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Abstract Support funds from national or subnational public spending provide essential assistance for 

flash floods reduction all around the world. However, how to allocate support funds to different regions 

with various degrees of disaster is a challenge for decision makers. In this paper, we develop a universal 

and novel multi-objective framework to solve the problem at multi-space scales. The framework is 

coupled with the concept of multiple vulnerability and the Fund Allocation Optimization Model (FAOM) 

developed, taking fully into account the impact of vulnerability on funds allocation. Elite Genetic 

Algorithm, Technique for Order Preference by Similarity to Ideal Solution and Geographical Detector 

are applied to solve the FAOM. Based on the case study in Hainan Island, China and the model is 

compared with the other two fund allocation schemes. Results show that FAOM is able to find a better 

fund allocation program. As such, it offers a novel approach to solve the problem of funds allocation, 

considering environmental, social and economic factors. In addition, the further application of the model 

in progressive recognition and phased support is designed for long-term funding decisions in a particular 
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region, considering the sustainable development of society.

Keywords: Multi-objective, Funds allocation, Flash flood, Vulnerability, Fund Allocation Optimization 

Model

1 Introduction

Flash flood is one of the most devastating disasters in the world, causing substantial casualties and 

property losses (Lucía et al. 2018; Liu et al. 2018; Lian et al. 2017; Nielsen et al. 2015; Ahmadalipour 

and Moradkhani 2019; Diakakis et al. 2020). Serious disaster areas often need to inject a large amount 

of financial funds from national or subnational public spending for the construction of engineering 

measures and non-engineering measures, which are conducive to the local disaster prevention and 

mitigation. The support funds mentioned here focuses on a relatively long-term planning project rather 

than emergency funding. In China, the government has prepared the Implementation Plan of National 

Mountain Flood Disaster Prevention Project for three years, and the support funds will be shared by the 

central and local governments. With increasing tight resources, the total amount of support funds 

available for different regions is often insufficient, so decision makers should try their best to invest the 

funds accurately and realize the maximum benefit. To make more scientific decisions, two problems 

need to be solved. Firstly, identify those areas requiring relative priority support, and secondly, give a 

more precise funding plan for those areas that need priority support.

About the first problem, some recent literature has examined the determinants of identifying priority 

support regions. It was often determined by the degree of historical flash floods or the situation of 

prevention and control tasks in the past (Bubeck et al. 2013; Xu et al. 2018, Nahiduzzaman et al. 2015; 

Kablan et al. 2017; Karmakar et al. 2010; Huang et al. 2011 ). Increasingly, more comprehensive concept 

and factors have been considered to help identify priority support areas. Vulnerability or risk is often 
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used as basis for priority funding area selection. Karim and Noy (2020) examined that flood hazard risk 

and socio-economic vulnerability are both positively correlated with the sub-district fiscal allocations. 

Weiler et al. (2018) explored the influence of the vulnerability, good governance and donor interests on 

priority support regions for adapting to the impacts of climate change. Ahmad and Ma (2020) suggested 

that gender, membership, farmer size and injured members are the determinants in aid programe through 

specific case studies.

Over recent years, the term risk and vulnerability have become buzz words in natural hazard. On the 

definition of risk, IPCC defined it as the product of probability and consequence in 2001(IPCC 2001) 

and then argued it as the collection of hazard, exposure and vulnerability in 2014(IPCC 2014). The 

European Environment Agency adopted the flood risk as the product of probability and consequence 

(UNEP 2004, Shehata and Mizunaga, 2018; Kim and Choi 2011). Some scholars also explained risk as 

the collection of external risk and internal risk, of which the external risk mainly refers to the potential 

loss brought by extreme events and the internal risk refers to the decision maker's decision in response 

to the unexpected situation that may cause greater risk (Roos et al. 2017). On the definition of 

vulnerability, it has become a popular term in the study of natural disasters and climate change, which 

refers to disasters, social, economic, population and ecological fields. IPCC defined vulnerability as a 

function of exposure, sensitivity and adaptive capacity, which is adopted by ETC-CCA &ETCSIA and 

IUCN (IUCN 2010; Swart et al. 2012; IPCC 2007). Then vulnerability is argued as the tendency of the 

system to be adversely affected in 2014 (IPCC 2014). Some scholars also emphasized that the definition 

of vulnerability depends largely on the purpose or the interest of the analysis (Fuchs et al. 2011). Here, 

we adopted the definition of vulnerability as a set of exposure, sensitivity, and adaptive capacity, which 

generalize the possible impacts from disasters on regions, considering environmental, social and 
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economic factors synthetically (Chang and Huang 2015; Adger 2006; Andrade and Szlafsztein 2018).

In this paper, the concept of multiple vulnerability from one of our papers which has been published 

(Yang et al. 2018a) is adopted to identify priority support regions. Multiple vulnerability here was defined 

as six types (Potential Disaster Loss, Potential Economic Development, Potential Defense Defect, 

Potential Self-organizing Capability, Potential Disaster Frequency, Potential Resources Waste), 

considering the relationship between exposure, sensitivity and adaptive capacity, which will give a more 

comprehensive basis for priority funding area selection. 

Multiple vulnerability assessment can identify priority support regions, but how to allocate funds to 

different regions accurately has always been a challenge, namely, the second problem. Indeed, there are 

some related researches on resource allocation, most of which are based on the model of emergency 

dispatch (Balcik et al. 2008; Altay and Green 2006; Anaya-Arenas et al. 2014; Galindo and Batta 2013). 

Al Theeb and Murray (2017) developed a resource distribution model incorporating features of multi-

commodity, multi-depot and multi-period. Huang et al. (2015) presented an integrated decision support 

model coupling humanitarian principle like lifesaving, human suffering, and fairness, to optimizes 

resource allocation. Balcik et al. (2008) proposed a mixed integer programming model for optimizing 

resource allocation in last mile of relief chain.

Based on literature review, we found that previous researches on fund allocation were mostly on 

account of historical disasters or specific comprehensive concepts like vulnerability or risk (Miller and 

Vela 2014; Lis and Nickel 2010; Hochrainer-Stigler et al. 2014). Karim and Noy (2020) examined the 

directly observable determinants of subnational (central to local) public spending allocation for disaster 

risk reduction and climate change adaptation in Bangladesh. The authors set up a comprehensive 

indicator system with the primary focus on risk, poverty and politics to explore the determinants of 
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subnational public spending allocation for adaptive disaster risk reduction in the Bangladeshi context. 

Meanwhile, they established the links between social protection, disaster risk reduction and climate 

change adaptation and a methodological framework to assess the determinants of public spending 

allocation, which play an important role in subnational public spending allocation.

However, the research on optimal allocation of disaster prevention funds is still not mature, especially 

for different space scales. This paper contributes to the literature by offering a novel multi-objective 

method to determine the allocation of support funds for flash flood reduction in multi-space scales 

(catchment, town and county). A methodological framework coupling the concept of multiple 

vulnerability and Fund Allocation Optimization Model (FAOM) is proposed to give the results of optimal 

allocation of funds from the space scales of catchment, town and county, which helps to maximize the 

benefit of limited disaster prevention funds and can be generalized.

Heuristic algorithm is a popular approach to solve mathematical model with multiple objectives (Cao 

et al. 2018). Among them, Genetic Algorithm (GA) has attracted more attention because of its many 

advantages, including few parameters, good convergence, fine robust and wide extension (Zheng et al. 

2015; Su et al. 2016; Soleimani and Kannan 2015). The basic principles of GA are as follows: First, the 

initial solution of solved problems is generated in a random way, obtaining initial population; Then each 

individual is evaluated by the fitness function to eliminate the individuals; Next, the individuals with 

high fitness will be selected to participate in the genetic operation, and the individual set after genetic 

operation forms the next generation of new population; Then the next round of the new population is 

carried out. However, in the course of evolution, the adaptive individuals in the current population may 

be destroyed. To solve the problem, De (1975) put forward the elite selection strategy which saving the 

best individuals to date in the population evolution and copying them to the next generation with 
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probability 1. The algorithm formed by combining elite retention strategy with GA is called Elitist 

Genetic Algorithm (EGA). In this study, EGA is designed to solve the FAOM. Then Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) is applied to find the final optimal scheme.

Generally, this paper is organized as follows: In Section 2, we introduce in detail the process of 

building the framework, including multiple vulnerability assessment and the construction of Fund 

Allocation Optimization Model (FAOM). In Section 3, The framework is applied to Hainan Island and 

the results of final fund allocation in different catchments, towns and counties are obtained. In Section 

4, the rationality and superiority of FAOM has been tested and explained. Meanwhile, the further 

application of the model is discussed. Finally, we give the conclusions and discuss the limitations of our 

work.

2 Framework development

Fig. 1 Novel multi-objective framework of funds allocation for flash flood reduction

To solve the fund allocation problem in different areas, a universal and novel multi-objective 
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framework for flash flood reduction based on the multiple vulnerability assessment and FAOM is 

developed here. The framework consists of two modules like multiple vulnerability assessment and Fund 

Allocation Optimization Model, in total of six steps (Fig 1). We will introduce the framework in detail 

next.

2.1 Multiple vulnerability assessment

2.1.1 Step 1: Establishment of index system

In this study, multiple vulnerability is defined as the interaction of exposure, sensitivity and adaptive 

capacity (Lian et al. 2017). Exposure in this paper refers to the external pressure (disturbance) and related 

factors that may affect the magnitude of the pressure (disturbance) (Fuchs et al. 2011). Sensitivity is 

defined as the degree to which a system is likely to be affected by pressure or disturbance (Chang and 

Huang 2015). Adaptive capacity is regarded as the ability of a system to enhance its capability to adjust 

or respond by reducing potential impacts due to flash flood here (Yang et al. 2018a).

Based on literature summary (Carlo 2015; Swart et al. 2012; EEA 2017; Balica et al. 2009,2012; 

Koutroulis et al. 2018; Bălteanu 2015; Aroca-Jimenez et al. 2017; Khazai et al. 2013; Karagiorgos et al. 

2016; Terti et al. 2015; Ahmad and Ma 2020; Mahmood et al. 2016) and the principles of being 

representative, systematic, measurable, universal and operational, the indicators to characterize the three 

components of vulnerability have been suggested as Fig 2. Exposure indicators here are suggested as 

maximum 10-minute rainfall, maximum 1-hour rainfall, maximum 6-hour rainfall, maximum 24-hour 

rainfall, maximum 6-hour rainfall, annual rainfall, elevation, slope, river density, land use status, soil 

type and vegetation type. Sensitivity indicators are selected as family economy, housing value, villages 

number, population density and enterprise density. The adaptive capacity index system includes 

engineering measures, non-engineering measures and financial state. Specifically, the engineering 
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measures are suggested as reservoir, sluice, culvert, bridge, embankment; Non-engineering measures 

include automatic monitoring station, simple water level station, simple rainfall station, wireless early 

warning station; and the gross domestic product (GDP) is regarded as the financial state indicators.

Exposure indicators

-Maximum 10-minute rainfall
-Maximum 1-hour rainfall
-Maximum 6-hour rainfall
-Maximum 24-hour rainfall
-Annual rainfall
-Elevation
-Slope
-River density
-Land use status
-Soil type
-Vegetation type

Sensitivity indicators

-Family economy in the
prevention and control area 

-Housing value in the prevention
and control area 

-Villages number in the 
prevention and control area 

-Population density 
-Enterprise density 

Adaptive capacity indicators

>Engineering measures:
-Reservoir
-Sluice
-Culvert
-Bridge
-Embankment 
>Non-engineering measures:
-Automatic monitoring station 
-Simple water level station
-Simple rainfall station 
-Wireless early warning station
>Financial state:
-Gross domestic product (GDP)

Multiple  vulnerability assessment index system 

Fig. 2 Multiple vulnerability assessment index system

2.1.2 Step 2: Index weight determination

The common methods of weight determination include subjective weighting (Delphi or Analytic 

Hierarchy Process), objective weighting (entropy weight method) and comprehensive weighting (Lee et 

al. 2013; Zeng et al. 2016). All methods have their own advantages and disadvantages. This paper 

proposes a new weighting method based on geographical detector.

The Geographical detector is a novel statistical method proposed by Wang et al. (2010). The tool’s 

core idea is based on the assumption that if one variable has a significant effect on a dependent variable, 

then the two variables will have a similar spatial distribution. The geographic detector is able to calculate 

the extent to which each indicator explains the spatial differentiation of a phenomenon. The greater the 

interpretation force, the closer the relationship between the index and the phenomenon, and the greater 

weight of the corresponding index should be. The geographical weighting method makes full use of the 
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spatial distribution relationship between a certain phenomenon and each index, avoiding the former 

subjectivity and simple objective but may not accord with the actual. A detailed introduction to the 

principle of geographic detector is as follows:

Define X as a categorical layer, having impacts on the spatial distribution of Y. If the indicator layer X 

is not a categorical layer, it needs to be classified based on specific principles such as natural breaks 

class, equal interval class, quantile class and so on. In this study, natural breaks class is adopted. Then 

the interpretation force (IF) from X to Y and the weight of each indicator are measured as:
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where IF represents the interpretation force from X to the distribution of Y. IF is a value between 0 

and 1. The larger the IF, the greater the explanatory power of X to Y. N is the number of samples in the 

study area; σ2 means the global variance of Y; Nh represents the samples’ number of Y in zone h;σ2
h is the 

variance of Y in the zone h; L is the number of zones; Nh,i is the value of Y in ith sample of zone h;Nh is 

the average value of Y in zone h; Nj is the value of the jth sample unit in the whole study area,N is the 

global average value of Y in entire study area, IFj is the interpretation force from the jth indicator to Y, m 

is the number of all the indicators selected and wj is the weight of the jth indicator.

2.1.3 Step 3: Multiple vulnerability assessment

Vulnerability is regarded as a concept including three components like exposure, sensitivity and 
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adaptive capacity. They are characterized by a series of indicators, respectively. The specific 

quantification process is as follows:
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Where zij is the characterization value of the jth index in ith unit; xij is the standardized value of the jth 

index in ith unit; zij,max is the maximum value of the jth index in the ith unit; zij,min is the minimum value 

of the jth index in the ith unit; Hi is the entropy value of all indicators in the ith unit; ui is inhomogeneity 

of the ith unit proposed by (Yang et al. 2018b); EXui  SEui, and ACui is the exposure, sensitivity and 

adaptive capacity inhomogeneity of the ith unit, respectively and EXi, SEi and ACi is exposure, sensitivity 

and adaptive capacity, respectively.

Here we adopt the concept of multiple vulnerability from one of our papers which has been published 

(Yang et al. 2018a). Six vulnerability indices, namely, Potential Disaster Loss (PDL), Potential Economic 
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Development (PED), Potential Defense Defect (PDD), Potential Self-organizing Capability (PSC), 

Potential Disaster Frequency (PDF) and Potential Resources Waste (PRW), have been developed based 

on the situation of exposure, sensitivity and adaptive capacity (Table 1). These six vulnerability indices 

can be classified into positive and negative types for actual disaster prevention and mitigation (Table 1). 

So far, based on the above formula and the definition of multiple vulnerability, we can identify the 

multiple vulnerability of all units in study area.

Table 1 Multiple vulnerability and types situation

Situation Multiple vulnerability Type

EXi > SEi Potential Disaster Loss (PDL) Negative

EXi < SEi Potential Economic Development (PED) Positive

SEi > ACi Potential Defense Defect (PDD) Negative

SEi < ACi Potential Self-organizing Capability (PSC) Positive

EXi > ACi Potential Disaster Frequency (PDF) Negative

EXi < ACi Potential Resources Waste (PRW) Positive

2.2 Fund Allocation Optimization Model (FAOM) construction

How to allocate support funds to regions with different or the same degree of disaster has always been 

a challenge for policy makers. Here, a fund allocation optimization model (FAOM) has been developed 

to solve the problem, according to the results of multiple vulnerability assessment above.

2.2.1 Step 4: Priority support region determination

The degree of disaster should be the criterion to identify priority support regions. Previous definitions 

of the extent of the disaster may limit to historical flash floods or unilateral natural factors. There is rarely 

a comprehensive consideration of environmental, social and economic factors, while the multiple 
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vulnerability assessment overcome the above defects. Vulnerability is considered as an important 

concept to reflect the disaster risk in an area. Based on the results of multiple vulnerability assessment 

results, the number of negative types of multiple vulnerability of all analysis units ought to be counted 

first. Then the units with three negative multiple vulnerability will be identified as the priority support 

regions.

2.2.2 Step 5: Determine the input measures and benefit coefficient

From the concept of multiple vulnerability, PDL and PED reveal the relationship between exposure 

and sensitivity. Improving PDL to PED is difficult as the exposure reveals the impacts from natural 

factors, which is always out of our control. On the contrary, it is easier to improve PDD to PSC or PDF 

to PRW by building related engineering measures and non-engineering measures to increase the local 

adaptive capacity. Then the input measures can be identified by analyzing the effect of existing disaster 

prevention measures. Based on the geographical detector, the relationship between the distribution of 

historical flash floods and the existing measures can be quantized. The results are used to characterize 

the benefit coefficient of all input measures.

In addition, considering the different effects of various measures on the prevention and control of flash 

floods and being likely to complement each other, this paper recommends the balanced principle for the 

investment proportion of all measures. The fund allocation proportion is based on the cost ratio of various 

measures.

2.2.3 Step 6: Quantization and solution of fund allocation optimization model

To maximize the benefits of investment, a multi-objective fund allocation optimization model (FAOM) 

has been established. The model consists of two objection function, constraints, decision variable and 

model solution methods. The details are as follows:



13

First, in terms of disaster prevention objects, the best decision is to transform the negative type into 

the positive type as the Table 1 defined, contributing to reduce the number of objects for fund allocation. 

At the same time, when a region fails to convert all negative types into positive ones, the support fund 

invested will also produce a certain benefit. After investment, the three negative types of analysis unit 

may be transformed into the following types: three negative, single positive and double positive. When 

a single negative type is transformed into a positive type in the same analysis unit, 1/3 of the benefit 

target is achieved. When the two negative types turn to positive types, the benefit target has been 

completed 2/3. When the input of funds fails to produce negative type transformation, the corresponding 

benefit area will also be generated due to the input of funds, but it is less than 1/3 of the target, so we 

define it as PACi /3Min (EXi , SEi). Based on the above considerations, the maximum benefit area and the 

maximum number of positive types are identified as the potential rule of thumb for optimal fund 

allocation. The two objective functions are defined as follows:

Object function 1: the sum benefit area of all units in study area reaches maximum value. The 

quantization of benefit area is shown as follows:
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Where: BA is the sum benefit area of all units in study area; PACi is the present adaptive capacity in 

the ith unit; Si is the area of the ith unit; q is the number of units with none positive type vulnerability; 

l-q is the number of units with one positive type vulnerability; n-l is the number of units with two positive 

type vulnerability; IACi is the added adaptive capacity (Due to the increase of non-engineering measures, 

the effect of index inhomogeneity on adaptive capacity should be positive, and here we do not take into 

account it for safety considerations.); Mij is the standardized value of the jth measure’ number in the ith 

unit; wj is the benefit coefficient of the jth measure; yij is the jth measure’ number in the ith unit; Pij is the 

investment of the jth measure in the ith unit; and Ij is the cost of the jth measure.

Object function 2: the sum positive number of vulnerability of all units in study area achieves the 

maximum value. The specific quantification formulas are as follows:

      (19)( ) ( )f Num Max Num
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n

i i i i
i

Num Num PAC EX orPAC SE i n
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Where: Num is the sum positive number of vulnerability of all units in study area; Max (Num) is the 

maximum value of Num.

Constraints: The model is subject to constraint like total funds constraints and is shown as follows:
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Where: Pi is the investment in the ith unit; Pij is the investment of the jth measure in the ith unit and 

P is the total investment of all the study units.

Decision Variable: Results of allocation funds within each unit.

Model solution: The elitist genetic algorithm (EGA) is applied to solve the model and the Pareto 

optimal set will be obtained. Then the technique for order preference by similarity to an ideal solution 
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(TOPSIS) is used to identify the optimal solution. The core thought of TOPSIS is to attempts to choose 

scheme that simultaneously has the shortest distance from the positive ideal solution and the farthest 

distance from the negative ideal solution (Mao et al. 2016). It offers a cardinal ranking of the alternatives 

(Khagram et al. 2003). In this study, TOPSIS is applied to find the optimum solution from Pareto optimal 

set. The formulas are as follows:
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Where: ai,j is the standardized value of the jth objective in the ith fund allocation scheme; Hi,j is the 

value of the jth objective in the ith fund allocation scheme; l is the number of all fund allocation schemes; 

A+ is the maximal ideal solution set; a1
+ is the maximum value of the first objective in all schemes; a2

+ is 

the maximum value of the second objective in all schemes; A- is the minimum ideal solution set; a1
- is 

the minimum value of the first objective in all schemes; a2
- is the minimum value of the second objective 

in all schemes; Li
+ is the distance from the ith alternative to the positive ideal solution; Li

- is the distance 

from the ith alternative to the negative ideal solution; and Ci is the relative closeness from the ith scheme 

to the ideal solution. The scheme with the maximum Ci will be identified as the optimal one.
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3 Framework applications

3.1 Study area

Fig 3 The location map and different spatial scales of the study area

Hainan Island is a tropical island in southern China with an area of 33900 square kilometers and a 

population of 9.25 million. The location map and the boundary of counties, towns and catchments of 

Hainan Island are shown in Fig 3. It is located between latitudes 18°38′ and 19°02′ N, and longitudes 

109°19′ and 109°44′ E. The overall topography of Hainan Island presents the phenomenon that the 

middle area is high and the surrounding area is in a low level. It is composed of annular stratiform 

landforms, and the cascade structure is obvious. The seasonal distribution of precipitation in Hainan 

Island is very uneven, with dry and wet season. From November to April of each year, there is less rain, 

accounting for only 10% of the annual rainfall, and drought often occurs in the less rainy season. From 

May to October each year, there is more rain, with a total rainfall of about 1500 mm, accounting for 70% 

of the annual rainfall. The main sources of rain are frontal rain, hot thunderstorm and Taiwan storm. 
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During the rainy season, flash floods often occur and cause numerous casualties and property losses. 

Therefore, the government has prepared the Implementation Plan of National Mountain Flood Disaster 

Prevention Project for three years. Then there will be a lot of investment here for the construction of 

disaster prevention measures, especially non-engineering measures. The allocation of support funds for 

non-engineering measures in different regions is always a difficult problem for decision makers. 

Consequently, the framework developed above will be applied to the study area.

3.2 Input data and quantization

Based on the index system developed in the framework, the input data of Hainan Island are collected. 

The data sources are presented as Table 2 and the quantification and characterization value of each 

indicator will be described in detail as follows:

All exposure indicators consist of type and numerical variable. The relationship between them and 

flash floods is difficult to be expressed by single positive or negative correlation. Also, the effect of the 

numerical variable within different ranges of the same index on flash floods is different. Based on above 

considerations, the average flash flood intensity is counted in zones classified of all the exposure 

indicators and they are selected as the characterization value of different exposure indicators. Then the 

average characterization value of indicators in each catchment can be obtained. To characterize flash 

flood intensity, a concept of crowding level is defined. The crowding level of flash flood is calculated by 

the Getis-Ord’s Gi* statistic of hot spot analysis in Geographic Information System (GIS) 10.2. Getis-

Ord’s Gi* can both express the presence of local clustering and indicate the clustering of locations and 

intensity (Ahmad et al. 2015; Kao et al. 2017). Based on the spatial distribution of recorded flash floods, 

the average standardized value of z score from Getis-Ord’s Gi* can be obtained. Then the value is defined 

as the crowding level to characterize the flash flood intensity in a catchment. In terms of sensitivity 
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indicators, the average value of family economy, housing value and population density in each catchment 

is regarded as the characterization value. The crowding levels of villages and enterprises are selected as 

the characterization value in each catchment. Similarly, about adaptive capacity indicators, all 

engineering and non-engineering measures are quantized by the crowding levels, basing on the spatial 

distribution of them. The average GDP is characterized as the characterization value in each catchment.

Table 2 Input data of all indicators

Categories Indicators Data sources Time scales

Maximum 10-minute 

rainfall
HNHWB 1996-2012

Maximum 1-hour rainfall HNHWB 1996-2012

Maximum 6-hour rainfall HNHWB 1996-2012

Maximum 24-hour rainfall HNHWB 1996-2012

Annual rainfall HNHWB 1996-2012

Elevation FFIEDC 2014

Slope FFIEDC 2014

River density FFIEDC 2014

Land use status RESDC 2010

Soil type FFIEDC 2014

Exposure

Vegetation type RESDC 2010

Family economy FFIEDC 2014

Housing value FFIEDC 2014Sensitivity

Villages number FFIEDC 2014
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Population density RESDC 2010

Enterprise density FFIEDC 2014

Reservoir FFIEDC By 2014

Sluice FFIEDC By 2014

Culvert FFIEDC By 2014

Bridge FFIEDC By 2014

Embankment FFIEDC By 2014

Automatic monitoring 

station 
FFIEDC By 2014

Simple water level station FFIEDC By 2014

Simple rainfall station FFIEDC By 2014

Wireless early warning 

station
FFIEDC By 2014

Adaptive capacity

GDP RESDC 2010

Flash flood intensity Recorded flash floods FFIEDC 1996-2014

1 Flash Flood Investigation and Evaluation Dataset of China (FFIEDC).

2 Resources and Environmental Sciences Data Center (RESDC), Chinese Academy of Sciences 

(http://www.resdc.cn).

3 Hainan Province Hydrology and Water Resources Investigation Bureau (HNHWB).

3.3 Results

3.3.1 Multiple vulnerability of flash flood results

Based on the method of multiple vulnerability assessment developed above, the results of exposure, 
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sensitivity, adaptive capacity and the multiple vulnerability are obtained as Fig 4 shows. The overall 

distribution situation of exposure is that it is high in the northeastern part of the island and low in the 

southwest. It indicates that flash floods erupt more frequently in the northeastern part of the island. In 

terms of sensitivity, it is easy to find that the coastal areas own higher sensitivity than that of inland areas. 

The situation reflects the fact that the economy of coastal areas is more developed than that of inland 

areas. The adaptive capacity of the whole island is gradually increasing from southwest to northeast, 

which shows different attentions to flash flood prevention and control from the local people. 

Fig 4 The results of multiple vulnerability in Hainan Island

Then the multiple vulnerability of flash flood can be obtained based on the results of exposure, 

sensitivity and adaptive capacity. From the relationship between exposure and sensitivity, most areas in 

Hainan Island are in a negative type as PDL, indicating that most regions own a high potential disaster 

frequency. Only a few of regions to the south of the island belong to positive type as PED. In terms of 

the relationship between exposure and adaptive capacity, the spatial distribution of positive and negative 

types is basically the same as that of exposure and sensitivity. While about sensitivity and adaptive 

capacity, it shows different spatial distribution laws of the positive and negative types from those of 

exposure and sensitivity. Coastal areas are negative type as PDD and the inland is positive type. What 
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needs to be emphasized is that all areas in negative type should be paid more attention for disaster 

prevention and mitigation.

3.3.2 Priority supported catchments determination

To identify the priority supported catchments, it should count the number of negative types 

vulnerability first. Fig 5a shows the situation of negative types vulnerability in each catchment. It is 

obvious to find that most catchments in coastal areas contain three negative types vulnerability, which 

indicates that they should be supported first. Thus, catchments with three negative types are selected as 

the priority support catchments and are shown in Fig 5b. It is obvious to find that Counties like HK, WC, 

QH, WN and LD owns the majority catchments for priority support.

Fig 5 Priority supported catchments identification

3.3.3 Determine the input measures and benefit coefficient of them

Based on the availability of data, this paper only considers the input of non-engineering measures. As 

a response to flash floods, many non-engineering measures, like simple rainfall station, simple water 

level station, automatic monitoring station and wireless early warning station, have been implemented in 

Hainan island. Finished projects in years of 2010 to 2013 are mapped, together with flash floods 

happened in 2009 to 2010 and 2013 to 2014 (Fig. 6). It is easy to find that the high concentration area of 

non-engineering measures for 2010-2013 covers almost all of the high-density areas of flash floods in 

2009-2010. This shows that the layout of non-engineering measures in 2010-2013 is reasonable. After 
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the implementation of non-engineering measures, the number of flash floods in areas with high intensity 

of non-engineering is obviously reduced in 2013 to 2014, which further indicates that non-engineering 

measures play an important role in reducing flash floods. Therefore, the non-engineering measures like 

simple rainfall station, simple water level station, automatic monitoring station and wireless early 

warning station should be determined as the planned input measures next year.

Fig 6 The effect of existing non-engineering measures for flash flood reduction in Hainan Island

Table 3 Benefit coefficient and investment proportion of all measures

Measures
simple rainfall 

station

simple water 

level station

automatic 

monitoring station

wireless early 

warning station

Benefit coefficient 0.0048 0.0831 0.0333 0.0789

Investment proportion 0.09 0.11 0.55 0.25

Then the benefit coefficients of all measures input are determined by the geographical detector and 

the investment proportion of all measures are identified based on the cost of them. The results are shown 

in the table 3. After all data has been prepared, the FAOM can be calculated for finding the optimal 

solution in next stage.

3.3.4 FAOM results

Statistically, in the past three years, the total support funds from national and subnational in non-

engineering measures including monitoring and early warning measures in Hainan has reached 38 
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million yuan. In general, local government needs to allocate funds according to the current year's budget 

and disaster prevention requirements. Here, based on the average investment over the past three years, 

12 million yuan is expected as the investment to Hainan Island next year. It will be used as a capital entry 

condition for FAOM.

Table 4 Optimal allocation of funds through TOPSIS

Pareto Optimality C Number of active type regions Benefit area

Case 1 0.74 672 4486

Case 2 0.60 676 4480

Case 3 0.58 675 4480

Case 4 0.26 677 4471

Then the Pareto optimal set can be obtained based on the FAOM. The optimal allocation of funds for 

priority support regions can be obtained by TOPSIS. The results are shown in Table 4. It is easy to find 

that the Case 1 has the maximum C value, so the allocation of funds of the case 1 should be selected as 

the final fund allocation scheme. The two objectives of the scheme like number of active type and the 

benefit area are 672 and 4486 km², respectively. The spatial distribution of the two objectives are shown 

in Fig 7. As a result of the investment, the number of negative types in many small watersheds has 

decreased (Fig 7a). While close to the coastal area, the negative type of some small watersheds in QH, 

WC and HK still do not decrease, indicating that these areas need more financial input. In terms of benefit 

area, the disaster prevention ability of each catchment all has been improved in a certain degree, due to 

the related financial support for disaster prevention. The catchments with high benefit area are mainly 

concentrated in HK and LD.
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Fig 7 The spatial distribution of two objectives results in catchments

The spatial distribution of fund allocation in catchments is shown in Fig. 8. Based on EGA and TOPSIS, 

the allocation funds of all catchments for priority support have been obtained. It is not difficult to find 

that the gap of financial support in different catchments is large. The catchment with minimum 

investment is only 2400 yuan, while the maximum one has reached 336600 yuan. Such funds allocation 

results are based on the previous situation of exposure, sensitivity and adaptive capacity of each 

catchment, which make the allocation more scientific and reasonable. 

Generally, the state allocates the money to the provincial units, the provincial units to the municipal 

and county level units, and then to the town level step by step. Based on the allocation funds on a 

catchment scale, we can count the total amount of funds allocated to each township and county, which 

will provide a macro result from meso scale, realizing a scientific decision in real sense. The distribution 

of funds at the township level is shown in Fig 8b, and that of county level is shown Fig 8c. Since some 

townships do not have catchment requiring priority support, there is no funding in these towns. The town 

with the least investment is only 6700 yuan, and the largest is 366500 yuan. On county level, there is a 

wide gap in allocated funds among all counties. TC and QZ have no supported fund, while HK has been 

allocated the most funds, reaching 1.93 million. In addition, counties along coast like WC, LD, QH, WN 

and SY have been allocated more money, as these districts own high vulnerability. These results can give 

local decision makers necessary references to the allocation of funds from multiple spatial scales, which 



25

will be helpful for a more scientific disaster prevention decision.

Fig 8 The spatial distribution of funds allocation results in catchments, towns and counties

4 Discussions

In order to show the rationality and superiority of FAOM, two comparison schemes are established 

here. In general, one area with more flash floods or more control villages (list of villages to be priority 

controlled by local government) should be supported by more fund for disaster reduction. Therefore, one 

comparison scheme is based on the history flash floods intensity ratio and the other one is based on the 

density of villages in control areas. The two schemes are defined as flash flood intensity scheme (FFIS) 

and control village intensity scheme (CVIS), respectively. In FFIS and CVIS schemes, the quantification 

of the new adaptive capacity and the ultimate objective function of each catchment is the same as that of 

the FAOM scheme.
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4.1 Model rationality explanation

The situation of funds allocation through FFIS, CVIS and FAOM are different in the catchment, town 

and county scales. Here, we count the funds allocation from county scale to compare the results of the 

three schemes. The results are shown in Fig 9. In FFIS, QH is the county obtaining most support funds 

and it has been nearly 4 million. While, HK, the Capital City of Hainan Province, is the area with the 

most support funds in both CVIS and FAOM. From this point of view, we can see that the different focus 

of the three schemes will lead to different funds allocation results. Though different counties are allocated 

different funds, the trend of funds in all counties are basically consistent among the three schemes. The 

results show that FAOM has internal consistency with the other two conventional allocation ideas in a 

certain degree.
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Fig 9 Funds allocation in counties through different schemes

In addition, normally, the state allocates funds generally to provincial units, and then to the municipal 

and county level. Very few can allocate funds to a catchment scale. FAOM allocates funds from 

catchment scale to county scale, making more scientific decisions in a real sense.

4.2 Model superiority explanation
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Fig 10 Comparison of objectives of different schemes

Based on the fund allocation results of the three schemes, the two objectives results of them can be 

obtained and are shown in Fig 10. As the Fig 4a presents, the two objectives of CVIS are both better than 

those of FFIS. Moreover, the FAOM own maximum positive type number and benefit area meanwhile 

among the three schemes, which indicates the superiority of FAOM. Further, the optimization rates of 

FAOM to FFIS and CVIS are shown in Fig 4b. The positive type number optimization rate and benefit 

area optimization rate from FAOM to FFIS are 34.4% and 13%. Those from FAOM to CVIS are 15.7% 

and 12.1%. These results fully demonstrate the superiority of FAOM.

Now we give the reasons for that. In the process of solving FAOM, the relationship between the three 

components of flash flood vulnerability (exposure, sensitivity and adaptive capacity) is fully considered, 

involving the comprehensive role of various factors (natural, social, anthropic and economical). 

Consequently, the optimal solution to the allocation of funds can be found through FAOM. While in 

FFIS, the focus of the funds allocation only is on natural disaster data. Some man-made factors have not 

been fully considered in the process of resource allocation, including the state of sensitivity and adaptive 

capacity. Therefore, the allocation of funds for this scheme is not optimal. As for CVIS, the choice of 

control villages is basically based on the government's rough expert argumentation and then gives a 

general plan of prevention. In this process, many factors are taken into account, from a more 
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comprehensive perspective than that of FFIS. This also explains why the object results of CVIS scheme 

are superior to those of FFIS. Of course, it is obvious to find that CVIS is still not as good as FAOM. In 

summary, The FAOM is superior to the CVIS, and the CVIS is superior to the FFIS.

4.3 Model further application

The further application of the model in progressive recognition and phased support is designed for 

long-term funding decisions in a particular region, considering the sustainable development of society. 

The framework is shown in Fig 11. The application process is as follows:

Previous three negative 
type catchments

Investment

New three negative 
type catchments

New two negative type 
catchments

New one negative type 
catchments

Previous two negative 
type catchments

Present two negative 
type catchments

New one negative type 
catchments

Previous one negative 
type catchments

Continue to invest Continue to invest 

and and

and

Present one negative type catchments

Fig 11 Progressive recognition and phased support framework

The number of catchments with three negative type vulnerability will change after the disbursement 

of funds in the first stage. These catchments may still stay as three negative type ones, or change to two 

negative type ones, or directly become one negative type catchments. These catchments staying as three 

negative types ones need to continue to be invested until they become new two negative type ones. Next, 

the new two negative type catchments and the previous two negative type catchments will form the 

present two negative type catchments, which needs to support new funds. Then new one negative type 

catchments, transferred from the two negative type catchments, and the previous ones will form the 
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present one negative type catchments. The whole process presents a decision idea of progressive 

recognition and phased support. The application of the framework will provide a practical scheme for 

disaster prevention and disaster reduction in a region. 

4.4 Limitations

Disaster prevention itself is an extremely complex problem, and the allocation of funds for disaster 

prevention is more difficult to determine. The framework also has its own limitations. Due to limitations 

of data collection, the index system needs to be further improved for providing a more scientific basis 

for fund allocation. The indicators will be added in our future work shown as Table 5.

Table 5 Indicators to be added in the future (Karim and Noy (2020)

Categories Indicators Description
Exposure Dangerous building The number of dilapidated houses 

Poverty rate
The number of people living below the 
national poverty line

Sensitivity
Enterprise and public institution

The number of Enterprise and public 
institution

DRR total realized spending
The total (per capita) amount of public 
fund allocated for disaster risk reduction 
through disaster risk reduction program.

GR realized spending
The total (per capita) amount of public 
fund allocated for disaster risk reduction 
through gratuitous relief program.

Adaptive 
capacity

VGF realized spending

The total (per capita) amount of public 
fund spent for disaster risk reduction 
through vulnerable group feeding 
program.

Note: The acronyms used here represents Disaster Risk Reduction (DRR), Gratuitous Relief (GR) and 
Vulnerable Group Feeding (VGF) Realized Spending respectively (all in per capita terms).

In addition, the interaction between adjacent regions is not considered in FAOM, although the 

influence of various factors on the allocation of funds is considered. For example, if two regions are 

adjacent, what is the impact on one of the regions after the other one increases the disaster prevention 

measures. Meanwhile, this model only focuses on the specific allocation of funds, while fails to give the 
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location of all kinds of measures in a specific distribution unit. Some improvements to the model require 

further study in the future.

5 Conclusions

A novel multi-objective framework is developed to allocate support funds to different regions with 

various degrees of disaster. Key outcomes of the study are as follows: 

Firstly, FAOM different from previous resource allocation research is the focus of this study, and 

multiple vulnerability assessment is incorporated into support funds allocation from multi-space scales. 

Secondly, an integrated issue concerning support funds allocation is transformed into a multi-objective 

optimization model, applied to provide decisions for flash floods managers in practice. Thirdly, the whole 

framework is applied to the fund allocation in Hainan Island and the results has proved that the FAOM 

has rationality and superiority than conventional fund allocation strategy. Finally, the FAOM can be 

further applied in disaster prevention and mitigation about the progressive recognition and phased 

support.

Also, the findings we present have some policy implications in terms of implementing disaster risk 

reduction program. The progressive recognition and phased support framework developed based on 

FAOM, will provide a practical policy guidance for disaster prevention and disaster reduction in a region. 

In our research, the model developed focuses on the specific allocation of funds, while fails to give 

the location of all kinds of measures in a specific distribution unit. In addition, the interaction between 

adjacent regions is not considered in FAOM. We leave the determination of the location of measures and 

the interaction effect among adjacent regions for future work.
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Table 1 Multiple vulnerability and types situation

Situation Multiple vulnerability Type

EXi > SEi Potential Disaster Loss (PDL) Negative

EXi < SEi Potential Economic Development (PED) Positive

SEi > ACi Potential Defense Defect (PDD) Negative

SEi < ACi Potential Self-organizing Capability (PSC) Positive

EXi > ACi Potential Disaster Frequency (PDF) Negative

EXi < ACi Potential Resources Waste (PRW) Positive

Table 2 Input data of all indicators

Categories Indicators Data sources Time scales

Maximum 10-minute 

rainfall
HNHWB 1996-2012

Maximum 1-hour rainfall HNHWB 1996-2012
Exposure

Maximum 6-hour rainfall HNHWB 1996-2012
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Maximum 24-hour 

rainfall
HNHWB 1996-2012

Annual rainfall HNHWB 1996-2012

Elevation FFIEDC 2014

Slope FFIEDC 2014

River density FFIEDC 2014

Land use status RESDC 2010

Soil type FFIEDC 2014

Vegetation type RESDC 2010

Family economy FFIEDC 2014

Housing value FFIEDC 2014

Villages number FFIEDC 2014

Population density RESDC 2010

Sensitivity

Enterprise density FFIEDC 2014

Reservoir FFIEDC By 2014

Sluice FFIEDC By 2014

Culvert FFIEDC By 2014

Bridge FFIEDC By 2014

Embankment FFIEDC By 2014

Automatic monitoring 

station 
FFIEDC By 2014

Adaptive capacity

Simple water level station FFIEDC By 2014
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Simple rainfall station FFIEDC By 2014

Wireless early warning 

station
FFIEDC By 2014

GDP RESDC 2010

Flash flood intensity Recorded flash floods FFIEDC 1996-2014

1 Flash Flood Investigation and Evaluation Dataset of China (FFIEDC).

2 Resources and Environmental Sciences Data Center (RESDC), Chinese Academy of Sciences 

(http://www.resdc.cn).

3 Hainan Province Hydrology and Water Resources Investigation Bureau (HNHWB).

Table 3 Benefit coefficient and investment proportion of all measures

Measures

simple 

rainfall 

station

simple water 

level station

automatic 

monitoring station

wireless early 

warning station

Benefit coefficient 0.0048 0.0831 0.0333 0.0789

Investment 

proportion

0.09 0.11 0.55 0.25

Table 4 Optimal allocation of funds through TOPSIS

Pareto Optimality C Number of active type regions Benefit area

Case 1 0.74 672 4486
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Case 2 0.60 676 4480

Case 3 0.58 675 4480

Case 4 0.26 677 4471

Table 5 Indicators to be added in the future (Karim and Noy (2020)

Categories Indicators Description
Exposure Dangerous building The number of dilapidated houses 

Poverty rate
The number of people living below the 
national poverty line

Sensitivity
Enterprise and public institution

The number of Enterprise and public 
institution

DRR total realized spending

The total (per capita) amount of public 
fund allocated for disaster risk 
reduction through disaster risk 
reduction program.

GR realized spending

The total (per capita) amount of public 
fund allocated for disaster risk 
reduction through gratuitous relief 
program.

Adaptive 
capacity

VGF realized spending

The total (per capita) amount of public 
fund spent for disaster risk reduction 
through vulnerable group feeding 
program.

Note: The acronyms used here represents Disaster Risk Reduction (DRR), Gratuitous Relief (GR) and 
Vulnerable Group Feeding (VGF) Realized Spending respectively (all in per capita terms).

Highlights
• A novel framework of funds allocation for flash flood reduction is proposed;
• The Multiple vulnerability and FAOM are coupled to the framework;
• The rationality and superiority of the framework is evaluated in Hainan Island, China;
• Further application of the framework in progressive recognition is designed.


