland, (3) wetlands (including forest wetlands, shrub wetlands, herb wetlands, 

lake, river), (4) farmland (including paddy field and dry land), (5) artificial surface 

(residential land, industrial land, traffic land, quarry), and (6) other land (sparse 

woodland, sparse shrub, sparse grass, bare land, sand land, saline land, glacier, moss). 

The overall accuracy of the dataset was 91% (Wu et al., 2014; Lei et al., 2014; Zhang 

et al., 2014). The LULC types of forest land, grassland, wetlands, farmland and 

artificial land were selected for this study. The dataset was obtained from the National 

Science and Technology infrastructure platform, National Earth System Science Data 

Center (http://www.geodata.cn).  

3. Climate conditions data were obtained from the monthly dataset of surface 

climate data in China. We selected meteorological stations from Hubei, Hunan, 

Jiangxi, and the nine surrounding provinces and used the cokriging method to 

interpolate the monthly meteorological data. Then, the seasonal data were calculated 

based on the monthly meteorological data. The dataset was derived from the China 
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Meteorological Data Network (http://data.cma.cn/). The spatial distribution of 

meteorological stations in study areas is shown in Fig A.1.  

4. Population data were obtained from the Gridded Population of the World 

Version 4 (GPWv4) dataset (https://sedac.ciesin.columbia.edu/) in 2010 at 30 

arc-seconds output resolution. 

5. GDP data were derived from the grid data set of China's GDP spatial 

distribution kilometers in 2010 at 1 km spatial resolution, supported by the Resource 

and Environment Science and Data Center (http://www.resdc.cn/). The value of each 

grid in the GDP dataset was the sum of GDP per square kilometer. 

6. Nighttime light was used to monitor and evaluate social economy and 

urbanization dynamics (Zhang et al.,2011; Hu et al., 2020), as it is often considered to 

be one of the social economic indexes that influence LST (Peng et al., 2018). 

Nighttime light data were obtained from DMSP-OLS nighttime light in 2010 at 30 

arc-seconds spatial resolution, provided by National Centers for Environmental 

Information (http://www.ngdc.noaa.gov/). 

7. Albedo reflects solar radiation and surface heat storage (Peng et al., 2012), and 

is significantly associated with LST (Yao et al., 2018). Albedo data were derived from 

albedo product in the GLASS dataset in 2010, which is synthesized based on the daily 

resolution of MOD09GA (Terra) and MYD09GA (Aqua) after filtering and filling at 1 

km spatial resolution. The albedo product of GLASS dataset can capture the variation 

of surface albedo better than MODIS (Liu et al., 2013), provided by the National 

Science and technology infrastructure platform, National Earth System Science Data 

Center (http://www.geodata.cn). 

8. DEM describes the topography and elevation of study area and has a 

significant correlation with LST (Li et al., 2017; Li et al., 2020b). DEM were obtained 

from SRTM-DEM data at 90 m spatial resolution, supported by the Resource and 

Environment Science and Data Center (http://www.resdc.cn/). 

9. NDVI reflects the state of vegetation coverage and is significantly correlated 

with LST (Yadav et al., 2014; Peng et al., 2018). NDVI were extracted from the 
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MODIS NDVI product (MYD11A3) in 2010, and the product was synthesized 

monthly by the U.S. Geological Survey at 1 km spatial resolution 

(https://e4ftl01.cr.usgs.gov/). 

 

2.3 Determination of influencing factors 

 

Five layers, including landscape composition, landscape configuration, 

biophysical parameters, social economy, and climate conditions were selected as 

influencing factors (Table 1). A large number of studies showed that landscape 

composition and landscape configuration had significant impact on LST. Therefore, 

based on previous research (Zhou et al., 2011; Zhang et al., 2015; Peng et al., 2018), 

five landscape composition and four landscape configuration indexes were commonly 

used in this study. The five landscape composition indicators are percentages of forest 

land, grassland, wetlands, farmland, and artificial surface, respectively. The four 

landscape configuration metrics included the largest patch index (LPI), mean shape 

index distribution (SHAPE_MN), patch density (PD), and Shannon's diversity index 

(SHDI). The NDVI (Peng et al., 2018), albedo (Peng et al., 2012; Zhou et al., 2014), 

and DEM (Chen et al., 2012) in the surface biophysical parameters are often 

considered as influencing factors of LST. Socio-economic indicators included 

population (POP), GDP, and nighttime light (NL). Climate conditions factors also 

substantially explain the spatial heterogeneity of the UHI (Yao et al., 2018; Manoli et 

al., 2019). Therefore, seasonally mean air temperature, seasonally mean air relative 

humidity, seasonally mean rainfall, seasonally mean sunshine duration, and seasonally 

mean wind speed were considered as climate conditions factors in this study. Table 

A.1 lists the selected literature sources on the influencing factors of LST. 

Table 1. Influencing factors of LST used in this study. 

Categories of 

variables 
Variables Meaning of variables 

Landscape PD Density of the landscape patches in grid 
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configuration LPI Largest patch index of the landscape in grid 

SHDI Shannon diversity index of landscape in grid 

SHAPE Mean shape index distribution of the landscape in 

grid 

Landscape 

composition 

FL Percentage of forest land in grid 

GL Percentage of grassland in grid 

WL Percentage of wetlands in grid 

F Percentage of farmland in grid 

AL Percentage of artificial surface in grid 

Social economy 

POP Mean value of POP in grid 

GDP Mean value of GDP in grid 

NL Mean value of nighttime light in grid 

Climate conditions 

Air Mean value of air temperature in grid  

Hum Mean value of air relative humidity in grid  

Rain Mean value of rainfall in grid  

Sun Mean value of sunshine duration in grid  

Wind Mean value of wind speed in grid  

Biophysical 

parameters 

Albedo Mean value of albedo in grid 

NDVI Mean value of NDVI in grid  

DEM Mean value of DEM in grid 

 

2.4 Delineation of seasons 

 

The UAMRYR is located in a subtropical monsoon zone. We selected 

temperature and precipitation levels from meteorological stations positioned at a 

median elevation in different climate regionalization to divide the seasons. First, the 

monthly datasets from surface cumulative annuals in China (1981–2010) were 

collected. Following this, the meteorological stations in the study area were divided 

into two categories, namely, the north and middle subtropical zone, based on the 
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classification of climate regionalization (Fig A.2) by the National Meteorological 

Administration of China (supported by the Resource and Environment Science and 

Data Center (http://www.resdc.cn/). The meteorological stations positioned at a 

median elevation were used to describe different the regional climate characteristics. 

Fig. 2 showed that the temperature and precipitation at the meteorological stations in 

different climatic regions were similar, with the temperature peaking in July, and then 

gradually decreasing, with the precipitation peaking in June, and then gradually 

decreasing. January, February, and December had the lowest temperatures and were, 

therefore, referred to as winter. March, April, and May were determined to be spring, 

and September, October, and November referred to as autumn. June, July, and August 

were the hottest months of the years and were, thus, determined to be summer. 

 

Fig. 2 Temperature and precipitation of the cumulative annuals monthly mean: 

a) the middle subtropical zone, b) the north subtropical zone. 

 

2.5 Direction and distribution of LST 

 

The standard deviation ellipse (SDE), as a directional distribution analysis 

method, depicts the spatial characteristics of geographic elements (central trend, 

dispersion, and directional trend) based on the average center of discrete points and 

the standard distance of other points away from the average center. The SDE is 

calculated as follows:  

𝑆𝐷𝐸𝑥 = √∑ (𝑥𝑖−𝑋)
2𝑛

𝑖=1

𝑛
 and 𝑆𝐷𝐸𝑦 = √

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

𝑛
, 
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where    and    are the coordinates of gridi,   and  ̅ represent the average 

central coordinate of UAMRYR, and n is the total number of grids. 

The SDE has been used in the past to analyze the temporal and spatial 

characteristics of annual PM2.5 concentration (Peng et al., 2016; Shi et al., 2018b), 

vegetation cover (Yuan et al., 2020), and other geographical elements.  

The standard deviation classification method with an interval of 1.0 was used to 

divide the LST intensity into five classifications (Firozjaei et al.,2018; Yang et al., 

2019; Firozjaei et al., 2020), namely, low, sub-low, medium, sub-high, and high (Table 

A.2). RHI was characterized by five classifications of LST. The SDE method was 

used to quantify the spatial characteristics of sub-high and high categories in different 

seasons. 

 

2.6 Geo-detector model 

 

Geo-detector, a statistical analysis method for detecting spatially stratified 

heterogeneity, can be used to overcome the problem of the linear hypotheses and 

collinearity (Wang et al., 2017), and it can detect the explanatory power of 

geographical phenomena between two factors. Geo-detector has been widely used in 

the driving force analysis of population distribution (Wang et al., 2018c), health risk 

assessment (Wang et al., 2010), air pollution (Bai et al., 2019), groundwater pollution 

(Zhu et al., 2019), heavy metal risk (Shi et al., 2018a; Wang et al., 2018b), ecosystem 

services (Chen et al., 2020), and urban forests (Duan et al., 2020). Factor and 

interaction detectors were used to analyze the association between LST and the 

influencing factors based on a 3000 × 3000m grid. 

  

2.6.1 Factor detection 

 

Factor detection was mainly used to detect the extent to which the influencing 

factor explains the spatial heterogeneity of LST. It is measured by the q value via the 
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following formula: 

𝑞 = 1 −
∑ 𝑁ℎ𝜎ℎ

2𝐿
ℎ=1

𝑁𝜎2 =1−
𝑆𝑆𝑊

𝑆𝑆𝑇
 

𝑆𝑆𝑊 = ∑ 𝑁ℎ𝜎ℎ
2𝐿

ℎ=1 ,𝑆𝑆𝑇 = 𝑁𝜎2 

where, L is the stratification of variable LST or factor X, that is, classification; 

Nh and N are the number of layers, h and the entire area, respectively; 𝜎ℎ
2 and  𝜎2, 

are the variances of layer h and the entire area Y, respectively; SSW and SST are the 

sum of intra-layer variance and the total variance of the entire area, respectively; and 

the range of q is [0,1]. The larger the value of q, the greater the interpretation of LST 

by the impact factor X, and the value of q indicates that the impact factor X explains 

100*q% of the spatial heterogeneity of LST. 

 

2.6.2 Interaction detector 

 

Interaction detection was used to quantify the explanatory power of X1 and X2 on 

the spatial heterogeneity of LST. Similar to factor detection, interactive detection is 

measured by the q value and q ∈ [0,1]. The larger the q value, the greater the 

explanatory capacity on the spatial heterogeneity of LST. 

 

2.7 Data discretization 

 

The geo-detector model is mainly concerned with models of spatial heterogeneity, 

and the independent variables of the model need to be discretized into type variables. 

However, it is difficult to select the number of categories: excessive classifications are 

superfluous, whereas few classifications cannot reflect the abundance and diversity of 

variables. Based on the related study by Cao et al. (2015), a discretization scheme 

with the largest q value was conducted. Several common discretization methods were 

used for discrete independent variables, such as natural breakpoint, geometric interval, 

equal interval, and quantile. Several indicators (NDVI, NL, FL, WL, AL, POP, GDP, 

and Sun) were used to judge the q value of each method in July (Fig A.3). Finally, the 
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quantile method was used in this study and divided into 10 grades. 

 

2.8 Potential driving forces of time inconsistency of RHI 

 

Time inconsistency refers to the dissimilarity of RHI from the same spatial units 

in different seasons as well as day and night. A variety of statistical analysis methods 

was used to identify the relationship between ΔRHI and potential driving forces. First, 

a Spearman correlation analysis was performed to quantify the correlation between 17 

influencing factors (Table 1) and ΔRHI. Second, candidate factors that passed the 

significance test in the OLS coefficients at the 0.05 level were identified. All-subset 

regression was conducted to select the significant driving factors in the model with the 

highest adjusted R
2
. Finally, based on the ―hier.part‖ package of R, hierarchical 

partitioning (HP) was conducted to identify the independent effects of the significant 

driving factors on ΔRHI. Compared with the traditional regression analysis methods, 

the HP analysis is not affected by multicollinearity; therefore, it is favorable for 

multi-dimensional environmental data analysis (Peng et al., 2018).  

 

3. Results 

3.1 Spatiotemporal pattern of LST in different seasons  

 

LST in different seasons exhibited similar patterns (Fig. 3). During daytime, the 

LST generally exhibited a low north and high south distribution patterns. The 

low-temperature areas were mainly distributed in the northwest of the UAMRYR, 

near the high-altitude areas of Shennongjia and Enshi and around the Yangtze River. 

Meanwhile, the high-temperature areas were mainly concentrated over the urban 

agglomeration in the south. The temperature in the northwestern part of the urban 

agglomeration was lower at night, which was similar to that during daytime. However, 

the area near the Yangtze River did not show obvious low-temperature areas 

compared with that during daytime, which may be attributable to the larger specific 
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heat capacity of water. The box plots in Fig. 4 depict the distribution characteristics of 

LST in day and night at seasonal level. 

The spatial and temporal patterns in the high-temperature region of the LST were 

evaluated using SDE. The results of SDE showed that the average centers of day and 

night in different seasons were located in the central and southern parts of the study 

areas (Fig. 5), but the average centers and direction distribution parameters of seasons 

still varied (Table 2). During daytime of different seasons, the center of high 

temperature areas (average center) gradually moved from the east of Changsha in 

spring to the southeast of Yueyang (offset by 68.53km) in summer, and then moved to 

the south by 31.34 km in autumn, and finally moved to the northwest of Yichun City 

in winter (offset by 102.40km). The annual average center during the day was in the 

east of Changsha. During nighttime of different seasons, the center of the high 

temperature areas shifted from the southeast of Yueyang in spring to the north in 

summer by 67.40 km, then shifted to the northwest of Yichun City along the southeast 

direction in autumn (offset by 73.27 km), and finally shifted to the south by 105.83 

km in winter. The annual average center during the nighttime was east of Changsha. 

The spatial distribution trend of the high-temperature areas was determined using 

the major and minor axes of the SDE. The SDE results showed that the parameters of 

SDE in the high-temperature region change constantly in the day and night of 

different seasons, which indicated the irregularity in the seasonal variation of the 

high-temperature region. From the daytime of spring to the daytime of summer, the 

major axis and minor axis of the ellipse increased, and the ellipse tended to expand, 

suggesting that the high-temperature areas in the outer edge of the ellipse grew faster 

than that at the center of the ellipse. From the daytime of summer to the daytime of 

autumn, the shortening of the major and minor axes of the ellipse and the shrinking of 

the ellipse indicated that the growth rate of high-temperature areas at the center of the 

ellipse increased faster than that outside the ellipse. From the daytime of autumn to 

the daytime of winter, the shortening of the major axis and lengthening of the minor 

axis illustrated that the growth rate in the east–west direction was faster than that in 
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the north–south direction. From the nighttime of spring to that of summer, the 

nighttime of summer to that of autumn, and the nighttime of autumn to that of winter, 

the shortening of the minor axis and the lengthening of the major axis indicated the 

growth rate of high-temperature areas from the north–south direction and was 

significantly higher than that from the east–west direction.  

The changing trend of the spatial direction of the high-temperature areas was 

reflected by the azimuth of the major axis of the ellipse. During the day of spring, 

summer, autumn, and winter, the azimuth of the major axis of the ellipse first 

increased from spring to summer, reached its peak in summer, and then gradually 

decreased in autumn and winter. This indicated that from spring to summer, the 

southeast of the UAMRYR was more influential in the high temperature areas, while 

in autumn and winter, the northeast of the UAMRYR had greater influence on the 

high-temperature area. During the nighttime of spring, summer, autumn, and winter, 

the azimuth increased from spring to summer, and then decreased to the lowest point 

in autumn, and finally increased in winter. This meant that from spring to summer, the 

influence of the southeast of the UAMRYR on the high-temperature area increased, 

and then the influence of the northeast on the high-temperature area gradually 

increased in autumn, and the influence of the southeast on the high-temperature area 

increased in winter. 
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Fig. 3 Seasonal spatial variability of LST in the UAMRYR. 
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Fig. 4 Box plots of the LST in the day and night at seasonal level. 

Note: The red lines represent the median values, whereas the blue whiskers are 

interquartile range of 1.5 times. 
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Fig. 5 Result of the standard deviation ellipse of high-temperature areas (high, 

sub-high) in the day and night of different seasons. 

 

Table 2 The parameters of SDE of high temperature areas (high, sub-high) in the day 

and night of different seasons. 
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Time Short axis (X) 

(km) 

Long axis (Y) 

(km) 

Rotation 

Spring_Day 223.24 194.81 115.70 

Summer_Day 285.87 214.16 139.58 

Autumn_Day 254.60 211.68 138.85 

Winter_Day 260.32 188.03 94.75 

Annual_Day 258.55 207.58 121.39 

Spring_Night 236.37 167.81 98.25 

Summer_Night 228.56 198.83 128.30 

Autumn_Night 180.88 235.74 78.38 

Winter_Night 164.45 261.11 89.58 

Annual_Night 184.29 233.68 88.94 

 

3.2. Dominant impact factors of LST in different seasons 

 

The spatial heterogeneity of LST in different seasons was analyzed using the 

factor detector in geo-detector and the potential influencing factors in day and night of 

different seasons were used for comparison. The results showed significant 

differences in the potential impact factors in day and night of different seasons. Fig. 6 

showed the calculation results of the q value for the day and night of each season. 

Most factors passed the significance test at a significance level of 0.01 except for GL. 

The q values of the landscape composition and biophysical parameters were relatively 

high during the daytime of the hot season (spring, summer and autumn) and annual, 

whereas the q values of the climate conditions layer were dominant during the 

daytime of the winter. The climate conditions layer during the nighttime of spring, 

autumn, winter, and annual showed a higher q value than other layers, whereas during 

the nighttime of the summer, biophysical parameters and landscape composition were 

the primary. More specifically, during the daytime of spring, summer, autumn, winter, 

and annual, the dominant factors that explained the spatial heterogeneity of LST 
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ranked as follows: DEM (0.29), DEM (0.43), DEM (0.57), Air (0.38), and DEM 

(0.48), whereas Rain (0.42), DEM (0.68), DEM (0.32), Air (0.55), and Air (0.41) were 

highest q value during the nighttime of spring, summer, autumn, winter and annual. 

Understanding the spatial heterogeneity of LST from different seasons is beneficial to 

urban planning. 
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Fig. 6 q values of impact factors in different season.  

Note: a, b, c, d, e represent spring, summer, autumn, winter and annual, respectively. *, 

and ** denote that q value is significant at levels of 0.05 (p<0.05), 0.01 (p<0.01), 
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respectively. 

 

3.3 Interaction between the impact factors of LST in different seasons 

 

The interaction between the two influencing factors in different seasons was 

compared using the interaction detector in the geo-detector model. The influencing 

factors of different layers were used to analyze their interaction. In addition, the 

interaction q value of the same influencing factor does not change compared with a 

single q value. Finally, twenty interaction factors were used to quantify the interaction 

between the influencing factors. The results of the interaction detector showed that the 

interaction varied greatly in different seasons (Fig. 7). Specifically, during daytime of 

spring, summer, autumn, winter and annual, the interaction q values with higher 

explanation capacity of the spatial heterogeneity of LST were as follows: F ∩ Sun 

(0.48) > DEM ∩ Rain (0.47) > DEM ∩ Sun (0.46), DEM ∩ NDVI (0.55) > WL ∩ 

NDVI (0.53) > DEM ∩ Rain (0.51), DEM ∩ Sun (0.70) > NDVI ∩ Air (0.66) > 

NDVI ∩ DEM (0.64), DEM ∩ Air (0.69) > albedo ∩ Air (0.66) > Air ∩ F (0.65), Air 

∩ NDVI (0.64) > Sun  ∩ DEM (0.64) > Air ∩ DEM (0.61). During nighttime of 

spring, summer, autumn, winter and annual, the dominant interaction factors and q 

values of LST were as follows: DEM ∩ Air (0.60) > Air ∩ Rain (0.59) > Rain ∩ Sun 

(0.58), Wind ∩ DEM (0.75) > DEM ∩ Sun (0.74)> DEM ∩ Rain (0.72), Air ∩ WL 

(0.55) > DEM ∩ Air (0.54) > NDVI ∩ Air (0.51), Sun ∩ Air (0.65) > F ∩ Air (0.63) > 

Rain ∩ Air(0.62), DEM ∩ Air (0.61) > NDVI ∩ Air (0.60) > Air ∩ WL (0.60). 
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Fig. 7 Interaction between the factors influencing LST in different seasons. 

Note: a-j represent spring day, spring night, summer day, summer night, autumn day, 

autumn night, winter day, winter night, annual day and annual night, respectively. 

 

3.4 Analysis of potential drivers of ΔRHI  
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We selected 20 metrics (Table 1) as driving factors. The seasonal variables, 

namely, Air, Hum, Sun, Wind, albedo, and NDVI, were replaced with ΔAir, ΔHum, 

ΔSun, ΔWind, Δalbedo, and ΔNDVI, respectively. ΔRHI was regarded as the 

dependent variable. The heat map was used to show the strength of the correlations 

between the driving factors and ΔRHI. The correlations significantly changed with 

seasonality and day-night differences in terms of which driving factors and how 

strongly were they correlated with ΔRHI (Fig 8). Most driving factors were 

statistically significant (p < 0.01). In many cases, albedo (Δalbedo) showed a 

dominant and negative correlation with ΔRHI. Moreover, LPI, Air, and Rain were 

positively correlated with ΔRHI between day and night, whereas SHAPE, SHDI, PD, 

and AL were negatively correlated with ΔRHI. FL, DEM, and Δ Air showed a 

relatively higher and positive coefficient in the ΔRHI of autumn–winter, whereas NL 

was negatively correlated with ΔRHI. DEM, ΔWind, and ΔSun showed a relatively 

high and negative correlation with the ΔRHI of spring–summer, whereas ΔHum 

showed a high and positive correlation with ΔRHI. 

The OLS regression was used to select significant driving factors of ΔRHI, and 

then the driving factors that passed the significance test (P < 0.05) were put into the 

all-subset regression. Then, the optimal model (Table A.3, Table A.4, Table A.5) was 

obtained based on the adjusted R
2
 test of models. Finally, the independent 

contribution rate of different influencing factors to ΔRHI was quantified using HP 

analysis. 

The results of HP analysis (Fig. 9a) showed that WL and albedo had a strong 

ability to explain ΔRHI between day and night. Specifically, WL (43.37%) and 

albedo (21.36%) were the dominant driving factors in spring; WL (63.59%) had the 

largest independent contribution rate to ΔRHI in summer. Albedo and WL were the 

most important factors, independently contributing 37.82% and 30.77%, respectively; 

albedo (33.05%), DEM (22.95%) made larger independent contributions to ΔRHI; 

WL (43.03%) and albedo (28.78%) had a higher annual contribution rate. The 
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independent contribution rate of WL to ΔRHI increased first and then decreased with 

the change in temperature during the four seasons. In the season of higher 

temperature, the effect of WL on ΔRHI was dominant, but the influence of WL on 

ΔRHI declined as temperature decreased, which complicated the driving mechanism 

of ΔRHI. Albedo initially exhibited an increasing trend and then decreased in spring, 

autumn, and winter. 

The results of the HP analysis indicated significant differences among the 

dominant driving factors of ΔRHI during the day of all seasons (Fig. 9b). ΔNDVI, 

ΔWind, and ΔSun were the dominant factors with higher contribution rates to ΔRHI 

between the day of spring and summer, independently contributing 21.20%, 19.53%, 

and 19.49%, respectively; Δalbedo (26.89%), ΔSun (23.68%), and ΔHum (16.37%) 

showed strong ability to explain ΔRHI between the day of summer and autumn; 

Δalbedo (23.86%), NL (16.94%), ΔRain (15.92%) made larger independent 

contributions to ΔRHI between the day of autumn and winter; ΔSun (52.08%), 

NL(12.10%), ΔAir (11.51%) had a higher contribution rate to ΔRHI between the day 

of winter and spring.  

The results of the HP analysis showed significant differences among the 

dominant factor of ΔRHI during nighttime in all seasons (Fig. 9c). ΔSun, F, and 

ΔHum were the dominant factors with higher independent contribution rates to ΔRHI 

between spring and summer at night, contributing 25.69%, 20.95%, and 18.16%, 

respectively. F (47.25%), ΔNDVI (14.07%), and ΔHum (13.60%) had a larger 

independent contribution rate to ΔRHI between the night of summer and autumn; 

ΔAir (28.21%), DEM (27.54%), and Δalbedo (11.99%) made larger independent 

contributions to ΔRHI between the night of autumn and winter; FL (21.27%), ΔSun 

(15.81%), and Δalbedo (15.23%) showed a strong ability to explain ΔRHI between 

the night of winter and spring. 
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Fig. 8 Correlation matrix between time (seasons as well as day and night) 

inconsistency of RHI and influence factors. 

Note: a represents the correlation matrix of time inconsistency of RHI between day 

and night, b represents the correlation matrix of the time inconsistency of RHI during 

daytime of different seasons, and c represents the correlation matrix of the time 

inconsistency of RHI during nighttime of different seasons. * meant P < 0.05, and ** 

meant P < 0.01. 
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Fig. 9 Hierarchical partitioning analysis results for different time inconsistency. 

Note: a represents the independent contribution rate of driving factor to time 

inconsistency between day and night; b represents the independent contribution rate of 

driving factor to time inconsistency between the day of seasons; c represents the 

independent contribution rate of driving factor to time inconsistency between the 

night of seasons. 

 

4. Discussion 

 

This study has contributed to research on UHI in several ways. First, an urban 

agglomeration, a form of spatial organization for the coordinated development of 

cities, emphasizes the connection between cities, and is one of the main trends in 

global development. We selected UAMRYR as an example, studied the spatial 

heterogeneity of LST and revealed the driving mechanism behind the time 

inconsistency of RHI. Second, a wide range of influencing factors from five layers 

were selected for a comprehensive investigation. Third, an independent and 

multi-factor interaction explanation on spatial heterogeneity of LST was detected 

without limitation of linear hypothesis and collinearity problems. 

 

4.1 Seasonal variation of factors influencing on LST 

 

Generally, the interpretation rate of the landscape composition and biophysical 

parameters layers were higher during the daytime of relatively high temperature 

seasons (spring, summer, and autumn) and annual. The climate conditions layer 

exhibited a higher interpretation rate during the daytime of winter, and the climate 

conditions layer and biophysical parameters layer could better explain LST at night 

comprehensively. Our results showed that landscape configuration on LST varied 

seasonally. The interpretation rate of PD, LPI, and SHDI in the landscape 

configuration was relatively stable in the season with higher temperature, while the of 
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SHAPE_MN in the entire year yielded a relatively weak interpretation rate. Compared 

with the landscape composition, the impact of landscape configuration on LST is 

limited, as previously reported (Chen et al., 2014; Li et al., 2017; Zhou et al., 2019). 

There were also significant seasonal variations in the landscape composition layer, 

and the overall trend appeared to increase from spring to summer and then fall to the 

lowest level in winter. During daytime of seasons with higher temperature and 

nighttime of summer, landscape composition had a relatively higher interpretation rate 

for LST compared to landscape configuration and climate conditions, whereas 

landscape composition in summer night could better explain the spatial variation of 

LST compared with summer day. Previous studies have shown that blue-green spaces 

reduced LST (Zhou et al., 2011). The forest land not only increases the latent heat flux 

through transpiration, thereby decreasing LST (Zhou et al., 2014), but also provides 

additional cooling by shading to block solar radiation. In this study, the proportion of 

forest land had a significant impact on LST in summer, which is consistent with the 

results of previous studies (Zhou et al., 2011; Zhou et al., 2014). The proportion of 

wetlands presented a relatively stable interpretation rate for LST during daytime, 

while during the nighttime of summer and autumn, the interpretation rate increased 

significantly. This was consistent with the results of certain studies (Hu et al., 2020), 

but incompatible with those of other studies (Peng et al., 2018), possibly owing to the 

number of wetlands in the study areas. The results of this study also showed that the 

proportion of forest land throughout summer could better explain the spatial 

heterogeneity of LST than the proportion of wetlands during nighttime, while the 

proportion of wetlands during the nighttime of spring, autumn, and annual had a 

stronger interpretation rate than forest land. This indicated that increasing the 

proportion of forest land during daytime of all seasons and nighttime of summer is 

one of the better effective ways of mitigating UHI compared with increasing the 

proportion of wetlands. The explanatory ability of the proportion of farmland was 

relatively higher during daytime of the higher temperature seasons because of the 

large extent of farmland and irrigation in UAMRYR (Yang et al., 2020). The 
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differences among various crops requiring water via irrigation probably result in the 

spatial heterogeneity of LST. The proportion of artificial land during the daytime of 

summer and annual showed robust capacity to explain LST variation, which was 

consistent with the inference made by previous studies stating that the higher the 

artificial land proportion, the stronger the effect of UHI in summer (Zhou et al., 2014; 

Peng et al., 2018). In seasons with relatively higher temperatures, the influence of the 

social economy layer on LST cannot be disregarded. The population could adequately 

explain the spatial variation of LST during the daytime of seasons with relatively 

higher temperature and annual, while GDP showed robust capacity to explain LST 

variations during nighttime of seasons with relatively higher temperatures, indicating 

that regulating population size and GDP structure may contribute to mitigating UHI 

(Li et al., 2020c). In contrast with previous studies, the interpretation rate of nighttime 

light was relatively low, because most previous studies describe UHI based on 

urban-rural differences rather than pixels with a great difference in nighttime light 

values between urban and rural areas. The interpretation rate of the climate conditions 

layer significantly influenced LST during daytime of winter, and the nighttime of 

spring, autumn, winter, and annual. Specifically, air temperature, air relative humidity, 

and rainfall showed robust capacity to explain the spatial heterogeneity of LST during 

the daytime of winter. The explanatory capacity of air temperature, air relative 

humidity, rainfall, and sunshine duration on LST variation was higher during the 

nighttime of spring and winter. The spatial variation of LST during the nighttime of 

annual can be adequately explained by air temperature, air relative humidity, and 

rainfall. Air temperature and LST were consistent, which may be because the long 

wave radiation released by the land surface affects the air temperature (Wang et al., 

2020), and reducing air temperature and sunshine duration could decrease the 

evaporation of soil water (Yao et al., 2018). Rainfall is often accompanied by clouds 

blocking solar radiation, which mitigates LST, and other studies have shown that 

rainfall altered soil moisture: high rainfall could increase soil moisture, and low 

rainfall could negatively impact plants, thus affecting mitigation of vegetation on LST 
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(Yang et al., 2020). High wind speed can mitigate UHI by accelerating temperature 

exchange (Du et al., 2016; Zhou et al., 2018; Hu et al., 2019). High air relative 

humidity could also lead to low heat island intensity. The explanatory capacity of the 

biophysical parameters layer on LST varies seasonally. Except during the nighttime of 

winter, DEM had a higher interpretation rate of LST, which indicated that it was not 

beneficial to urban construction in the areas with higher DEM accompanied by lower 

intensity of human activities and higher vegetation coverage (Gong et al., 2011; Chen 

et al., 2012). The interpretation of NDVI showed a robust explanatory capacity in the 

relatively high temperature seasons (summer and autumn) and in the highest 

temperature season (summer), which was consistent with the results of previous 

studies (Peng et al., 2018). The albedo could well explain spatial variation of LST, 

which is owing to more low-reflective heat radiation to suppress UHI. Seasonal 

variations of driving forces on LST require various mitigation measures. 

 

4.2 The driving mechanism of time inconsistency of RHI 

 

This study showed that the ΔRHI between day and night was mainly attributable 

to the proportion of wetlands and albedo. UHI at night results from the surface heat 

flux generated during the daytime (Zhou et al., 2014), and albedo possibly influences 

the heat absorption capacity of the surface, resulting in time inconsistency of RHI 

between day and night. The specific heat capacity of the water body in the wetlands is 

larger and the cooling rate is slower, which may lead to the transformation of RHI 

between day and night.  

ΔAlbedo showed robust capacity to explain the time inconsistency between the 

day of summer and autumn, autumn and winter by reflecting solar heat to relieve UHI 

(Deilami et al., 2018). ΔNDVI could explain the time inconsistency between the day 

of spring and summer, which indicated that the changes in NDVI represent one of the 

main ways of alleviating UHI. The explanatory capacity of ΔSun on ΔRHI between 

the day of summer and autumn, the day of winter and spring, the night of spring and 
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summer was higher. Sunshine duration affects the total amount of solar radiation, and 

solar radiation can promote UHI (Zhou et al., 2014), leading to time inconsistency 

between seasons. The proportion of farmland had a higher interpretation rate for 

ΔRHI between the night of spring and summer, summer and autumn, which may be 

due to soil water content and crop water content caused by differences in irrigation 

amount in the farm seasons (spring, summer, and autumn). ΔAir showed a robust 

capacity to explain time inconsistency between the night of autumn and winter, which 

was caused by the correlation between air temperature and LST. The proportion of 

forest land had a higher interpretation rate for ΔRHI between the night of winter and 

spring. In the winter, mitigation of LST because of deciduous trees was relatively 

weak, but during spring, mitigation of LST gradually increased, which influences the 

forest land proportion on ΔRHI between the night of winter and spring. 

 

4.3 Implications for UHI mitigation 

 

Our results confirm that NDVI, FL and WL can better explain LST in summer. 

However, there was a significant positive correlation between WL and ΔRHI among 

day and night, and WL promoted the time inconsistency of RHI, which indicated that 

WL might increase heat related risk and increase energy consumption during 

nighttime. Therefore, we suggest expanding urban green quantity, vigorously 

developing roof greening and vertical greening in the urban areas and accelerating the 

implementation of forest city development policy to alleviate urban heat island 

compared with increasing wetlands areas. Albedo also showed a strong explanation 

rate on LST, and a significant negative correlation with ΔRHI, which indicates that the 

application of high-albedo materials to reflect solar heat in urban construction, and the 

implementation of the new green building policy of modifying the thermal properties 

is also an effective measure to cool the city. In addition, the relative strong 

explanation rate of air relative humidity and rainfall during the daytime of winter, the 

nighttime of spring and winter indicates that UAMRYR should fully plan and reuse 
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rainwater, accelerate the implementation of ―sponge city‖ strategy for UHI mitigation. 

There findings provide implications for the mitigation of UHI, and then promote 

sustainable land planning and society development. 

 

4.4 Limitations 

 

Our study has some limitations. First, this study used data dated back to 2010, 

when the development of urbanization in China has aggravated UHI to a certain 

extent; however, with the continuous promotion of ventilation corridors, urban parks, 

ecological green wedges, and vertical greening policies in urban areas, UHI might 

have been alleviated to a certain extent. Therefore, the phenomenon of UHI still exists 

and limitation of data has a little effect on the results of this study. 

There were other uncertainties in this study due to data limitations. For example, 

the accuracy of meteorological data depended on the distribution density of 

meteorological stations, and anthropogenic heat emissions and three-dimensional data 

(sky view factor, surface roughness) were not taken into account. In addition, it is 

essential to optimize the number of influence factors in HP to at least nine. These 

limitations should be addressed in further studies. 

 

5. Conclusions 

 

Urban heat island could result in environmental, energy, and health problems and 

these issues have greatly limited sustainable development of cities and society. 

Adverse effects of UHI have become urgent matters in urban ecology. This study 

overcame some limitations in previous studies, including the restraint of linear 

hypotheses, the deficiency of the interactive effect between influencing factors on 

LST, the problem of collinearity, and the insufficiency of urban agglomeration 

research. We selected geo-detector method to solve above problems and quantified the 

influence of different layer factors and their interaction on LST. In addition, we used 
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Spearman correlation, OLS regression, all-subset regression, and HP analysis to 

reveal the driving mechanism of time inconsistency of RHI. The result of the 

geo-detector showed seasonal variations in the dominant factor affecting LST spatial 

heterogeneity. The dominant factors affecting LST spatial heterogeneity in the hotter 

seasons (spring, summer, and autumn) were found to be the landscape composition 

layer and biophysical parameters layer with a higher contribution rate. During the 

daytime of winter, the dominant factors were the climate conditions layer, and the 

climate conditions layer and biophysical parameters layer dominated during nighttime. 

The proportions of wetlands and albedo greatly influenced the ΔRHI between day and 

night. The dominant factors of ΔRHI between the day of seasons (spring–summer, 

summer–autumn, autumn–winter, and winter–spring) were ΔNDVI, Δalbedo, Δalbedo, 

and ΔSun, respectively. ΔSun, F, ΔAir, and FL were the dominant factors of ΔRHI 

between night of seasons. Increasing urban green quantity and popularization of 

high-albedo materials are effective measures for UHI mitigation. The findings in this 

study recommend various mitigation strategies for city planners and policy makers to 

make rational and scientifically sound decisions, and promote environmental 

sustainability. 
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Appendices 

Table A.1 Influencing factors selected from previous studies. 

Categories of 

variables 
Variables Sources 

Landscape 

configuration 

PD Chen et al., 2014; Zhang et al., 2015; Estoque et 

al., 2017; Li et al., 2017; Yang et al., 2017; Peng 

et al., 2018 

LPI Estoque et al., 2017; Li et al., 2017; Peng et al., 

2018; 

SHDI Chen et al., 2014; Li et al., 2017; Yang et al., 

2017; Azhdari et al., 2018; Peng et al., 2018 

SHAPE Li et al., 2017; Estoque et al., 2017 

Landscape 

composition 

FL 

Li et al., 2011; Chen et al., 2014; Li et al., 2017; 

Yang et al., 2017; Deilami et al., 2018; Peng et 

al.; 2018 

GL 

WL 

F 

AL 
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Social economy 

POP 
Deilami et al., 2018; Yao et al., 2018; Manoli et 

al., 2019; Li et al., 2020c 

GDP Cui et al., 2016; Li et al., 2020c  

NL 
Peng et al., 2012; Zhou et al., 2014; Li et al., 

2020b; Hu et al., 2020 

Climate conditions 

Air 

Peng et al., 2012; Du et al., 2016; Deilami et al., 

2018; Zhou et al., 2018; Yao et al., 2018; Hu et 

al., 2019  

Hum Hu et al., 2019 

Rain 
Du et al., 2016; Yao et al., 2018; Zhou et al., 

2018; Manoli et al., 2019; Hu et al., 2019 

Sun Yao et al., 2018 

Wind 
Du et al., 2016; Yao et al., 2018; Zhou et al., 

2018; Zhou et al., 2019; Wang et al., 2020 

Biophysical 

parameters 

Albedo 

Peng et al., 2012; Santamouris et al., 2013; Zhou 

et al., 2014; Li et al., 2018; Deilami et al., 2018; 

Yao et al., 2018; Zhou et al., 2018; Kotharkar et 

al., 2019; Manoli et al., 2019; Zhou et al., 2019; 

Li et al., 2020b 

NDVI 

Li et al., 2011; Chen et al., 2014; Guo et al., 

2015; Azhdari et al., 2018; Deilami et al., 2018; 

Peng et al., 2018; Wang et al., 2018c; Jamei et 

al., 2019; Zhou et al., 2019; Li et al., 2020b; Hu 

et al., 2020; Li et al., 2020c 

DEM 
Chen et al., 2012; Wang et al., 2018c; Li et al., 

2020a 
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Fig A.1 Distribution of meteorological stations and nighttime lighting. 
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Fig A.2 Classification of the climate regionalization in China. 

 

Table A.2 Classification of regional heat island. 

RHI level Range of LST 

Low TS ≤ Tmean - 1.5std 

Sub-low Tmean - 1.5std < TS ≤ Tmean - 0.5std 

Medium Tmean - 0.5std < TS ≤ Tmean + 0.5std 

Sub-high Tmean + 0.5std < TS ≤ Tmean + 1.5std 

High TS >Tmean + 1.5std 

Note: ―mean‖ and ―std‖ represent the average value and standard deviation of LST in 

study area, respectively. 
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Fig A.3 Map of PD values for five impact factors divided into a range of 2–10 

intervals using the four discretization methods. 

Note: a, c, e, g and i, representing the proportion of forest land, the proportion of 

wetlands, the proportion of artificial land, NDVI and GDP, is q value in the daytime, 
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respectively; b, d, f, h and j, representing the proportion of forest land, the proportion 

of wetlands, the proportion of artificial land, NDVI and GDP, is q value in the 

nighttime. 

 

Table A.3 The all-subset regression model for time inconsistency of RHI between day 

and night in different seasons. 

Time Model Adj R
2
 

Spring 

Y=16.6644 - 0.8967*SHDI - 0.0069*FL+0.0318*WL - 

0.1630*Hum + 0.0075*Rain - 1.2287*Wind - 33.3615*albedo 

+ 2.0498*NDVI 

0.49 

Summer 

Y=-3.7823 - 0.5421*SHDI - 0.0061*FL + 0.0374*WL + 

0.0001*GDP + 0.0027*Rain - 0.007*Sun + 1.6063*Wind + 

2.7916*NDVI 

0.39 

Autumn 

Y=-3.4998 - 0.6644*SHAPE + 0.0362*WL + 0.0211NL + 

0.0085*Rain + 0.0153*Sun + 1.1289*Wind - 26.1252*albedo + 

4.6441*NDVI 

0.56 

Winter 

Y= -5.7956 - 0.6566*SHDI + 0.0264*WL + 0.0191*NL + 

0.0872*Hum -0.0324*Rain + 1.4894*Wind - 25.2959*albedo 

+ 0.0014*DEM 

0.52 

Annual 

Y=-0.2627 -0.6695*SHDI + 0.0371*WL + 0.0001*GDP + 

0.0033*Rain + 1.0152*Wind - 22.5889*Albedo + 

1.4545*NDVI + 0.0003*DEM 

0.52 

 

Table A.4 The all-subset regression model for time inconsistency of RHI between 

different seasons in the daytime. 

Time Model Adj R
2
 

Spring-Summer 

Y= 7.3574 + 0.0022*F - 0.5814*ΔAir - 0.0106*ΔSun - 

2.1979*ΔWind+ 3.1634*Δalbedo - 3.0305*ΔNDVI - 

0.0006*DEM 

0.27 
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Summer-Autumn 

Y= -1.2104* - 0.1462*SHDI - 0.1766*SHAPE - 

0.1715*ΔAir + 0.0611*ΔHum - 0.0093*ΔSun + 

1.5820*ΔWind + 14.8510*Δalbedo - 2.5345*ΔNDVI 

0.14 

Autumn-Winter 

Y= 0.3830 - 0.0044*F - 0.0203*NL + 0.2032*ΔAir + 

0.0328*ΔHum + 0.0118*ΔRain - 0.0557*ΔSun + 

1.7403*ΔWind - 10.7049*Δalbedo 

0.36 

Winter-Spring 

Y= 1.5357 - 0.0025*LPI + 0.2067*SHAPE+ 0.0168*NL 

- 0.3495*ΔAir + 0.0440*ΔSun + 3.0707*ΔWind - 

0.7810*ΔNDVI+0.0004*DEM 

0.27 

 

Table A.5 The all-subset regression model for time inconsistency of RHI between 

different seasons in the nighttime. 

Time Model Adj R2 

Spring-Summer 

Y=3.2438 + 0.2635*SHDI - 0.0108*WL + 0.0065*F - 

0.1536*ΔHum - 0.0417*ΔSun - 8.3154*Δalbedo - 

1.6709*ΔNDVI - 0.0010*DEM 

0.43 

Summer-Autumn 

Y=-1.0497 + 0.0061*WL - 0.0123*F - 0.1742*ΔAir + 

0.1402*ΔHum - 0.0024*ΔRain + 2.0648*ΔWind + 

1.2016*ΔNDVI + 0.0005*DEM 

0.38 

Autumn-Winter 

Y=5.6308 - 0.0063*WL - 0.0118*AL + 0.7126*ΔAir + 

0.0161*ΔRain - 0.0587*ΔSun + 2.7144*ΔWind - 

5.2790*Δalbedo + 0.0011*DEM 

0.53 

Winter-Spring 

Y=-7.2814 - 0.0065*FL + 0.5594*ΔAir - 0.1204*ΔHum 

+ 0.0092*ΔRain + 0.0491*ΔSun - 0.9947*ΔWind - 

4.1262*Δalbedo - 0.0003*DEM 

0.53 
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