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ABSTRACT The real-time monitoring and driving force research of soil salinization in semi-arid grassland
are of great significance for regional and local ecological environment protection, management, and
sustainable development. We selected a typical ‘“‘mine-town-agriculture-pastureland-industry” interlaced
ecologically fragile area as the study area. Based on the method of SI (Salinization Index)-Brightness feature
space, we constructed a new spectral index named Semi-Arid Steppe Salinization Index (SASSI), which is
more suitable for soil salinization remote sensing monitoring in semi-arid steppe. The geodetector method
was used to analyze the driving forces of the temporal-spatial changes of soil salinization. The results
indicated that: (1) SASSI presented a high correlation with soil surface salt content (R? = 0.7698), and
made full use of multi-dimensional remote sensing information. SASSI can reflect the salinization status of
surface soil. The indicator calculation was simple and easy to obtain, which was conducive to the quantitative
analysis and monitoring of salinization. (2) The driving factors affecting the spatial distribution and change
of soil salinization were water, surface mines, town, agriculture, industry, road network, and elevation. The
salinized areas were mainly distributed around the wetlands of the Xilin River Basin, mining landscapes, and
town landscapes. (3) The total area of salinized soil in the study area increased from 32.03 km? in 2002 to
150.46 km? in 2017. The area of salinized soil increased rapidly from 2005 to 2014, but the growth rate
slowed down after 2014. The salinized soil was mainly located in the salt marsh wetland in 2002, however
had spread to the whole study area in 2017. This study provides references for remote sensing monitoring of
soil salinization and the impact of land use, topography and other natural factors on soil salinization in the
semi-arid steppe.

INDEX TERMS SI-Brightness feature space, semi-arid steppe, soil salinization, remote sensing monitoring,
drivers analysis.

I. INTRODUCTION

unreasonable development and utilization of natural

Soil salinization is a phenomenon of land degradation
caused by the interaction of many factors, such as the
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resources, the fragile ecological environment, and the aggra-
vation of climate change. It is an increasingly serious global
problem. According to the mapping of global soil salinization
by Ivushkin er al. [1] (Figure 1), the total area of land
affected by salt in more than 100 countries and regions of the
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Legend

FIGURE 1. Global soil salinity map for 2016[1] and a UAV aerial image in Xilinguole grassland of China by the

author for 2017.

world was about 1 billion hectares, and the average annual
increase rate of soil salinization was about 200 Mha from
1986 to 2016 [2]. More and more previously unaffected
areas begin to suffer from soil salinization. In arid and
semi-arid regions (more than 75% of the world’s residents),
soil salinization is particularly serious due to the lack of rain-
fall, high intensity of water evaporation, high groundwater
level, and high water-soluble salt content [3]. About 30%
of the land in arid and semi-arid regions is affected by soil
salinization. An effective prediction showed that by 2050,
more than 50% of the world’s arable land will become saline
soil [4]. The total area of salinized soil in China is about
3.6 x 107 hectares, accounting for 4.88% of the total avail-
able land and 15% of the irrigated land in the country. Due
to the seriousness of the problem, countries all over the
world have incorporated soil salinization into their future
development plans, which has become an important part of
the global climate change research framework [5].

Soil salinity has high temporal-spatial variability. There-
fore, it is very important to monitor and study the driving
factors in large-scale and real-time in order to avoid the
serious social and economic consequences of extreme envi-
ronment, especially in semi-arid grasslands with large areas
and sparsely population [6], [7]. Traditional soil saliniza-
tion monitoring adopts fixed-point field survey, which is not
only time-consuming and laborious but also highly destruc-
tive, with few measuring points and poor representativeness.
It cannot meet the requirements of quickly, inexpensively,
and dynamically obtaining large-area salinized soil salinity
information. At present, remote sensing is the only way to
monitor soil salinization in large-scale and long-term [8].
The quantitative inversion of remote sensing data is based on
the relationship between the spectral information of remote
sensing image pixels and the corresponding ground target
information [9]. It is an advanced method of quantitative
remote sensing monitoring research to use all kinds of indi-
cators extracted from multispectral remote sensing images
to construct feature space for surface information extrac-
tion and dynamic monitoring [10]. Selecting suitable fea-
ture parameters to establish feature space so as to improve
the accuracy of quantitative remote sensing monitoring is
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an innovative hot topic in current research [11]. The fea-
ture space method has been widely used in remote sensing
quantitative monitoring due to its advantages of simplicity,
convenience, and high precision. Not only soil salinization
remote sensing monitoring [12], feature space method has
been widely used in desertification remote sensing monitor-
ing [13], [14], drought remote sensing monitoring [15], [16],
remote sensing monitoring of soil dryness and wetness [17],
heavy metal stress [18], crop moisture [19], cultivated land
fertility [20], surface evapotranspiration [21], soil moisture
retrieval [22], [23] and many other remote sensing quantita-
tive monitoring fields.

Semi-arid grassland areas are short of water resources, low
environmental carrying capacity, and ecologically fragile.
Driven by both natural and human factors, semi-arid grass-
land areas continue to degrade. The research on the driving
forces of soil salinization in semi-arid grassland areas aims
to reveal the real motivation behind soil salinization and its
mechanism from a typical regional perspective. Strengthen
the research on the driving force and driving mechanism
of soil salinization, accurately identify the driving factors
that lead to soil salinization, and understanding the internal
relationship among factors are of practical significance for
the rational management of salinized land, the adjustment
of land use structure, the protection of grassland, the for-
mulation of regulatory policies and measures, the rational
layout of economic development, and the promotion of sus-
tainable utilization of grassland resources. Eswar er al. [24]
mainly studied the impact of climate change on the driving
force of soil salinity. Masoud et al. [25] taking the desert
oasis in Egypt as an example, presented that soil salinity
was greatly affected by slope, surface temperature, top layer
thickness, groundwater depth, and elevation. Su et al. [26]
took a coastal city of China as an example, and concluded that
groundwater depth and salt concentration are the main factors
driving soil salinization in the study area. Zhang et al. [27]
took Xinjiang, China as an example, and the research showed
that the change of soil salt was mainly affected by human
factors on a small scale, such as irrigation and land use,
while natural factors including groundwater, topography and
climate mainly affect the change of soil salt on a large
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temporal-spatial scale. However, the driving theory of soil
salinization is complex, and difficult to be accurately and
quantitatively identified [26], especially in ‘‘mine-town-
agriculture-pastureland-industry (It means that mining, town,
agriculture, pastureland and industry coexist.)” interlaced
ecologically fragile area. Geodetector is an effective method
to quantitatively analyze the driving forces and influencing
factors of various phenomena and the interaction of multiple
factors. It does not need too many assumptions and over-
comes the limitations of traditional methods in dealing with
category traversal [28]. As a sensitive area of climate change
and an increasingly active area of human disturbance, it is
of great significance to study remote sensing monitoring and
driving force of soil salinization in semi-arid grassland [29].
Thus, this paper aims to: (1) construct remote sensing moni-
toring model of soil salinization based on SI-Brightness fea-
ture space; (2) analyze the driving forces of soil salinization
in semi-arid grasslands based on the geodetector.

Il. MATERIALS AND METHODS

A. STUDY AREA

The study area is located in Xilinhot City (county-level city),
Xilinguole League, Inner Mongolia Autonomous Region,
China (Figure 2), which is the core area of the northern
sand control belt of two screens and three belts of China’s
ecological security. According to the ‘“National sustainable
development plan for resource-based cities (2013-2020) of
China”, Xilinhot is a growing resource-based city. The
altitude is 970~1202 m. The total area of the study area
is 1021.38km?. It is located in the westerly flow belt of
mid-latitude and belongs to the semi-arid continental climate
of the mid-temperate zone. The extreme maximum temper-
ature over the years is 38.3 °C, the minimum temperature
is —42.4 °C, and the average temperature is 1.7 °C. The
annual average rainfall is 294.74 mm, the annual average
potential evaporation is 1794.64 mm, the potential evapora-
tion is far more than the precipitation, and the soil salinization
is serious. The Xilin River, the only river in the study area,
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has now become a seasonal river [14]. A large number of salt
marshes are distributed in Xilin River Basin.

B. DATA AND PREPROCESSING

Six Landsat images (2002/07/08, 2005/08/17, 2008/07/08,
2011/08/02, 2014/07/25, 2017/07/17) were used. The data
type before 2013 is Landsat TM, and the data type after 2013
is Landsat OLI (Operational Land Imager). The row number
is 124/029. With the help of ENVI software, radiometric cor-
rection, FLAASH (Fast Line-of-sight Atmospheric Analysis
of Spectral Hypercubes) atmospheric correction, image reg-
istration, and clipping were carried out. The NDVI (Normal-
ized Difference Vegetation Index) [30], Albedo [31], MSAVI
(Modified Soil Adjusted Vegetation Index) [32], SI (Salinity
Index) [33], SMI (Salinization Monitoring Index) [34], and
BCI (Biophysical Composition Index) [35] were calculated
by using bands of Landsat. Three indicators of Brightness
(BI), Greenness (GVI), and Wetness (WI) in the tasseled cap
transformation [36] were calculated. The landscape classifi-
cation map adopted existing results [37].

C. SI-BRIGHTNESS FEATURE SPACE ANALYSIS

Khan and Sato [33] found that the red band of the Landsat
image has sensitive response characteristics to soil salinity.
By comparing the spectral characteristics of typical ground
objects and band mixing test analysis, it is found that the
SI determined by the red and blue bands of remote sensing
images can better reflect the soil salinization. The Brightness
component in tassel cap transform [36] reflects the difference
in soil salinization degree. The more serious the soil saliniza-
tion degree is, the higher the reflectivity is, and the greater the
brightness is.

The one-dimensional space of SI and Brightness has a good
correlation with salinization. In order to further study the
distribution of different land types in the SI-Brightness two-
dimensional space, this paper divides the SI-Brightness two-
dimensional space into four parts: high vegetation coverage
area, impervious surface, salinization area, and other types.
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FIGURE 3. Spatial distribution of sample plots and layout of quadrat.

SMI was used to extract salinized soil. BCI combined with
visual interpretation was used to extract impervious surface.
NDVI was used to extract high vegetation coverage areas.

D. COLLECTION OF SOIL SAMPLES

In order to verify the authenticity and reliability of the remote
sensing monitoring model of semi-arid steppe soil saliniza-
tion, soil samples were collected in July and August 2017.
The distribution of sample points is shown in Figure 3 (a).
There were 30 sample points. The galaxy-1 RTK measure-
ment system was used for positioning during sampling. The
sampling depth was 0~20 cm with a soil drill. Considering
the matching with Landsat image, the sample square size was
30 m*30 m [Figure 3 (b)]. Each sample was composed of the
center sample and the surrounding four sub-samples.

E. GEODETECTOR

Soil salinization is mainly affected by natural and human
factors. Since the study area is relatively small, the differences
in natural driving factors such as climate change are small.
At the same time, the study area is located on the border of
northern China, which is a typical Mongolian settlement area.
The population growth is extremely slow, cultural concepts
are very similar, and changes in many aspects such as tech-
nology and economy are relatively slow. Therefore, according
to the characteristics of the study area and the conclusions
of the previous study [27], this study chose elevation, slope,
aspect, and distance to the nearest water landscape as natural
driving factors, and chose the distance to the nearest mining
landscape, the distance to the nearest town landscape, the dis-
tance to the nearest industrial landscape, the distance to the
nearest agricultural landscape, and the distance to the nearest
road network landscape as humanistic driving factors [37].
The drivers were analyzed by the geodetector method [38].

L 2
2. Nioj;
h=1

No?

where h = 1,..., L represents the stratification of
variable Y or factor X; N;, and N represent the unit

g=1- M
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numbers of layer 4 and the whole region, respectively; ahz and
o2 represents the variances of ¥ values of layer & and the
whole region, respectively; g represents the size of the drivers,
and the range of ¢ is [0,1].

Ill. RESULTS

A. REMOTE SENSING MONITORING OF SOIL
SALINIZATION BASED ON SI-BRIGHTNESS

FEATURE SPACE ANALYSIS

1) SI-BRIGHTNESS TWO-DIMENSIONAL FEATURE SPACE
DISTRIBUTION

In this study, SI was used as abscissa to represent the change
of surface salinity, and Brightness was used as ordinate
to represent the change of surface Albedo. SI-Brightness
two-dimensional spatial scatter diagrams were constructed
(Figure 4). As can be seen from Figure 4, the correla-
tions between SI and Brightness over the years were higher
than 0.77, and the scatter diagrams showed a typical trape-
zoidal strip distribution. From the results of SI-Brightness
two-dimensional spatial classification (Figure 5), it can
be seen that the distribution of different surface cover
types in SI-Brightness two-dimensional space showed dis-
tinct variation patterns. SI-Brightness two-dimensional space
can distinguish different types of surface cover very well.
Figure 5 (a) can be visualized as Figure 5 (b). The classifi-
cation accuracy and kappa coefficient were 93.36% and 0.92,
respectively.

2) THE CONSTRUCTION OF A REMOTE SENSING
MONITORING MODEL FOR SOIL SALINIZATION

It can be seen from the SI-Brightness feature space that as
the Brightness and the SI value increase, the surface veg-
etation coverage decreased, the surface energy and water
balance changed, resulting in the decrease of soil moisture,
the increase of surface albedo, and soil salinity, and the
surface gradually developed into a bare soil type with no
vegetation coverage and heavy salinization degree (Figure 1).
The line A-B in Figure 4 and Figure 5 (b) was the slope
of SI-Brightness two-dimensional space. Through the spa-
tial statistical characteristics, the expression of slope A-B
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FIGURE 5. Distribution of different land types in SI-Brightness two-dimensional space.

(equation 2) can be obtained, and the degree of soil saliniza-
tion gradually increases from A to B (Figure 5). For remote
sensing monitoring of soil salinization, it is more convenient
to use a comprehensive spectral index than two separate
variables. In other words, in order to realize the quantitative
monitoring and investigation of the temporal-spatial distribu-
tion and dynamic changes of salinization, the feature space
constructed by combining the information of salinity index
and brightness index can be used as a reasonable index to
reflect the degree of salinization and can distinguish different
degrees of salinized land [39]. According to the research con-
clusion of Verstraete and Pinty [40], employing the vertical
line of A-B line to segment SI-Brightness feature space can
effectively separate non-salinized land, salinized land, and
salinized land of different degrees, so as to construct the
Semi-Arid Steppe Salinization Index (SASSI) (Equation 3).
SASSI was a new index constructed in this study. According
to formula 3, the spatial distribution maps of remote sensing
monitoring of semi-arid grassland salinization in 2002, 2005,
2008, 2011, 2014, and 2017 were calculated (Figure 6).

axSI+b
SI + a x Brightness

Brightness
SASSI

@
3
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where SASSI is the Semi-Arid Steppe Salinization Index.
Brightness is the brightness value in tassel cap transforma-
tion. ST is the salt index. a is the slope of the SI-Brightness
two-dimensional space. b is the intercept of the slope of
SI-Brightness two-dimensional space on the ordinate.

3) VALIDATION OF REMOTE SENSING MONITORING MODEL
FOR SOIL SALINIZATION

In order to verify the effectiveness of SASSI, field soil sam-
ples were collected, tested, and analyzed in late July 2017.
The results were compared with the SASSI extracted from
Landsat data in 2017. The results showed that the SASSI
model had a high correlation with soil surface salt con-
tent (R2 = 0.7698). SASSI had good applicability in this
study area and had a strict positive correlation with soil
salinity (Figure 7).

B. DRIVING FORCE ANALYSIS OF SOIL SALINIZATION
BASED ON GEODETECTOR

It can be seen from Table 1 that the g values of the distance
to the nearest water landscape, the distance to the nearest
mining landscape, the distance to the nearest town landscape,
the distance to the nearest agricultural landscape, and the
distance to the nearest industrial landscape in six years all
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FIGURE 6. Soil salinization remote sensing monitoring spatial distribution map of grassland.
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FIGURE 7. Analysis of correlation between SASSI and soil salinity in 2017.

exceeded 0.7, indicating that these five factors had a strong
driving effect on the spatial distribution and change of soil
salinization. Combined with Figures 6 and 9, it can be found
that salinization areas were mainly distributed in the wetland
of Xilin River Basin and the surrounding areas of mining
landscape and urban landscape. The g values of the dis-
tance to the nearest road network landscape were between
0.7722 and 0.4124, which indicated that the driving effect
of the distance to the nearest road network landscape on
the spatial distribution and change of soil salinization in the
study area was also obvious. The g values of elevation over
the years were between 0.1739 and 0.2669, which indicated
that the driving effect of elevation on the spatial distribu-
tion and change of soil salinization in the study area was
light, but there was also a certain driving effect. Through
field investigation, we found that the soil salinization in
wetlands and other catchment areas were relatively serious,
and a large area of salt marsh wetland has been formed
(Figures 1 and 2). The g values of slope and aspect over
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the years were less than 0.012, indicating that these two
driving factors had no significant driving effect on the spatial
distribution and change of soil salinization in the study area.
In summary, from the average g values over the years,
the driving factors affecting the spatial distribution and
changes of grassland soil salinization in the study area were
water, surface mines, town, agriculture, industry, road net-
work, and elevation.

IV. DISCUSSION

A. DEVELOPMENT PROCESS OF SOIL SALINIZATION

In order to further study the relationship between SASSI,
SI-brightness two-dimensional space, and the development
process of salinization, according to SASSI value from high
to low, SI-brightness two-dimensional space was divided
into four parts: severe salinization zone, moderate salin-
ization zone, mild salinization zone, and non-salinization
zone. According to the national standard of the People’s
Republic of China “Classification standard for degrada-
tion, desertification, and salinization of natural grassland
(GB 19377-2003), combined with SI-Brightness fea-
ture space, the SASSI values of different salinized soils
were determined: non-salinization (<0.4), mild salinization
(0.4~0.44), moderate salinization (0.44~0.51), and severe
salinization (0.51). It can be seen from Figure 8 (a) that the
development process of salinization can be directly reflected
in the two-dimensional space of SI-Brightness. With the
increase of SASSI value, the degree of salinization became
more and more serious, and the two-dimensional space of
SI-Brightness was closer to point B in its slope A-B. The
distribution of severe salinization zone was more dispersed,
and the distribution of moderate salinization zone and mild

VOLUME 9, 2021



Z. Wu et al.: Remote Sensing Monitoring of Soil Salinization Based on SI-Brightness Feature Space and Drivers Analysis

IEEE Access

TABLE 1. g values of driving factors of soil salinization in the study area over the years.

Type WATER MINE TOWN AGRI INDU ROAD ELEV Aspect Slope
2002 0.9806 09610 09306  0.8963  0.9398  0.7722  0.2669  0.0042  0.0040
2005 0.9678 09544 09212 09164  0.9631 0.7398  0.1747  0.0096  0.0070
2008 0.9651 09174 09169 09164  0.8572  0.7288 ~ 0.2378  0.0049  0.0071
2011 0.9702 09252 09082 0.8849  0.8105 0.489%  0.2384  0.0116  0.0090
2014 0.9147 0.8968  0.8933  0.8832  0.7891 0.4569  0.2060  0.0050  0.0090
2017 0.9483 0.9053  0.8617 0.8853  0.7072  0.4124  0.1739  0.0079  0.0066
Mean 0.9578 0.9267 09053  0.8971 0.8445  0.6000 0.2163  0.0072  0.0071
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FIGURE 8. Schematic diagram of the salinization development process of SI-Brightness feature space based

on SASSI.
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FIGURE 9. Schematic diagram of the salinization development process of SI-Brightness feature

space based on SASSI.

salinization zone were closer. Figure 8 (a) can be visualized
as Figure 8 (b). Therefore, the SASSI model constructed in
this study can reflect the development process of salinization
in the semi-arid steppe. This model is defined as the Semi-
Arid Steppe Salinization Index (SASSI).

According to the development process of soil salinization,
combined with landscape ecological classification map [37]
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and Figure 6, we made the spatiotemporal evolution map of
soil salinization (Figure 9) and calculated the area of soil
salinization of each grade from 2002 to 2017 (Figure 10).
It can be seen from Figure 9 and Figure 10 that the total area
of soil salinization increased year by year from 32.03 km?
in 2002 to 150.46 km? in 2017. From 2005 to 2014, the
area of salinized soil increased rapidly, and the growth rate
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FIGURE 11. Two-dimensional spatial scatter plots of four commonly used salinization indices.

slowed down after 2014. At the same time, from 2005 to 2014,
urban expansion, coal development, and road construction
were also strengthened. From the perspective of the spatial
distribution of soil salinization, the salinized soil in 2002 was
mainly located in the salt marsh wetland (red circle), and
in 2017, the salinized soil has spread to the whole study
area. The soil salinization around the wetland of the Xilin
River Basin (red circle) in the north of the study area has
been the most serious over the years, and it has become more
serious year by year. In the northwest corner (black circle)
and southeast corner (blue circle) of the study area, under the
influence of human disturbance such as industrial develop-
ment, the salinized soil has never developed to exist, and it has
gradually become more serious. Under the influence of coal
and oil exploitation, the area of salinized soil in the central
area of the study area (white circle) increased year by year.
Severe and moderate salinization was mainly distributed in
salt marsh wetland, while mild salinization was mainly dis-
tributed around urban landscape, mining landscape, industrial
landscape, and road landscape.
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B. COMPARISON BETWEEN SASSI AND OTHER
SALINIZATION INDEXES

Wang et al. [41] proposed the concept of NDVI-SI fea-
ture space and established the Salinization Detection Index
model [42]. Ding et al. [11] proposed the concept of MSAVI-
WI feature space and established a soil salinity monitor-
ing index MWI. Zhang et al. [43] proposed the concept
of MSAVI-SI feature space and established a soil salinity
monitoring model MSI. Ha et al. [34] proposed the concept
of SI-Albedo feature space and established the Salinization
Monitoring Index (SMI) model. In order to further verify
the good applicability of the SASSI model in semi-arid
grassland salinization remote sensing monitoring, four com-
monly used salinization remote sensing monitoring indexes
were selected and compared with SASSI. It can be seen
from Figure 11 that the correlation between MSAVI-WI and
MSAVI-SI was extremely low, and the applicability in this
study area is poor. R? of NDVI-SI and R? of SI-Albedo were
0.6 and 0.702, respectively, indicating that SDI and SMI can
be used in this study area. It can be seen from Figure 12 that
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FIGURE 12. Correlation analysis between four commonly used salinization indexes and soil

salinization.

the correlation between soil salt content and MWI and MSI
extracted from Landsat data was lower than 0.1, which further
confirms the conclusion of Figure 11. The correlation of soil
salt content with SDI and SMI extracted from Landsat data
were 0.4769 and 0.7313, respectively. According to the con-
clusion in Figure 6, SMI has good applicability in this study
area. Combined with Figures 4, 5, 7, 11, and 12, the SASSI
model constructed in this study is more suitable for remote
sensing monitoring of salinization in this study area. The
Brightness used in the SASSI model and the Albedo used in
the SMI model both represent the surface albedo. Therefore,
the two-dimensional feature space constructed by the surface
albedo and the salinity index is very suitable for remote
sensing monitoring of salinization in semi-arid grasslands.

C. DRIVING FORCE ANALYSIS OF SURFACE MINING

ON SOIL SALINIZATION

Soil salinization is a complex natural phenomenon under
the impact of a large number of natural and human
factors [7], [44]. In terms of natural factors, Xilinguole grass-
land is one of the four natural grasslands in China. It is a
typical semi-arid grassland with a continental climate. The
precipitation is small and the potential evaporation is large.
The salt dissolved in water is very easy to accumulate on
the surface. In spring, the soil surface water evaporates vio-
lently, and the capillary water rises, which makes the salt in
groundwater collect on the surface. In summer, it is the rainy
season in the study area, the rainfall is very concentrated, and
a large number of soluble salt seeps into the ground or flows
away with the water. The terrain causes the water to carry
water-soluble salts from high to low and collect in low-lying
areas. Therefore, it is easy to form salt marsh wetlands in
semi-arid grasslands (Figures 1, 2, and 9).
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In terms of human factors, land use type (or landscape
type) directly reflects the way and intensity of human use
of land. Numerous studies have shown that land use has
different relationships with soil salinization [26], [45], [46].
The unreasonable irrigation of the agricultural landscape will
destroy the original water-salt balance. If the irrigation water
is greater than the discharge water, the groundwater level will
rise to the critical depth, and the secondary salinization of
soil may be severe. The unreasonable use of groundwater
and wastewater discharge in urban life and industrial produc-
tion are also driving factors that cause the soil salinization
around town landscapes and industrial landscapes. This study
focused on the analysis of the driving force of surface mining
on soil salinization.

Xilinhot City is located in the hinterland of Xilinguole
grassland. It is a typical mining city where many kinds
of mineral resources such as coal, oil, and heavy metals
are developed at the same time. The contradiction among
human, land, and the ecological environment is serious. The
Shengli Coalfield in Xilinhot City is close to the northern
suburb of the city. It is the lignite coalfield with the thick-
est coal seam and the largest reserves in China. Among
them, the germanium-containing lignite contains 3226 tons
of germanium metal reserves, accounting for 65% of the
domestic proven germanium metal reserves, and 38% of the
world’s proven germanium metal reserves. It is one of China’s
14 large-scale coal bases and 16 large-scale coal power bases.

The original landform of semi-arid grassland is flat, and
a large number of open-pits and dumps are formed after
surface mining. The change of terrain is the most direct and
serious impact of surface mining on semi-arid grassland, and
further affects the transmission of ecological flow. Surface
coal mining drains groundwater, causing the phreatic aquifer
in the grassland mining area and surrounding areas to be
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gradually drained. Groundwater replenishment, runoff, and
drainage conditions have also changed, and the groundwater
level has dropped, resulting in a decrease in surface river
runoff, surface water loss, water conservation, and regulation
capabilities, wetlands gradually shrinking, biomass declines,
and grasslands gradually degradation in semi-arid grasslands.
The critical water level (The critical water level is the ground-
water level that can cause soil salinization and damage to the
root system of vegetation) of the soil will gradually decrease,
and the height difference between the critical water level
and the phreatic level will gradually decrease. When the
groundwater level is equal to or higher than the critical water
level of surface soil, soil salinization will occur.

Most of the accumulated soil in the dump is mudstone,
parent material, and other mixed-layer loose materials. The
roughness of the ground is large, the corrosion resistance
is small, and the vegetation recovery is slow. As a result,
the soil and water loss of the dump slope and platform
are serious [47]. Salts containing Ca, Mg, K, Na, etc. are
leached out, dissolved in surface and underground runoff,
and then collected in plains and low-lying areas, and finally,
through evaporation, the soil is salinized. According to the
survey, the closer to the dump, the higher the salt content,
up to more than 0.7%, and the salt composition is mainly
bicarbonate. Besides, the accumulation pressure of the dump
increases the groundwater level and the mineralization of
groundwater [48].

Large-scale coal power bases will produce a large amount
of fly ash. Because fly ash has a high Ca®* supply capacity,
it is an amendment for reclaiming sodium salt soil [49].
Mishra et al. [50] research showed that when fly ash is used in
combination with gypsum and green manure, it has the effect
of reclaiming saline soil. This method is adapted to local
conditions, can not only solve the problem of soil salinization
but also help to deal with the waste fly ash, which can be
considered to be popularized in the coal power base of soil
salinization.

D. LIMITATIONS AND UNCERTAINTIES

1) REMOTE SENSING MONITORING OF SOIL SALINIZATION
There are great differences in soil salinization among coun-
tries and regions in the world. The generation mecha-
nism, manifestation, and type of soil salinization are also
different. The applicability of the SASSI model in vari-
ous countries and regions and the applicability of differ-
ent research scales also require a large amount of data
for empirical research. Through comparative experiments,
some scholars found that the Landsat remote sensing index
model constructed by three-dimensional feature space has
higher quantitative information extraction accuracy than
two-dimensional feature space [10], [51]. However, there is
no comprehensive analysis from the perspective of theoretical
principles. Therefore, the authors think that it will be an
important development direction of quantitative remote sens-
ing to build a remote sensing quantitative monitoring model
based on multi-dimensional feature space and deeply analyze
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the theory of multi-dimensional feature space. At the same
time, due to the different composition and content of soluble
salt in salinized soil, in order to carry out more in-depth
remote sensing monitoring research on soil salinization, a
spectral database of salinized soil should be established [51].
Through theoretical research and field investigation, it is
found that all kinds of salinization monitoring indexes con-
structed by multispectral remote sensing images are only suit-
able for the extraction of soil salinization information in bare
land or low vegetation coverage areas, but not suitable for
the areas with dense halophytes. In the future, this problem
should be further studied.

2) DRIVING FORCES OF SOIL SALINIZATION

Existing studies show that there are many factors affecting
soil salinization, including rainfall, temperature, humidity,
pH, evaporation, vegetation cover, groundwater, soil prop-
erties (physical, chemical, and biological), agricultural irri-
gation, grazing, economic development, policy-making, and
so on [5]. This study mainly calculated the driving force of
landscape types (or land-use types) and topography on soil
salinization and focused on the analysis of the impact of
surface mining on soil salinization. Future research should
combine a variety of remote sensing monitoring methods,
ground surveys and sampling to conduct in-depth research on
the driving force of soil salinization.

3) SCALE AND VERIFICATION
In this paper, we mainly focused on the single scale, however,
the scale effect will lead to the change of system charac-
teristics when the spatial-temporal scale changes. Therefore,
we need to carry out multi-scale remote sensing monitoring
research and drivers analysis of soil salinization in the future.
The authors’ vision is that the soil salinization remote
sensing monitoring method proposed by this research has a
wide range of applicability. Although the Shengli Coalfield in
Xilinhot City is typical in semi-arid grassland areas, the geo-
graphical and ecological conditions of the world are very
different. Therefore, the theories and methods in this study
need more cases to verify. At the same time, a large number
of case studies can make the theory and method more perfect.

V. CONCLUSION

Based on the theory of feature space, using Landsat image
and field survey data, studying spectral characteristics and
many spectral indices of Landsat image in depth, constructing
SI-Brightness feature space by selecting SI and cap trans-
form Brightness index, this paper proposed a new spectral
index, Semi-Arid Steppe Salinization Index (SASSI), which
is simple, accurate and more suitable for semi-arid steppe.
The results showed that there was a significant correla-
tion between SI and Brightness, and the two-dimensional
scatter plots showed a typical trapezoidal strip distribution.
The comprehensive information of SI-Brightness feature
space can be applied to salinization monitoring and analysis.
The SASSI model constructed in this study can reflect the
development process of salinization in the semi-arid steppe.
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The SASSI model has a high correlation (RZ = 0.7698)
with the salt content on the soil surface and makes full use
of multi-dimensional remote sensing information. Based on
the method of geodetector, this study chose elevation, slope,
aspect, and distance to the nearest water landscape as natural
driving factors, and chose the distance to the nearest min-
ing landscape, the distance to the nearest town landscape,
the distance to the nearest industrial landscape, the distance
to the nearest agricultural landscape, and the distance to the
nearest road network landscape as humanistic driving fac-
tors. The results showed that the driving factors affecting the
spatial distribution and changes of grassland soil salinization
in the study area were water, surface mines, town, agricul-
ture, industry, road network, and elevation. Salinization areas
mainly distributed in the wetland of Xilin River Basin and the
surrounding areas of mining landscape and urban landscape.
The total area of saline soil in the study area increased from
32.03 km? in 2002 to 150.46 km? in 2017. From 2005 to
2014, the area of salinized soil increased rapidly, and the
growth rate slowed down after 2014. In 2002, the salinized
soil was mainly located in the salt marsh wetland. In 2017,
the salinized soil has spread to the whole study area.
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