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Abstract: To mitigate desertification and alleviate soil erosion, a wide range of 

ecological restoration initiatives have been implemented in arid and semi-arid areas, 

the water consumption of ecological projects and driving mechanisms received 

increasing attention to balance economy development and ecology restoration at 

different scales. In this study, the water footprint (WF) was employed as an indicator 

of water consumption by afforestation, and trend analysis, texture classification and 

geographical detector methods were used to identify the afforestation area and assess 

the influences of natural and human factors on the afforestation WF in the desert 

regions of northern China. The results revealed four major findings. (1) The 

afforestation area increased by 73,764.31 km
2
, from 2003 to 2017, accounting for 

2.42% of the study area. (2) On average, the afforestation WF increased from east to 

west, ranging from 0 to 58.9 m
3
/gC, indicating its high spatial heterogeneity. (3) 

Potential evapotranspiration was the dominant factor influencing the afforestation WF, 

explaining 20.4% of the variation in afforestation WF. (4) The explanatory power of 
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natural and human factors was disparate at the different scales and the interactions 

between different factors had higher impact than that of single factors. These findings 

could provide valuable information to support more sustainable ecological restoration 

science and interventions in arid and semi-arid areas. 

 

Keywords: afforestation; water footprint; influencing factors; geographical detector; 

arid and semi-arid areas 

 

1 Introduction 

Desertification is a serious environmental issue that globally causes 120,000 km
2
 

of productive land to become barren and leads to losses of 20 million tons of grain 

production every year (UNCCD, 2017). Currently, economic losses caused by 

desertification are estimated at $50 billion annually and more than 2.7 billion people 

are threatened by drought and desertification impacts (IPBES LDR, 2018). To combat 

desertification, a series of ecological projects that mainly rely on afforestation have 

been implemented worldwide, such as the Great Green Wall Project in Sahel (Ellison 

and Ifejika Speranza, 2020), the National Action Program in Iran (Amiraslani and 

Dragovich, 2011), and the New York Declaration on Forests (Bastin et al., 2019). In 

China, especially, large-scale afforestation projects have been implemented since the 

1970s, such as the Three North Shelterbelt Project (TNSP), Natural Forest Protection 

Project (NFPP) and the Grain for Green Project (GGP), which not only slowed 

desertification and its expansion in China but also made great contributions to the 

world’s ‘greening’ trend (Chen et al., 2019; Yuan et al., 2014; Zhang et al., 2020).  

Afforestation could significantly improve ecosystem services at the regional 

level (Barry et al., 2014), especially in arid and semi-arid regions that have undergone 
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desertification, by controlling soil erosion (Chen et al., 2016), enhancing carbon sink 

of soil-vegetation systems, and maintaining biodiversity (Liu et al., 2019; West et al., 

2020). Meanwhile, the imbalance between forests’ water consumption and regional 

water resources has garnered more attention (Cao and Zhang, 2015; Ma et al., 2013). 

Previous studies showed that afforestation and other ecological projects in arid and 

semi-arid regions could actually aggravate the shortage of water resources there (Lu et 

al., 2018; Xiao et al., 2020). Firstly, afforestation can increase local evapotranspiration 

and shift the balance of energy and radiation, thereby driving declines in groundwater 

and soil water storage (Kirschbaum et al., 2011; Liu et al., 2018; Yang et al., 2015). 

Secondly, afforestation’s water consumption may disrupt regional water balance 

dynamics, as afforestation consumes water resources that would be otherwise be 

available to support agriculture and other land uses, thus representing an ecological 

risk at the regional scale (Cao et al., 2016; Zheng et al., 2016).  

The determination of water consumption by afforestation and its influencing 

factors is helpful for figuring out the spatiotemporal differences in water consumption 

and for optimizing how afforestation is distributed. To measure afforestation’s water 

consumption, previous studies calculated the evapotranspiration rates of afforestation 

sites for comparison with those of natural vegetation sites (Schwarzel et al., 2020; Tie 

et al., 2018); other studies have examined differences in soil water contents and depth 

between afforestation and other land-use types (An et al., 2017; Cao et al., 2018). 

Although much research has evaluated the water consumption by afforestation and its 

impact on regional water resources, some limitations persist, namely the lack of 

spatially explicit analyses and an analysis of the forces driving afforestation’s water 

consumption. The water footprint (WF) is an important indicator of water use and can 

be used to quantify the total water consumption that occurs to produce given goods 
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and/or services (Hoekstra, 2003). The calculation of WF in prior studies could thus 

provide useful guidance for rigorously assessing the water consumption by 

afforestation (D'Ambrosio et al., 2018; Novoa et al., 2019). The WF framework 

classifies water consumption into three categories: green WF (water consumed from 

precipitation), blue WF (water consumed from surface and groundwater), and grey 

WF (water required to assimilate pollution) (Lovarelli et al., 2016); they are widely 

used to assess the impact of agricultural production and human lifestyles on local 

water resources (Ma et al., 2020; Wahba, 2021). On the basis of WF’s calculation, 

several scholars sought to evaluate the sustainability of agriculture and environment, 

highlighting implications for promoting water use efficiency at different scales 

(Chouchane et al., 2015; Fan et al., 2019). Yet comparatively little research has 

assessed afforestation’s WF (hereon AWF) in desertified areas at the national scale, 

with even less attention paid to the influences of different natural and human factors 

and their potential interactions upon AWF.  

To resolve the above problems, we selected the desert regions of northern China 

and analyzed their AWF and driving mechanism by using the geographical detector 

model (Wang and Xu, 2017). It quantifies the influence of single factors and their 

interactions on the dependent (response) variables, and this model has been widely 

used to analyze the driving forces of diseases, air pollutions, changing landscape 

patterns, and urban forest distributions, among others (Duan and Tan, 2020; Huang et 

al., 2014; Liang and Yang, 2016; Wu et al., 2020). The objectives of this work were 

threefold: (1) to identify the area under afforestation during 2003–2017 across the 

entire desert region of northern China; (2) to calculate and analyze the AWF; and (3) 

to quantitatively analyze the impact of different factors upon AWF. This work aims to 

discern and describe implications for policymakers when devising sustainable 
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ecological restoration strategies and projects. 

2 Materials and method 

2.1 Study area 

The desert regions of northern China are found across semi-humid, semi-arid, 

and arid zones, including the landscapes of Inner Mongolia, Xinjiang, Qinghai, 

Ningxia, Gansu, Hebei, Shanxi, Shaanxi, and Sichuan (31–51°N, 76–125°E). These 

desert regions encompass a total area of 3.04 million km
2
, accounting for 31.46% of 

China’s entire territory. Annual rainfall gradually decreases from east to west, ranging 

from 0 to 450 mm, and the average temperature is approximately 7°C, with an 

average annual sunshine duration of 2930 h and annual wind speed of 2.5 m/s. The 

soil types here mainly include desert soil, saline soil, and semi-hydrated soils. The 

vegetation coverage in the study area is generally poor, and the dominant species 

include various shrubs, such as Haloxylon ammodendron, Haloxylon persicum and 

Artemisia ordosica (Zhu et al., 2019). To address land degradation and improve the 

environment, many ecological restoration projects were implemented in these desert 

regions, such as TNSP and Returning Farmland to Forest (Wang et al., 2010a). Under 

the TNSP, afforestation has reached 26.47 million hm
2
, covering most of North, 

Northwest, and Northeast China (Xie et al., 2020). To better analyze the regional 

variation, based on the differing natural geographical environment and related 

research (Xu and Li, 2020), the study area was divided into three desert areas: Inner 

Mongolia and regions along the Great Wall (IMGW), the arid region of Northwest 

China (ARNC), and the Three-River Headwaters Region (TRHR). Further, the IMGW 

and the ARNC were subdivided into 9 and 10 subregions, respectively (Fig. 1, Table 

A.1). 
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(a) Schematic map of the study area (b) Subregions and main land uses of the study area 

Fig. 1. Location of the study area in northern China. 

2.2 Data source and preprocessing 

The data used in this paper included Landsat data in addition to climate, soil, 

digital elevation model (DEM), net primary production (NPP), and land cover data as 

well as some other socio-economic data. The surface reflectance (SR) products of 

Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI/TIRS were obtained from 

Google Earth Engine (GEE) (https//earthengine.google.com/). Overall, 19,925 scenes 

as Landsat images were acquired from 2003 to 2017 by Landsat 5, 7, and 8. To 

minimize the effects of clouds and cloud shadows, a cloud algorithm 

(https://developers.google.com/earth-engine/landsat) based on the SR quality 

assessment bands was used to mask clouds present in the images. The precipitation, 

temperature, and vegetation evaporation at a 1-km resolution were derived from 

National Tibetan Plateau Data Center (http://data.tpdc.ac.cn), while the wind speed, 

potential evaporation, and NPP at a 100-m spatial resolution came from GEE. The 

DEM data and 1:1,000,000 geomorphic types in China with 1-km spatial resolution 

were derived from the Data Center for Resources and Environmental Sciences and the 

Data Center of the Chinese Academy of Sciences (RESDC, http://www.resdc.cn). The 

soil types (spatial resolution: 1 km) were extracted from a dataset of soil 

characteristics for China (RESDC). In addition, socio-economic data in the form of 
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gross domestic product (GDP), human population from 2000 through 2015, and road 

data at a 1-km spatial resolution were all obtained from RESDC. The land cover data 

of 2017 (30-m resolution) were derived from Tsinghua University global land cover 

data (http://data.ess.tsinghua.edu.cn/). To facilitate the spatial analysis and regional 

comparison, all the data were uniformly converted to 100-m × 100-m grid data.  

2.3 Methods 

2.3.1 Afforestation extraction  

The identification of afforestation is an important prerequisite for this study. 

Compared with the relatively stable phenological characteristics of natural forest 

ecosystems, the Normalized Difference Vegetation Index (NDVI) of afforestation 

areas always show a marked trend of temporal increase due to the positive artificial 

disturbance involved (Beck et al., 2006; Prabakaran et al., 2013). So, to extract the 

afforestation areas in the GEE, we used these three steps (Fig. 2):  

(1) Extract the area(s) with a significantly increasing trend of NDVI during the 

2003–2017 period, by using the trend analysis method. The NDVI values were 

calculated by using the SR products. The linear slope (p < 0.05) was used to identify 

the NDVI changed significantly from 2003 to 2017 (Eq. 1). A significant, positive 

slope indicates a greening trend, and a significant but negative slope indicates a 

browning trend.  

𝑠𝑙𝑜𝑝𝑒 =
𝑛 × ∑ (𝑗 × 𝑁𝐷𝑉𝐼𝑗)

𝑛
𝑗=1 − ∑ 𝑗𝑛

𝑗=1 ∑ 𝑁𝐷𝑉𝐼𝑗
𝑛
𝑗=1

𝑛 × ∑ 𝑗2𝑛
𝑗=1 − (∑ 𝑗𝑛

𝑗=1 )
2  

(1) 

Where, n is the number of monitoring years, and 𝑁𝐷𝑉𝐼𝑗 is the annual maximum 

NDVI of year j; in the case of a slope > 0, this indicates the NDVI has a tendency of 

increasing. 

(2) Identify the regions with forest cover in 2017 by using texture classification 
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algorithm. The Landsat 8 images from 2017 were used as the primary input data for 

classifying the most recent land cover types in northern China. For this, 147 samples 

were collected from Tsinghua University global land cover data set, and another 313 

samples from Google Earth. All these samples were uploaded to GEE; 80% of them 

were randomly selected for training and the remaining 20% reserved as sampling 

points for validation. Finally, five land use types: forest, grassland, urban, water, and 

unused land were classified. 

(3) Extract afforestation area by overlapping the results derived in the prior two 

steps. Based on the NDVI trend analysis and the texture classification, the areas of 

forest cover in 2017 that featured a significant increase of NDVI were identified as 

having undergone afforestation during 2003–2017.  

 

Fig. 2. The workflow of afforestation extraction 
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2.3.2 AWF calculation  

Presuming no fertilizer was used in afforestation, in this study the AWF was 

calculated as the sum of green WF and blue WF (Bocchiola et al., 2013). For this, 

methodology proposed by Hoekstral et al. (2011) was followed. 

𝑊𝐹𝑡𝑜𝑡𝑎𝑙 = 𝑊𝐹𝑔𝑟𝑒𝑒𝑛 +𝑊𝐹𝑏𝑙𝑢𝑒 (2) 

where, 𝑊𝐹𝑡𝑜𝑡𝑎𝑙 is the summed AWF (m
3
/gC); 𝑊𝐹𝑔𝑟𝑒𝑒𝑛 is the green WF (m

3
/gC), 

which refers to the volume of precipitation used for vegetation growth; 𝑊𝐹𝑏𝑙𝑢𝑒 is the 

blue WF (m
3
/gC), which refers to the surface or groundwater used for production 

purposes. 

Both the green (WFgreen) and blue water footprints (WFblue) of afforestation were 

determined this way:  

𝑊𝐹𝑔𝑟𝑒𝑒𝑛,𝑏𝑙𝑢𝑒 =
𝐶𝑊𝑈𝑔𝑟𝑒𝑒𝑛,𝑏𝑙𝑢𝑒

𝑌
 (3) 

𝐶𝑊𝑈𝑔𝑟𝑒𝑒𝑛,𝑏𝑙𝑢𝑒 = 10 ×∑𝐸𝑇𝑔𝑟𝑒𝑒𝑛，𝑏𝑙𝑢𝑒

𝑙𝑔𝑝

𝑑=1

 (4) 

where, Y (gC/m
2
) is the net primary production of afforestation; 𝐶𝑊𝑈𝑔𝑟𝑒𝑒𝑛,𝑏𝑙𝑢𝑒 

(m
3
/m

2
) is the green and blue water use, respectively; Σ refers to the annual 

accumulation of green and blue evapotranspiration; 𝐸𝑇𝑔𝑟𝑒𝑒𝑛，𝑏𝑙𝑢𝑒 are the green and 

blue water evapotranspiration (mm/year). The factor 10 converts the water depths in 

millimeters into water volumes per land surface area, expressed in m
3
 ha

−1
. 

𝐸𝑇𝑔𝑟𝑒𝑒𝑛 = min⁡(𝐸𝑇𝑐, 𝑃𝑒𝑓𝑓) (5) 

𝐸𝑇𝑏𝑙𝑢𝑒 = max⁡(0, 𝐸𝑇𝑐 − 𝑃𝑒𝑓𝑓) (6) 

where, ⁡𝐸𝑇𝑐  is the vegetation evapotranspiration (mm) and 𝑃𝑒𝑓𝑓  is the effective 

precipitation (mm) as calculated by the Soil Conservation Service Method developed 
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by U.S. Department of Agriculture (USDA) (FAO, 2010).  

2.3.3 Quantitative analysis the impact of different factors on AWF 

(1) Indicator system 

The growth of and water consumption by vegetation are closely related to 

different natural and human factors (Hua et al., 2017). Climate factors (i.e., 

precipitation, temperature, moisture) will shape the hydrothermal conditions of 

vegetation growth, thus influencing the amount and extent of water consumption 

under afforestation. Other natural factors (i.e., soil types, elevation) could reflect the 

environmental context for vegetation’s water consumption. The convenience of 

transportation as well as economic development can influence the implementation of 

afforestation and water consumption in the region (Zhang et al., 2018). Therefore, to 

convey the possible influence of human activities, the GDP, population, and distance 

from county and road served as the human-related factors in the analysis.  

In this study, 12 factors were chosen to discern the effect of different factors on 

AWF in desert regions of northern China (Table 1). Since the geographical detector is 

only suitable for discrete variables, all the continuous variables had to be stratified by 

applying the natural breakpoint method using ArcGIS, version 10.3, mapping software 

(Esri, Redlands, CA). Besides, soil types and geomorphic types comprised 12 and 6 

types, respectively. Detailed information of all factors’ classification can be found in 

appendix information (Fig. A.2). 

Table 1 The assessed factors in the study area. 

Types Factor Code Units Classes/types 

Natural factors 

Average annual precipitation  prec mm 6 

Annual average temperature temp °C 6 

Moisture index im class 6 
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Annual average wind speed ws m/s 6 

Average Annual potential 

evapotranspiration 

pet mm 6 

Geomorphic types gmt categorical 7 

Soil types soil categorical 12 

Elevation dem m 6 

Human factors 

Gross Domestic Production  GDP 10 000/km
2
 6 

Population pop people/km
2
 6 

Distance from county  dfc km 4 

Distance from road dfr km 4 

(2) Geographical detector  

The geographical detector was used to analyze the factors influencing the AWF 

and the interactions among them. This detector model consisted of four sections, 

namely, a factor detector, interaction detector, risk detector, and ecological detector 

(Wang and Xu., 2017).  

The factor detector characterized the respective influence of these factors on the 

AWF by  q-value, q∈[0,1]. The q-value indicates the explanatory power of each 

factor; its power is stronger as the q-value approaches 1. The calculation model to 

derive q is as follows:  

𝑞 = 1 −
∑ 𝑁ℎ𝜎ℎ

2𝐿
ℎ=1

𝑁𝜎2
 (

7) 

where, h (1, …, L) is the number of stratifications of a given factor X; Nh and N are 

the number of units in class h and the whole area, respectively; 𝜎ℎ
2 and 𝜎2 are the 

variance of Y for the units in class h and the whole area, respectively. 

The interaction detector can be used to identify whether the interactions of 

different factors (𝑋1 ∩ 𝑋2) are weakened, enhanced, or influence Y independently. The 
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types of interactive influences are listed by comparing the q-value of the interacting 

factors to each of the two involved factors, as listed in Table 2. 

Table 2 Interaction types of two factors. 

Description Interaction 

q(X1∩X2) < Min (q(X1), q(X2)) Weaken; univariate 

Min (q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2))  Weaken; univariate 

q(X1∩X2) > Max(q(X1), q(X2))  Enhanced, bivariate 

q(X1∩X2) = q(X1) + q(X2)  Independent 

q(X1∩X2) > q(X1) +q(X2)  Nonlinearly enhanced 

The risk detector is used to determine whether there is a significant difference in 

mean values of Y between the two subzones of factors and to find those subzones with 

the highest mean value of Y, tested with the t statistic (Eq.8). A similar risk detector is 

often used to detect areas at risk of disease outbreaks and to identify subzones with 

the highest incidence of different contributing factors (e.g., Wang et al., 2010b). 

𝑡�̅�ℎ−1�̅�ℎ−2 =
�̅�ℎ=1 − �̅�ℎ=2

[
𝑉𝑎𝑟(�̅�ℎ−1)

𝑛ℎ−1
+
𝑉𝑎𝑟(�̅�ℎ−2)

𝑛ℎ−2
]
1/2

 (

8) 

Where, �̅�ℎ denotes the average value of Y in the subregion h; 𝑛ℎ is the sample size 

in subregion h; and Var represents the variance. 

The ecological detector can then be applied to discern whether there is a 

significant difference between two factors’ influence on the spatial distribution of 

AWF, tested with the F statistic: 

𝐹 =
𝑁𝑋1(𝑁𝑋2 − 1)𝑆𝑆𝑊𝑋1

𝑁𝑋2(𝑁𝑋1 − 1)𝑆𝑆𝑊𝑋2
 (9) 

𝑆𝑆𝑊𝑋1 =∑ 𝑁ℎ𝜎ℎ
2

𝐿1

ℎ=1
⁡,⁡⁡⁡⁡𝑆𝑆𝑊𝑋2 =∑ 𝑁ℎ𝜎ℎ

2
𝐿2

ℎ=1
 (10) 

where 𝑁𝑋1 and 𝑁𝑋2 denote the size of the samples of the two factors X1 and X2, 
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respectively; 𝑆𝑆𝑊𝑋1⁡and 𝑆𝑆𝑊𝑋2 are the sum of squares in the subregions generated 

by factor strata X1 and X2, respectively. 

Geographical detector was implemented in MS Excel software, where it can be 

run with a maximum of 32,767 rows of data. Hence, it was necessary to first convert 

the spatial data into point data. To select sufficient representative point data for the 

entire irregular afforestation area, we generated 300-m  300-m fishing nets in 

ArcGIS software, to finally obtain 30,799 random sample points (Fig. A.3). The AWF 

of these sampling points and its data on related factors were extracted from the 

attribute table, upon which the geographical detector analysis was conducted. 

3 Results 

3.1 Spatial distribution of afforestation across the desert regions of northern China 

According to the NDVI trend analysis for the 2003–2017 period, the NDVI 

increased significantly in most areas but was mainly distributed in the east and south 

of desert regions, indicating that the ecological environment has improved there 

especially (Fig. 2c). Within these NDVI-increased land areas, their forest cover was 

designated as afforestation, this mainly distributed in the southeast and south (Fig. 3). 

The total afforestation area increased by 73,764.31 km
2
 from 2003 to 2017, 

accounting for 2.42% of the total study area (Table B.1.). At the desert areas scale, 

IMGW had the largest afforestation with an area of 35,962.61 km
2
, accounting for the 

48.75% of the total afforestation area. In the IMGW, the afforestation was mainly 

distributed in the east of this particular region, where bash had the largest 

afforestation area at 12,120.63 km
2
. The TRHR’s afforestation area is second only to 

IMGW, and mainly concentrated in the south of TRHR, accounting for 27.89% of the 

total afforestation area. In the ARNC, afforestation was found distributed primarily in 

zhgr and hxzl, respectively accounting for 38.65% and 29.91% of the entire 
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afforestation area in the ARNC.  

 

Fig. 3. Afforestation in desert region of northern China (2003–2017). 

3.2 Afforestation WF 

During the 2003–2017 study period, the average AWF was 8.41 m
3
/gC across all 

desert regions of northern China. The AWF increased from east to west, indicative of 

spatial heterogeneity (Fig. 4). At the desert areas scale, TRHR had the highest average 

AWF, followed by ARNC and IMGW. At the subregional scale, alsh, ycpy, talm, and 

htpy had the highest-ranked average values of AWF, these being 18.51 m
3
/gC, 13.03 

m
3
/gC, 12.53 m

3
/gC, and 11.73 m

3
/gC, respectively. 
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Fig. 4. Spatial distribution of the average AWF (m3/gC). 

Concerning the WF’s composition, the blue WF was higher than the green WF, 

on average, largely due to the limited rainfall across northern China. Nonetheless, 

there were obvious distinctions among the desert areas. The TRHR had the highest 

proportion of green WF, followed by IMGW and ARNC. In the subregions of IMGW, 

the difference between the green and blue WF was relatively small in wmt, char, and 

jxb, whereas erdos had as higher green WF than blue WF. In the ARNC, the blue WF 

exceeded the green WF in most subregions except cdm and thpd (Fig. 5). 

 

Fig. 5 The average afforestation WF of the subregions (m
3
/gC). 

3.3 Influences of natural and human factors on AWF 

3.3.1 Effects of the 12 factors on AWF 

The respective impact (q-values) of the 12 factors upon AWF and its components 

(i.e., blue and green WF) were obtained from the factor detector (Table 3). Among all 

factors, potential evapotranspiration had the largest influence, explaining 20.4% of the 

variation in AWF. By contrast, the total contribution from GDP, population, and the 

distance from road was just 2%, implying that human factors had less impact of an 
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impact on AWF. For the blue and green WF, the main factors driving each were 

temperature and elevation, respectively. At the desert areas scale, the main factors 

affecting the AWF differed, for which the top three factors are presented in Figure 6. 

In the ARNC, temperature, potential evapotranspiration, and soil type were the major 

factors explaining the AWF and blue WF (sorted in descending order of q-value). In 

the IMGW, the AWF was mainly contributed to by soil type, geomorphic type, and 

temperature. In the TRHR, it was elevation, temperature, and potential 

evapotranspiration that chiefly influenced the AWF.  

In summary, natural factors had far greater impacts on the AWF than did human 

factors, especially among the desert areas. However, at the subregional scale, human 

factors could contribute more to explaining the patterns of AWF. For example, in htpy 

and thpd, distance from road and county influenced the AWF and also its green and 

blue WF.  

Table 3 q-values of different factors on AWF, Blue WF and Green WF 

Note: * denotes a q-value found significant at the 0.05 level (p < 0.05); 
#
 denotes a q-value is 

significant at the 0.1 level (p < 0.1). Other values without any superscript symbols denotes a 

q-value is significant at the 0.01 level (p < 0.01). 

 

pet prec temp ws im dem gmt soil gdp pop dfr dfc 

AWF 0.204 0.164 0.186 0.054 0.137 0.113 0.047 0.167 0.003 0.006 0.013 0.000
#
 

Blue WF  0.114 0.092 0.150 0.053 0.054 0.011 0.048 0.123 0.002 0.001* 0.002 0.003 

Green WF 0.390 0.162 0.198 0.029 0.207 0.421 0.023 0.302 0.002 0.026 0.038 0.006 
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Fig. 6. The main factors affecting the WF in the desert regions and subregions. (a), (b) Main 

factors of WF. (c), (d) Main factors of blue WF. (e), (f) Main factors of green WF. 

3.3.2 Interaction between factors 

The interaction detector analyzed the 12 factors’ influence on AWF across the 

whole afforestation area (Fig. B.2). Since the q-value of each pair is evidently larger 

than that either single factor, the explanatory power of a single factor can be 

strengthened by its interaction with another factor. The vast majority (80.3%) of 

interaction effects were a non-linearly enhanced form. The rest (19.7%) took the form 

of bivariate enhanced, which mainly occurred when potential evapotranspiration, 
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precipitation, and temperature interacted with other factors. For the blue WF, the 

interactions were mainly non-linearly enhanced, this accounting for 89.4% of all cases. 

The interaction between soil type and climate factors had a higher impact on the blue 

WF than the green WF. For the green WF, the proportion of bivariate enhanced 

interactive effects reached 39.4%. The interactions between the elevation, soil type 

and climate factors exerted a greater impact on the green than blue WF. For the desert 

areas and subregions, the analysis also resulted in the q-value of each pair of factors 

being higher than that of their single factors. Potential evapotranspiration, temperature, 

soil types, and elevation were the principal influencing factors, the interactions 

between them and other factors surpassed those of other factor interactions. 

3.3.3 Effect of factors’ different grades 

By using the risk detector, the AWF in the different grades of all 12 factors were 

obtained (Fig. 7). Those grades with the highest AWF can be recognized as the 

leading grade for each factor. The impact of the climate factors’ different grades on 

the average WF was clearly not uniform. Taking potential evapotranspiration and 

precipitation as examples, the AWF increased with more potential evapotranspiration, 

but as precipitation increased, the AWF tended to decrease as well. With increasing 

elevation, the AWF also tended to increasing, and the grade-1 (plain) geomorphic type 

and the grade-9 (saline soil) soil type each had a higher AWF. With respect to the 

human factors, the AWF for their different grades were similar, though regions with a 

lower GDP and population may have higher AWF. For distance from county, its 

grade-1, -2, and -3 had no significant impacts on the AWF. The average green and 

blue WF also differed starkly among the grades of all 12 factors (Fig. B.3). The blue 

WF increased with the more potential evapotranspiration and a higher temperature yet 

decreased with more precipitation and a greater wind speed. By contrast, the green 
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WF did not change significantly with variation in any climate factor. For the human 

factors, the different grades of these factors also had negligible or little effect on the 

blue and green WF.  
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Fig. 7. The average AWF in the different grades of 12 factors (m
3
/gC). 
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3.3.4 Significant differences between the factors 

The differential impact of paired factors upon the AWF was determined using an 

ecological detector analysis. These results showed significant differences in impact 

between most paired factors, but not so among the four human factors (Fig. B.4). 

Likewise, no significant differences were detected between soil type and precipitation, 

or between wind speed and geomorphic type. With respect to the blue WF, 

non-significant differences between elevation and human factors, wind speed, and 

moisture index were found. For the green WF, the difference in impacts between most 

of the paired factors were statistically significant, yet not so between wind speed, 

population, geomorphic types, and distance from road, as well as GDP and distance 

from county, temperature, and moisture index. Overall, natural factors had the 

stronger effects than did human factors on WF, and also the green and blue WF.  

4 Discussion 

4.1 Identification of afforestation 

The afforestation coverage and trends identified in this study are consistent with 

the distribution characteristics of China’s afforestation project and work by Zhang et 

al. (2016) and Yin et al. (2018), which revealed that large-scale ecological 

construction has achieved certain progress since 2002. Accurately quantifying 

afforestation is important for the calculation and analysis of AWF. Here, texture 

classification was chosen to distinguish land cover in this study and its accuracy was 

80%, in line with its superior performance at separating different land types from 

remotely sensed imagery (Murray et al., 2010). Due to the poor identification of some 

recent sites of afforestation or with shrub vegetation, the actual land area under 

afforestation may have been slightly underestimated. In a future study, we plan to 

extract the multi-temporal afforestation and analyze afforestation at different temporal 
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and spatial scales.  

4.2 Afforestation water footprint (AWF) 

Referring to the calculation of the WF for crop plants, here we used NPP as an 

indicator of afforestation production to calculate the AWF in northern China. The 

results showed the distribution of AWF was spatially dependent, in that it gradually 

increased going from east to west. Meanwhile, most regions featured a higher 

proportion of blue than green WF, thus indicating that afforestation consumed more 

groundwater. Similarly, Lu et al. (2018) also found that under varying assumptions, 

afforestation would cause the groundwater table to decline in arid and semi-arid 

regions in northern China. The respective proportion of blue and green WF could 

reveal the water use efficiency to some extent (Lu et al., 2016). A higher proportion of 

green WF suggests water consumption of precipitation mainly and this entails a 

higher water use efficiency and lower water opportunity cost. Earlier, Zeng et al (2012) 

reported that in arid and semi-arid regions, the blue WF proportion of crop production 

exceeded China’s average amount. Therefore, in arid and semi-arid regions, 

afforestation could put potential pressure on local water resources. In devising or 

implementing further ecological restoration practices, selecting native tree species 

with high water-use efficiency is important to utilize the groundwater resource more 

efficiently and sustainably.  

4.3 Driving forces of AWF 

Our detector analysis results showed that at different scales the explanatory 

power of natural and human factors for the AWF was disparate. At the whole study 

area scale, climate factors predominately impact the AWF, namely potential 

evapotranspiration, precipitation, and temperature. Potential evapotranspiration can be 

regarded as a comprehensive indicator of climatic conditions, on that has been shown 
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to be influenced by temperature and vapor pressure deficit but also able to affect 

vegetation growth to some extent (You et al., 2019). Notably, with more precipitation, 

the blue WF decreased and the water use efficiency of afforestation was improved. 

Although a moderate increase in temperature can promote vegetation growth, too 

much warming can accelerate evaporation sufficiently to limit vegetation growth (Li 

et al., 2018). At the desert areas scale, the impact of elevation, soil type, and 

geomorphic type on AWF were all increased. Among them, soil type played an 

important role in vegetation growth, a result consistent with the findings of Meng et al. 

(2020). A previous study also indicated that when the precipitation is the leading 

factor, the type of soil will strongly determine vegetation growth and rainwater reuse 

(Otgonbayar et al., 2017). When compared with natural factors, the human factors we 

investigated had much less of an influence on AWF across the whole study area. Yet at 

the subregional scale, human factors can markedly impact the AWF; for example, in 

the thpd, distance from road had the highest q-value, suggesting that the AWF there 

was shaped by human activities. Additionally, in the regions with similar climatic 

characteristics, the influence from other factors may increase: for instance, in nxhd, 

the climate factors only include two grades, and the main factors affecting AWF 

include soil type, geomorphic type and distance from road without climate factors. 

We found that the interactions between influencing factors often enhanced their 

effects not only upon the AWF but also the blue and green WF. Importantly, the 

explanatory power of interacting factors tends to increase at smaller spatial scales of 

inquiry. Although individually the human factors had less of an impact on the AWF in 

general, their explanatory power may be enhanced when through interaction with 

natural factors. Recent research suggests the interactive influence of natural factors on 

NDVI happens through a bivariate or nonlinear enhancement (Peng et al., 2019). We 
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might expect that, under particular climatic conditions, one or more human factors 

would strengthen the impact on vegetation (Tong et al., 2020).  

In summary, based on the spatial stratification of impacting factors, the analysis 

of driving forces acting on AWF could provide a more robust reference that could 

inform or guide policymakers seeking appropriate measures for effectively 

implementing ecological restoration. Specifically, choosing a suitable region with 

favorable soil and geomorphic types for the afforestation’s implementation is crucial. 

Additionally, water-saving technologies such as drip irrigation should be adopted to 

conserve water, and native and drought-resistant tree species ought to be selected for 

planting to improve the recruitment and survival of saplings. Furthermore, adjusting 

the planting density in afforestation can help reduce competition between trees for 

water resources. Above all, the carrying capacity of water resources should be fully 

considered when implementing any afforestation project in arid and semi-arid regions.  

5 Conclusions 

Based on the Landsat datasets coupled with meteorological, soil type, 

socio-economic as well as other data, the afforestation area, WF, and the factors 

influencing the AWF were analyzed across desert regions of northern China, from 

2003–2017. On the whole, the afforestation had increased by 73,764.31 km
2
 over this 

time period, and the AWF increased going from east to west. In this study, the impacts 

of different factors on the AWF were quantitatively analyzed by the geographical 

detector method. We found that potential evapotranspiration, temperature, soil types, 

and precipitation were the dominant factors influencing afforestation’s WF across the 

whole study area. However, the major contributing factors differed among different 

desert areas and subregions. The interaction between each pair of factors exhibited 

bivariate enhancement or nonlinear enhancement, indicating that the interactions 
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between different factors had higher impact than that of single factors. Notably, the 

risk detector results revealed a range of different factors that would lead to higher 

afforestation WFs. Therefore, policymakers should consider local natural conditions, 

such as the annual precipitation, temperature, and soil types along with 

socio-economic factors, when carrying out afforestation. Looking ahead, we plan to 

analyze afforestation’s WF at multiple temporal scales, to further inform the 

sustainability of ecological restoration efforts, especially in arid and semi-arid areas.  
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Appendix A. Study area and data description  

Appendix A.1. The names of the subregions in the study area. 

Abbreviation Name Abbreviation Name 

hlbr Hulun Buir cdm Chaidamu 

horq Horqin alsh Alashan plateau 

hsdk Hunshandake htpy Hetao plain 

char Chahar hxzl Hexi Corridor 

bash Bashang nmhs 

Houshan region in Inner 

Mongolia 

wmt 

Wumeng Qianshan and 

Tumote plain 

talm Tarim basin 

jxb 

Northwest area of Shanxi 

Province 

thpd Turpan Hami basin 

erdos Erdos ycpy Yinchuan plain 

nxhd Ningxia Hedong ylpd Yili basin 

trhr Three-River Headwaters zhgr Zhungeer basin 
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Appendix A.2. Stratification of the 12 influencing factors. 

 

The serial numbers in the legend of soil type denote the following: (1) leached soils, (2) 

semi-leached soils, (3) pedocal, (4) aridisols, (5) desert soil, (6) primary soils, (7) semi-hydrated 

soils, (8) water-formed soils, (9) saline soil, (10) water-formed soils, (11) ferro alumina soils, and 
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(12) rocks and other. The serial numbers in the legend of gmt correspond to (1) plain, (2) terraces, 

(3) hill, (4) small undulating mountains, (5) middle undulating mountains, (6) large undulating 

mountains, and (7) extremely undulating mountains.  
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Appendix A.3. The spatial distribution of sample points. 
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Appendix. B Results supplementary  

Appendix B.1. The land under afforestation in the different subregions. 

Desert areas Subregion Area (km
2
) 

ARNC 

ycpy 573.53 

zhgr 6659.83 

alsh 133.72 

cdm 723.18 

htpy 389.52 

hxzl 5154.02 

nmhs 35.53 

talm 1694.35 

thpd 1194.68 

ylpd 671.42 

IMGW 

hlbr 3485.98 

kerq 10157.17 

hsdk 966.89 

char 211.16 

bash 12120.63 

wmt 2596.81 

jxb 4949.77 

erdos 1344.95 

nxhd 129.25 

TRHR sjy 20571.92 

Total area 73764.31 
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Appendix B.2. Interactions detected between different factors on the afforestation WF 

(a), blue WF (b), and green WF (c). 

 

 

 

* denotes an interactive relationship that was enhanced, bivariate; otherwise, the interactive 

relationship is nonlinearly enhanced.  
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Appendix B.3. Factor grades and their corresponding average blue and green WF (m
3
/gC). 
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Appendix B.4. The ecological detector results: (a) WF, (b) blue WF, (c) green WF. 

 

Dark gray denotes ‘Y’, the light gray denotes ‘N’, respectively referring to a Yes or No significant 

difference between the given two factors.  
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Highlights 

 

 Afforestation area increased by 73,764.31 km
2 

in sandy regions of northern China, 

from 2003 to 2017. 

 Afforestation water footprint (AWF) showed high heterogeneity and ranged from 

0 to 58.9 m
3
/gC. 

 Potential evapotranspiration dominated AWF at national scale but major factors 

differed at sub-region level 

 The interactions between different factors had higher impact on AWF than single 

factor. 
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