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A B S T R A C T   

Analysis focused on sub-regional differentiation of vegetation greenness and their dominant drivers are needed to 
properly develop targeted strategies for sustainable management. In this study, we took China as a case study 
area, and analyzed the spatiotemporal heterogeneity of vegetation greenness and its strength of association with 
both environmental (topographical factors and hydrothermal conditions) and anthropogenic factors (land use 
type and population density) across six eco-geographic regions during 1982–2015. The whole period was divided 
into two periods by the turning point of 1998, after which China has implemented numerous forest protection 
projects. The attribution results based on the Geodetector method show the followings: (1) In China, precipi-
tation is the dominant factor in landscape variation of Normalized Difference Vegetation Index (NDVI) with a 
strength of association of 85%. Additionally, precipitation is also the dominant factor in arid and semi-arid re-
gions, including Northern semiarid (NS) region, Northwestern arid (NWA) region and Qinghai-Tibet Plateau 
(QTP) region. The dominant factors differ across diverse eco-geographic regions; for example, slope dominates in 
sub-tropical/tropical humid (STH) and middle temperate humid/sub-humid (MTH) regions. (2) Generally, the 
strength of association between vegetation and temperature decreases across China over the past 34 years, 
meaning that the limiting effect of temperature on the NDVI is weakened, similarly, the controlling effect of 
water conditions is also weakened. In contrast, the spatial association between anthropogenic factors and NDVI is 
enhanced. (3) The temporal dynamics of strength of association between factors and the NDVI differ in diverse 
periods and regions; for example, the strength of association between wind speed and NDVI decreased during 
1982–1998, but increased during 1999–2015 in temperate humid/sub-humid (WTH) region; however, 
decreasing trends were revealed in the QTP region in both periods. Our study highlights that variation of NDVI is 
mainly attributed to climate change and land cover change. Generally, the limiting impact of hydrothermal 
conditions on NDVI weakens, and the controlling effect of human activity increases over time.   

1. Introduction 

Vegetation, as a sensitive indicator of climate change and pivotal link 
in land atmosphere interactions (Liu and Lei, 2015), plays an important 
role in regulating the interchange of water and heat fluxes, soil eco-
systems and carbon and nitrogen cycles (Bonan, 2008; Fu et al., 2017; 
Qu et al., 2020). Previous research revealed that global tree cover 

increased by 7.1% in 2016 relative to 1982, and land-cover change 
displayed regional differences, such as tropical deforestation and 
temperate afforestation (Song et al., 2018). China and India dominated 
the greening of the world, and the greening was mostly attributed to 
land-use management (Chen et al., 2019). Although there is increasing 
attention to identifying the spatial patterns and dominant factors rele-
vant to vegetation greenness and their relative contributions (Liu and 
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Lei, 2015; Wang et al., 2016b; Chen et al., 2019), the differentiation of 
influencing mechanisms on vegetation dynamics at sub-regional scales 
across one region still needs to be more explored and documented. 

China accounts for 25% of the global net increase in leaf area, 
namely increase in greenness, with only 6.6% of global vegetated area, 
attributed to the combined effect of climate change and ambitious en-
gineering projects related to conserve and expand forests, such as ‘Grain 
for Green’ project (Chen et al., 2019; Zhao et al., 2020). However, the 
multiple factors that control distribution of vegetation, as well as their 
recent dynamics display high spatial heterogeneity across regional and 
sub-regional land surfaces (Gao et al., 2019), indicating the response of 
vegetation to environmental factors may differ from region to region. 
Evidence has shown that surface greenness patterns are triggered by 
heterogeneous mechanisms over different regions. For example, Nemani 
et al. (2003) found that water availability was the main limiting factor in 
vegetation growth for over 40% of earth’s vegetated surface, followed 
by temperature and radiation. Piao et al. (2015) suggested that rising 
atmospheric CO2 concentration chiefly drove China’s greening, with a 
contributing rate of 85% to changing trend of average growing-season 
LAI. Therefore, spatial heterogeneity deserves more attention for a 
better understanding of the drivers and landscape patterns of vegetation. 
In this study, eco-geographic regionalization, which provides a regional 
framework for studying regional differentiation and the regional 
response to global change across China (Zheng, 2008), was used to 
explore spatially heterogeneous differences in the spatial association 
between vegetation greenness and its influencing factors. 

The influencing mechanisms of vegetation dynamics in terrestrial 
ecosystems are well documented over various spatiotemporal scales 
using remote sensing observation of vegetation indices (Fensholt et al., 
2012; Zhu et al., 2016; Cai et al., 2015, 2016; Zhang et al., 2020a). 
Numerous publications explored the driving forces underlying the 
vegetation dynamics, including climate constraints, anthropogenic ac-
tivities, topographical influences, CO2 fertilization, nitrogen deposition 
and wildfire (Xiao and Moody, 2005; Niinemets et al., 2011; Buitenwerf 
et al., 2012; Piao et al., 2015; Huang et al., 2018; Kalisa et al., 2019; Gao 
et al., 2019; Leverkus et al., 2019). For example, Huang et al. (2020) 
indicated a stronger effect of climate change (about 59.3%) than human 
activities in the Beiluo River Basin using a support vector machine based 
simulation model. Lü et al. (2015) applied correlation and comparative 
analysis to determine the driving forces for vegetation change (socio-
economic and climate factors were included) and confirmed that so-
cioeconomic factors, such as human population and economic 
production, were the most significant factors for vegetation change. 
Although these studies identified the dominant driving forces for vege-
tation greenness, a comprehensive comparison of the relative impor-
tance of multiple factors for vegetation greenness is still not well 
understood. In this study, GeoDetector method, will be used to evaluate 
the relative importance among diverse drivers. This method is good at 
the analysis of categorical variables, making it convenient and available 
to compare the relative importance of categorical and continuous vari-
ables (Wang and Xu, 2017). 

The response of vegetation to environmental perturbations and 
changes is complex and nonlinear due to the interactions among mul-
tiple factors (Piao et al., 2015; Zhao et al., 2015; Gao et al., 2017). 
Several studies have documented the nonlinear, concave-down re-
lationships between regional precipitation and aboveground net pri-
mary production (Huxman et al., 2004; Yang et al., 2008; Hsu et al., 
2012). Nonlinear influences and interactions make it challenging to 
quantify the contribution of each relevant factor to vegetation greenness 
(Piao et al., 2020). The GeoDetector method is a nonlinear analysis 
method based on variance analysis and the spatial distribution consis-
tency between two factors with a causal relationship. The core 
assumption is that if one factor influences and is correlative with 
another, their spatial distributions must be similar to some degree; no 
matter whether the relationship is linear or nonlinear, the relationship 
can be detected (Wang et al., 2010). In this study, climatic factors, 

anthropogenic factors, and topographic factors are considered as drivers 
for vegetation greenness in the quantitative attribution analysis. NDVI is 
used as the metric of vegetation greenness, which has been broadly used 
in the research of changes in vegetation greenness and the response of 
vegetation to climate change and anthropogenic activity across diverse 
spatiotemporal scales (Wang et al., 2011; Krishnaswamy et al., 2014; 
Tao et al., 2015; Du et al., 2017; Zhang et al., 2020b). 

Against the background of climate change and severe anthropogenic 
activities, the relationship between vegetation greenness and environ-
mental limitations may have changed over time (Piao et al., 2014). For 
example, Keenan and Riley (2018) quantified the spatial functional 
response of vegetation cover to temperature and confirmed that the 
temperature limitation had declined over time, which was consistent 
with expectations based on recent warming. Piao et al. (2006) pointed 
out that the impact of rising temperature on the current enhanced 
greening trend will decline or even disappear. However, the temporal 
dynamics of the impact of influencing factors on vegetation greenness 
are still poorly understood; clarifying the changing trend in the strength 
of association between factors and vegetation greenness is vital in pre-
dicting the response of vegetation to climate change and human 
disturbance, and thus in creating adaptive strategies. 

There is a need to explore the spatial differences and temporal dy-
namic of the strength of association between influencing factors and 
vegetation greenness. The primary objectives of this paper are to (1) 
quantify the heterogeneous landscape variation in NDVI and its chang-
ing trend across different eco-geographic regions in China during 
1982–2015; (2) detect the dominant factors in vegetation greenness and 
their relative importance; (3) explore the temporal changing trends of 
strength of association between the influencing factors and NDVI. 

2. Method 

2.1. China’s eco-geographic regions 

China’s eco-geographic regionalization was demarcated or com-
bined with different elements based on regional differentiation of the 
earth’s surface, in which temperature and air moisture condition were 
considered in first level division (Zheng, 2008). Eco-geographic 
regionalization was widely used in the assessment of terrestrial eco-
systems across China (Wu et al., 2010; Zhao and Wu, 2014). The first- 
level contains eight zones, including cold temperate humid (CTH) re-
gion, middle temperate humid/sub-humid (MTHS) region, north semi-
arid (NS) region, warm temperate humid/sub-humid (WTH) region, sub- 
tropical humid (SH) region, tropical humid (TH) region, northwest arid 
(NWA) region, and Qinghai-Tibet Plateau (QTP) region. Due to the areas 
of CTH region and TH region are small in China (Fig. S1a), further the 
less sample points fail to acquire an accurate attribution results of 
vegetation greenness. Thus, we have merged the eight regions into six 
regions, the CTH region and MTHS were integrated to cold/ middle 
temperate humid/sub-humid (MTH) region, and the SH and TH region 
were integrated to sub-tropical/tropical humid (STH) region (Fig. S1b). 
Six top-level regions were considered in this study: MTH region, NS 
region, WTH region, STH region, NWA region, and QTP region (Fig. 1). 
The topography (Fig. 1a), temperature (Fig. 1b), precipitation (Fig. 1c) 
and land use type (Fig. 1d) were highly heterogeneous in different eco- 
geographic regions, in which temperature and precipitation were the 
means over the length of the study period. The mean value of geographic 
environmental factors in diverse eco-geographic regions differed a lot 
(Table 1), such as the difference of mean temperature between the STH 
and QTP region reached 17℃, and the mean precipitation in STH was 
approximately 8.9 times higher than that in NWA. In the MTH and STH 
regions, nearly half of the area was occupied by forest land; in the NS 
and QTP regions, grassland is distributed in most areas; and dry land and 
unused land were the dominant land use types with area ratio of 50.93% 
and 62.15% in the WTH and NWA regions respectively (Table S1). Due 
to lack of availability of data, the islands of China were not included in 
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the quantitative attribution analysis, including the South China Sea 
islands and Taiwan island. 

2.2. Data sources 

We used the biweekly NDVI dataset from Global Inventory Modeling 
and Mapping Studies (GIMMS) for the period 1982–2015, with a spatial 
resolution of 0.083◦. The GIMMS NDVI dataset is corrected through a 
series of processing steps to reduce limitations of AVHRR (Advanced 
Very-High-Resolution Radiometer) measurement arising from calibra-
tion, view geometry and volcanic aerosols, and the dataset has been 
verified using stable desert control points (Zhou et al., 2001). The 
AVHRR GIMMS NDVI (version 3 g.v1) datasets are available at htt 
ps://ecocast.arc.nasa.gov/-data/pub/gimms/3g.v1/. 

The climate data of hydrothermal factors used in this study included 
daily precipitation; humidity; wind speed; and maximum, mean and 
minimum temperature with a spatial resolution of 0.25◦ during 
1982–2015, downloaded from the National Meteorological Information 
Center (http://data/cma.cn). The land use type data for 1980, 1990, 
1995, 2000, 2005, 2010, and 2015, the boundary of the eco-geographic 
region and digital elevation model (DEM) with spatial resolution of 1- 
km were acquired from the Data Center for Resources and Environ-
mental Sciences, Chinese Academy of Sciences (http://www.resdc.cn). 
The population density data with 1-km spatial resolution during 

2000–2015 were acquired from the LandScan global population data-
base developed by Oak Ridge National Laboratory (https://landscan.orn 
l.gov); the population density data (1-km resolution) for 1990 were 
downloaded from the Data Center for Resources and Environmental 
Sciences, Chinese Academy of Sciences (http://www.resdc.cn). 

2.3. Methods 

2.3.1. Trend analysis 
In assessing vegetation variability for each pixel across the entire 

study area, we used a least-squares linear regression model given by Eq. 
(1): 

yt = a+ bxt + ε (1)  

where yt and xt are the NDVI time series and time span, respectively; a 
and b represent the regression intercept and slope, respectively, for the 
linear model; and ε is the residual error of the fit. The slope (b) of the 
regression indicates the temporal changing trend, namely the variability 
over time—for b greater than 0 the trend increases, and for b < 0 the 
trend decreases. Significance was quantified using an F-test. We selected 
p-value of<0.1 to test significance of changing trend, only significant 
pixels were displayed in Fig. 2. 

Fig. 1. Studied eco-regions in China. (a) Elevation, (b) Mean temperature during 1982–2015, (c) Mean precipitation during 1982–2015, (d) Land use type in 2015 
(Note: The acronyms of each region show in study area section.). 

Table 1 
Mean value of geographic environmental factors in different eco-geographic regions.  

Region MTH NS WTH STH NWA QTP 

Elevation (m)  416.41  1145.57  508.61  772.21  1427.81  4464.67 
Precipitation (mm)  578.29  375.15  622.60  1335.46  150.19  400.23 
Relative humidity (%)  66.59  55.37  64.07  77.20  46.85  47.54 
Mean temperature (℃)  1.88  4.59  11.27  16.00  7.33  − 1.66 
Maximum temperature (℃)  8.31  11.41  17.21  21.04  14.60  5.71 
Minimum temperature (℃)  − 3.91  − 1.34  6.35  12.44  0.91  − 7.85 
Wind speed (m/s)  2.64  2.99  2.23  1.84  2.78  4.01  
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2.3.2. Turning point (TP) identification based on the piecewise regression 
model 

In order to detect the potential TP of the NDVI time-series trend, we 
applied a piecewise regression model (Toms and Lesperance, 2003), 
which is widely used in the TP detection of NDVI (Sun et al., 2011; Piao 
et al., 2011). The premise of this study is that changes in greenness vary 
spatially, thus TP detection was based on a national scale. The equations 
are as follows: 

y =

{
β0 + β1t + ε, t⩽α

β0 + β1t + β2(t − α) + ε, t > α (2)  

where y and t are the NDVI and year, respectively; α is the estimated TP 
of the time-series trend change; β0, β1, β2 are regression coefficients; β0 is 
the intercept; β1 and β1 + β2 are the magnitudes of the trends of the two 
time series before and after TP; and ε is the residual error of the fit. Least- 
squares linear regression is used in estimating the fitted variables, with a 
p value < 0.05 considered as significant. 

2.3.3. GeoDetector method 
The GeoDetector method can test the spatial heterogeneity of single 

variable Y as well as the possible causal relationships between Y and 
other variables X by examining the coupling consistency of the spatial 
distribution of the two variables (Wang et al., 2010, 2016a). The key 
maxim is that if influencing factor X is associated with relevant outcome 
Y, then the spatial distribution of X is similar to that of Y in geographical 
space. If X is a continuous raster, it must be discretized into layers. The 
method is based on the variance analysis of Y based on the layers divided 
by each X factor (Fig. S2, Wang and Xu, 2017). We applied the method to 
identify the spatial heterogeneity and dominant factors of NDVI. 
Namely, Y was NDVI, and X concluded elevation, slope, precipitation, 
humidity, mean temperature, maximum temperature, minimum tem-
perature, wind speed, land use type and population density in this study. 
The strength of association between factors and NDVI can be measured 
by the q value; the temporal change in this value can reflect the temporal 
change of strength of association between influencing factors and NDVI. 
The q value is defined as: 

Fig. 2. The statistics of NDVI and its variability. (a) Difference of NDVI from P1 to P2, (b) NDVI variability with significance (p value < 0.1) in P1-2, (c) NDVI 
variability with significance (p value < 0.1) in P1, (d) NDVI variability with significance (p value < 0.1) in P2, (e) mean value of NDVI, (f) mean variability (/10a) of 
NDVI (*** means p value < 0.01, **means p value < 0.05, * means p value < 0.1). 
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q = 1 −
1

Nσ2

∑L

h=1
Nhσ2

h (3)  

where σ2
h is the variance of NDVI within layer h of influencing factor X 

,Nh is number of sample units in layer h, σ2 and N are the global variance 
of NDVI and total samples in the study area (e.g. if the detection was 
aimed at China, the variance and N were at the national scale, if the 
detection was based on eco-geographic zones, the variance and N 
referred to eco-geographic regions), and L is the number of layers of 
factor X. Higher values of q indicate higher spatial heterogeneity of 
NDVI along the X layer; in addition, a higher q value also means a higher 
strength of association between X and NDVI (Wang et al., 2016a). The 
significance of the q value can be tested by an F-test. The natural break 
method was used to discrete the X factors (Gao and Wang, 2019; Wei 
et al., 2020). In order to ensure the comparability of the results, the same 
stratification method of X factors was applied for diverse eco-geographic 
regions. 

Due to the complexity of geographic processes, controlling factors 
often do not act independently but instead act collectively (Wang et al., 
2018). The interaction detector can identify the interaction effect be-
tween two different factors X1 and X2, which can be determined by the 
value of q(X1 ∩ X2) (Fig. S3, Wang and Xu, 2017). The calculation of the 
interaction factor needs to overlay the two classification layers X1 and 
X2 to generate a new classification variable X1 ∩ X2 first, and then, 
calculate the q value using equation (3). The q value of variable X1 ∩ X2 
measures the interaction effect between X1 and X2. If the q(X1 ∩ X2) is 
higher than q(X1) and q(X2), and the interaction type between two 
variables is enhanced. Details on the GeoDetector method can be found 
in Wang et al. (2010) and Wang and Xu (2017). 

3. Results 

3.1. Spatiotemporal dynamics of NDVI 

Based on a piecewise regression model, the TP of NDVI dynamics 
during 1982–2015 (P1-2) was 1998 in China, which is the same year the 
Chinese government launched several large-scale ecological restoration 
projects, such as the Natural Forest Conservation Project (initiated in 
late 1998) and the Grain for Green Project (introduced in 1999) (Xu 
et al., 2006; Zhao et al., 2020). We divided the whole period into sub- 
periods P1 (1982–1998) and P2 (1999–2015). In China, the mean 
value of NDVI increased 0.004 from P1 to P2, NDVI increased mostly in 
south NS, WTH, and STH region (Fig. 2a, e). NDVI represents high 
spatial heterogeneity due to complex topographical, environmental, and 
anthropogenic conditions across China. NDVI is lowest in the NWA zone 
(mean value = 0.118) and highest in the STH zone (mean value = 0.632) 
in P1-2 (Fig. 2e). Although the mean NDVI variability was positive in the 
three periods (P1-2, P1, P2) across China (Fig. 2f), the greening and 
browning trends both exist across different eco-geographic regions 
(Fig. 2b–d). During 1982–2015, NDVI increases most significant in the 
WTH and STH regions and decreases in the MTH and NWA regions 
(Fig. 2f). The changing trend of NDVI differs across different time spans. 
For example, all regions display a significant increasing trend in P1, but 
NWA and QTP showed a significant decreasing trend in P2 (Fig. 2f). 

3.2. Quantitative attribution analysis of NDVI across different regions 

3.2.1. Identification of dominant influencing factors 
In China, the spatial distribution of NDVI is mainly controlled by 

water conditions. Precipitation dominated with a q value of 85%, fol-
lowed by humidity (q value = 0.81) in P1-2 (Fig. 3a). Fig. 3a shows the 
minimum temperature owed the larger q value than mean temperature 
and maximum temperature; land use type can explain nearly 60% of the 

Fig. 3. The q value (p value < 0.01) of influencing factors for NDVI during the three periods across regions (note: Pop and Pre represent population density and 
precipitation, respectively). 
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NDVI distribution; the q value of population is larger in P2 than in P1 
across China. From west to east, the q value of temperature decreased 
significantly, with the highest value in QTP region and followed by NWA 
region (Fig. 3). In the relatively humid regions, including MTH and STH 
regions, topographic factors play more important role in the spatial 
distribution of NDVI than that in other regions. In the arid regions, 
including NS and NWA regions, precipitation is the dominant factor for 
NDVI; the q value of the maximum temperature is larger than that of 
mean temperature and minimum temperature (Fig. 3c, f). In the STH 
region, the q values of elevation, slope and precipitation are very close, 
but the dominant factor with highest q values differ in diverse periods, as 
follows: slope in P1-2 (q value of 0.253), precipitation in P1 (q value of 
0.252), and elevation in P2 (q value of 0.261) (Fig. 3e). In the QTP re-
gion, precipitation is the dominant factor followed by humidity 
(Fig. 3g). In general, precipitation has larger q values in arid and semi- 
arid regions, such as the NS, NWA and QTP regions, compared with 
humid regions; temperature has its highest q value in the QTP region, 
and population had its largest q value in the STH region; land use type 
has its highest values in NWA and QTP regions. 

3.2.2. Identification of dominant interaction influencing factors 
The interactions between two drivers often enhance their impacts on 

NDVI, the dominant interaction factors are identified in this study. 
Table 2 shows that the interaction factor between precipitation and 
elevation is the dominant factor for landscape variation of NDVI in 
China, accounting for more than 90% of the NDVI distribution. In gen-
eral, in the east coast region of China, including MTH, WTH and STH 
regions, the dominant interaction factor is the factor between precipi-
tation and elevation. In the arid regions with lower temperature, such as 
NS and QTP regions, the interaction factor between precipitation and 
temperature is the dominant interaction factor. In NWA region where 
most of the land surface was covered by unused land, the interaction 
factor between precipitation and land use type is the dominant factor. In 
addition, the dominant interaction factor may differ in different time 
periods. For example, the interaction between precipitation and 
maximum temperature is the dominant interaction factor during P1-2 
and P2, and the interaction between precipitation and mean tempera-
ture is the dominant factor in P1 in the NS region. The interaction be-
tween humidity and elevation was the dominant factor in WTH in P1-2, 
and the interaction of precipitation and elevation in P1 and P2. 

3.3. Temporal dynamics of spatial association between factors and NDVI 
in different regions 

3.3.1. Topographic factors 
From 1982 to 2015, the strength of association of elevation for NDVI 

significantly decreases across China (Fig. 4a) and in most sub-regions, 

including NS (Fig. 4g), NWA (Fig. 4p), and QTP (Fig. 4s) regions. 
However, the q value of elevation significantly increased in WTH 
(Fig. 4j) and STH (Fig. 4m) regions. The direction of change in trend 
differs in different periods. For example, the q value of elevation in-
creases significantly in P1 (P < 0.05) (Fig. 4b), but decreases signifi-
cantly in P2 (P < 0.1) (Fig. 4c) in China. In WTH, the q values increase in 
both P1 and P2 (Fig. 4k, l). The q values decrease in both P1 and P2 in 
MTH, NS, and NWA (Fig. 4e–f, h–i, q–r) regions. In China, the q value of 
slope decreases significantly in P1-2 (Fig. 4a), increases in P1 (Fig. 4b), 
and decreases significantly in P2 (Fig. 4c); a similar changing trend is 
seen in QTP (Fig. 4s–u). The q values of slope showed an increasing trend 
in MTH, NS, and WTH during P1-2, P1 and P2 (Fig. 4d–l); an opposite 
change in trend is observed in NWA (Fig. 4p–r). 

3.3.2. Water conditions 
Generally, the q values of water conditions show decreasing trends 

across different regions (Fig. 5). In China, precipitation shows 
decreasing trend during the three periods (Fig. 5a–c). In MTH, the q 
value of precipitation decreases in P1-2 and P2 (Fig. 5d, f) and increases 
in P1 (Fig. 5e). The q value of precipitation shows an increasing trend 
(Fig. 5g–i) in NS and a decreasing trend in the WTH, STH, NWA, and 
QTP regions in the three periods (Fig. 5j–u). The q values of humidity 
show a significant decreasing trend in China in P1-2 (Fig. 5a) and P2 
(Fig. 5c). Similarly, decreasing trends are observed in MTH, NS, and 
WTH regions in P1-2 and P2, and an increasing trend in P1 (Fig. 5d–l). In 
NWA and QTP regions, the q values show a decreasing trend in the three 
periods (Fig. 5p–u). 

3.3.3. Thermal conditions 
Generally, the controlling effect of temperature for the NDVI distri-

bution shows a decreasing trend in most regions during 1982–2015, 
except for the WTH region (Fig. 6). In China, the q values of mean 
temperature, maximum temperature, and minimum temperature 
showed decreasing trends in P1-2 and P2 (Fig. 6a, c). The q values of 
mean temperature decrease in MTH and NWA, and increase in WTH 
during the three periods (Fig. 6d–f, p–r, j–l). The q values of mean 
temperature show a decreasing trend in P1-2 and P1 (Fig. 6s, t), and an 
increasing trend in P2 in QTP (Fig. 6u). The q value of maximum tem-
perature shows a decreasing trend in China, MTH, and STH regions 
during the three periods (Fig. 6a–f, m–o) and a decreasing trend in P1-2, 
an increasing trend in P1 and a decreasing trend in P2 in NS and NWA 
(Fig. 6g–i, p–r). In QTP, the q value of maximum temperature increases 
in P1-2 and P2 (Fig. 6s, u) but decreases in P1 (Fig. 6t). The q values of 
minimum temperature show an increasing trend in WTH but decreasing 
trends in the other regions in P1-2 (Fig. 6). The q value of wind speed 
shows decreasing trends in China in the three periods (Fig. 6a–c), a 
similar phenomenon is seen in regions of MTH, STH, NWA and QTP 
(Fig. 6d–f, m–u). 

3.3.4. Anthropogenic factors 
Land use change and human populations can be viewed as signifi-

cantly important anthropogenic factors in vegetation change (Lü et al., 
2015; Chen et al., 2019). In this study, land use type and population 
density were chosen as anthropogenic factors to detect their strength of 
spatial association with NDVI. Due to data availability and continuity, 
we only calculated the q values of land use type for the year of 1982, 
1990, 1995, 2000 and 2015, and the q values of population for the 
period during 2000–2015. The results show that the q values of 
anthropogenic factors represent different changing trends for the NDVI 
distribution in different regions. The q values of land use type show a 
decreasing trend in China and WTH, and an increasing trend in MTH, 
NS, STH, NWA and QTP regions during 1982–2015 (Fig. 7a). The q 
values of population show an increasing trend in China and most 
ecological regions, including MTH, NS, WTH, and NWA regions 
(Fig. 7b). 

Table 2 
Dominant interaction factors and its q values in different regions.   

P1-2 P1 P2 

MTH Pre ∩
Elevation 

0.694 Pre ∩
Elevation 

0.647 Pre ∩
Elevation 

0.704 

NS Pre ∩ Tmax  0.675 Pre ∩
Tmean  

0.705 Pre ∩ Tmax  0.647 

WTH Humidity ∩
Elevation  

0.498 Pre ∩
Elevation  

0.464 Pre ∩
Elevation  

0.499 

STH Pre ∩
Elevation  

0.554 Pre ∩
Elevation  

0.534 Pre ∩
Elevation  

0.560 

NWA Pre ∩ Land use  0.679 Pre ∩ Land 
use  

0.658 Pre ∩ Land 
use  

0.685 

QTP Pre ∩ Tmax  0.867 Pre ∩ Tmax  0.862 Pre ∩ Tmax  0.870 
China Pre ∩

Elevation  
0.912 Pre ∩

Elevation  
0.907 Pre ∩

Elevation  
0.913 

Note: Pre, Tmean and Tmax represent precipitation, mean temperature and 
maximum temperature, respectively. 
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4. Discussion 

4.1. Spatiotemporal variation of vegetation greenness across eco- 
geographic regions 

Vegetation greenness generally increases in national scale over 
China, but greening and browning vegetation dynamics both exist in 
China (Liu and Lei, 2015; Chen et al., 2019). In this study, vegetation in 
China shows increasing variability during three periods; however, het-
erogeneous regional greenness changes have been observed. The NDVI 
shows an increasing trend in all regions during 1982–1998, but displays 
a decreasing trend in NWA and QTP regions during 1999–2015, and an 
increasing trend in the other regions. Due to the dominant factor for 
vegetation greenness in these regions was precipitation, followed by 
humidity, we believed that the reasons for the browning trend may be 
caused by the weakening water conditions, for example, the humidity 
displayed significant decreasing trends in NWA and QTP regions. In 
addition, precipitation showed decreasing trend in QTP region with the 
slope of − 3.641 (mm/a), non-significant increasing trend with slope of 

0.547 (mm/a) in NWA region; on the contrary, precipitation showed 
significant rising trend in other regions (Table S2). Another reason may 
be that at the scale of AVHRR it is difficult to see details in these regions 
because of the strong background of soil (Piao et al., 2020), while at the 
scale of MODIS it is easier to pick fine details in vegetation. For instance, 
browning trend was detected from AVHRR dataset since 2000s (de Jong 
et al., 2012), but MODIS C6 data which was calibrated better and could 
identify vegetation from background precisely, showed an overall 
greening trend on the contrary (Piao et al., 2020). In this study, we 
focused on the spatial consistency and strength of association between 
factors and NDVI; the temporal changing trend of NDVI in each grid 
played little role in the identification of dominant factors in the spatial 
scale. 

Spatially stratified heterogeneity, with elevation and slope as strat-
ification variables, shows diverse changing trends across different eco- 
geographic regions. For example, the q values of elevation show an 
increasing trend in warmer regions (WTH and STH regions) but a 
decreasing trend in cooler regions, including NWA, QTP, NS, and MTH 
regions. That is caused by the different response of vegetation to 

Fig. 4. The temporal dynamics of q values of topographic factors (*** means p-value < 0.01, **means p-value < 0.05, and * means p-value < 0.1).  
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environmental factors in different regions. For example, in cooler re-
gions in this study, including NWA, QTP, NS and MTH regions, cooler 
locations are suggested to warm faster than warmer ones and the 
greening of the land surface in cold regions are consistent with recent 
global warming, raising concerns of a more homogenized landscape of 
changes in vegetation because of global warming along elevation (Gao 
et al., 2019; Keenan and Riley, 2018), thus the spatial heterogeneity 
along an altitudinal gradient decreases. On the contrary, in the tropics 
and subtropics, including WTH and STH regions, where vegetation often 
grows near its thermal optimum, temperature is not the dominant 
limiting factor for vegetation growth (Corlett, 2011; Doughty and 
Goulden, 2008); in contrast, low temperatures at high elevation may 
actually constrain respirational carbon losses and reduce evapotranspi-
ration demand, leading to enhanced vegetation growth and greenness. 
Furthermore, in most temperate regions, increasing precipitation may 
contribute to increasing spatial heterogeneity of NDVI along an eleva-
tion, particularly increasing precipitation along an elevation facilitated 

vegetation growth in high elevation areas (Kharuk et al., 2008; Deng 
et al., 2013). Precipitation showed increasing trend in both P1 and P2 
periods in STH and WTH regions (Table S2). Thus, in STH and WTH 
regions, the q values of elevation increase. 

4.2. Identification and temporal dynamics of drivers for NDVI 

There have been considerable efforts made in understanding the 
mechanisms and drivers of vegetation greening. In this study, generally, 
precipitation is the dominant climatic factor for NDVI, with the highest 
strength of association in China and most eco-geographic regions. 
However, some studies have found that temperature plays a more 
important role than precipitation in vegetation greenness (Richardson 
et al., 2013; Zhang et al., 2018). There are two potential reasons why the 
strength of association between precipitation and NDVI are higher than 
that of temperature. One reason is that during the long-term evolution of 
terrestrial ecosystems, vegetation is widely distributed across China and 

Fig. 5. The temporal dynamic of q values of water conditions (*** means p-value < 0.01, **means p-value < 0.05, * means p-value < 0.1).  
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Fig. 6. Temporal dynamics of q values of thermal factors (*** means p-value < 0.01, ** means p-value < 0.05, * means p-value < 0.1).  

Fig. 7. The temporal dynamic of q value of anthropogenic factors, (a) land use type, and (b) population density (*** means p-value < 0.01, **means p-value < 0.05, * 
means p-value < 0.1). 
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is adapted well to temperature through an adjustment of the structure or 
spatial distribution of vegetation (Lenoir et al., 2008). In addition, in 
water-stressed regions, such as arid and semi-arid areas, there is a sig-
nificant difference of vegetation type and greenness under diverse water 
conditions (Chen and Ren, 2013; Zhu et al., 2020). Another reason is 
that temperature rise affects vegetation growth in two different ways: 
moderate warming can promote vegetation growth by improving 
photosynthetic efficiency (Wang et al., 2015), but high temperature can 
enhance water consumption of vegetation, intensify drought and 
accelerate the denaturation of enzymes in some plants, resulting in 
inhibiting vegetation growth (Zhang et al., 2015; Yan et al., 2019). Thus, 
the strength of association between temperature and NDVI is lower than 
that of precipitation for the strength of association with NDVI. 

The explanatory power of drivers differed in diverse eco-geographic 
regions. For example, mean temperature owed the highest strength of 
association (q value of 0.377 in P1-2) in the coolest region, namely QTP 
region where the mean temperature is − 1.66℃, while in the hottest 
region (STH region with mean temperature of 16.00℃), the strength of 
association between temperature and NDVI was only 0.099 in P1-2. The 
reason was that temperature was not the growth limiting factor in tropic 
regions, thus temperature played little role in the spatial distribution of 
NDVI. On the contrary, temperature is the most important factor to 
decide vegetation growth in cold regions. Similarly, precipitation played 
a more important role in arid and semi-arid regions, which reached the 
highest strength of association in QTP region (0.772 in P1-2), followed 
by NWA region (0.547 in P1-2), while in the humid and sub-humid re-
gions, including STH and WTH regions, the strength of association be-
tween precipitation and NDVI had its lowest value, with the q value of 
0.243 and 0.268, respectively. These results illustrated that vegetation 
growth was significantly influenced by the limiting environmental fac-
tor, which is consistent with the theory of Liebig’s law of the minimum 
(Stine and Huybers, 2017). 

A decreasing strength of association between NDVI and temperature 
was also found in this study, with the q values decreasing across China 
over the past 34 years, which is in line with previous publications (Fu 
et al., 2015; Keenan and Riley, 2018). Keenan and Riley (2018) identi-
fied a decrease in the temperature limitation of vegetation, with a 16.4% 
decrease in the area of vegetation land limited by temperature over the 
past 30 years; the contribution of rising temperature to the enhanced 
greening trend will weaken or even disappear under continued global 
warming (Piao et al., 2006). Although the limiting effect of temperature 
for vegetation is observed in China, the response of vegetation to tem-
perature may be heterogeneous in different eco- geographic regions. We 
found that strength of association between temperature and NDVI dis-
played decreasing trends in five eco-geographic regions with diverse 
variability but increased in WTH regions. Similarly, the trends of the 
controlling effect of water conditions and human activities varied across 
different regions. A possible mechanism underlying the varying trends is 
that the impact of environmental change on vegetation greenness and 
vegetation sensitivity to external disturbance varies across regions (Zhu 
et al., 2016; Piao et al., 2020); spatially heterogeneous temperature 
rising and human disturbances may play diverse roles over different eco- 
geographic regions, thus causing the spatially heterogeneous response of 
vegetation to external environmental changes. 

We stress that our method itself finds strength of association between 
factors and vegetation greenness in space, but not causations for tem-
poral change. The input data for the GeoDetector method were cate-
gorical variables, the continuous datasets (including, for example, 
climatic factors) were separated into several categories, which makes 
the strength of association comparable among categorical factors and 
continuous factors (Luo et al., 2016), and the inter-annual variation in 
each grid cell was largely ignored. This method belongs to the category 
of analysis of variance without the linear hypothesis in the relationship 
between two variables, and the interaction detector identify the real 
interaction effect compared with the multiplicative interactions pre-
supposed by econometrics. Thus, the results based on GeoDetector is 

more reliable than classical regression analysis (Wang and Xu, 2017). 
For historical reasons, we believe that the spatial distribution and dif-
ferentiation of vegetation greenness represent the long-term adaption of 
vegetation to external factors, including environmental factors and 
anthropogenic factors (Lenoir et al., 2008). The identification of high 
spatial association factors helps considerably in identifying causality. 
Our quantitative assessment of these dominant factors confirms not only 
their relative importance but also that the temporal dynamics of 
strength of association between the factors and NDVI differed in space 
and time. 

4.3. Limitations and future studies 

Some uncertainties remain in understanding the identification and 
temporally changing dynamics of the drivers for vegetation in China. 
First, the uncertainties of identification of dominant drivers may include 
factors not considered, such as CO2 fertilisation effect (Piao et al., 2015), 
anthropogenic disturbance (e.g. afforestation and deforestation), insects 
(Kurz et al., 2008) and wildfire (Beck and Goetz, 2012). Second, the data 
quality was restricted by data availability; e.g., climate data were ac-
quired from the National Meteorological Information Center dataset, 
which were interpolated from meteorological station records. Consid-
erable errors may arise from the sparse distribution of meteorological 
stations, especially in QTP region. However, despite several un-
certainties, our study identified the relative importance of drivers across 
spatiotemporal scales and provided evidence of an overall decrease in 
the strength of association among vegetation and hydrothermal factors. 
This study also identified an increase in the correlation between vege-
tation and anthropogenic activities. Our findings provide a reference for 
terrestrial ecosystem management. We suggest that further study should 
focus on a deep analysis of temporal variation and spatial heterogeneity 
of driving mechanism for vegetation greening or browning trends. 
Additionally, in the future experiment design and vegetation model 
simulation, the human activity should be more significantly considered. 

5. Conclusion 

Our study identified the spatiotemporal differentiation on the 
response of vegetation greenness to climate change and land cover 
change in six eco-geographic regions across China. Our findings will 
help to enable decision-makers to effectively manage and develop sus-
tainable ecosystems by comprehensively considering the regional and 
temporal differences of vegetation greenness and its drivers across 
diverse sub-regions. The primary conclusions are summarized as 
follows:  

(1) Vegetation greenness changes significantly across space and time. 
Vegetation represents a greening trend in the six eco-geographic 
regions during 1982–1998, but greening and browning both exist 
during 1999–2015. In addition, due to the diverse response of 
vegetation to climatic factors in different eco-geographic regions, 
the spatial heterogeneity along an elevation gradient displays 
opposite changing trend with weakening trend in colder regions 
(including NWA, QTP, NS and MTH) and enhancing trend in 
warmer regions, including STH and WTH regions. 

(2) The dominant factors for NDVI and the spatial association be-
tween NDVI and factors are heterogeneous in the six eco- 
geographic regions of China. Water conditions are the domi-
nant factor for landscape variation of NDVI across China; the 
strength of association between water conditions and NDVI is 
higher in arid and semi-arid areas compared with humid areas. 
The dominant factors differ across the six eco-geographic regions; 
e.g., topographic factors dominate in the MTH region, and pre-
cipitation dominates in the NS, NWA and QTP regions.  

(3) Generally, the strength of association between hydrothermal 
factors and NDVI decreases, but the linkages between human 
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activities and NDVI are enhanced. Meanwhile, the temporal dy-
namics of strength of association between factors and NDVI vary 
in different time series and regions. For instance, the strength of 
association between wind speed and NDVI decrease during 
1982–1998, but increase during 1999–2015 in the WTH region; 
in contrast there are decreasing trends in the QTP region in both 
periods. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We would like to thank the financial support provided by the Na-
tional Key Research and Development Plan of China [grant number: 
2019YFA0606602]. 

Funding 

This study was supported by the National Key Research and Devel-
opment Plan of China [grant number: 2019YFA0606602]. 

Author contribution statement 

Huan Wang designed and wrote this paper, Shijie Yan, Ze Liang, 
Kewei Jiao, Delong Li, Feili Wei and Shuangcheng Li provided a lot of 
valuable suggestions for the improvement of the paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecolind.2021.107831. 

References 

Beck, P.S.A., Goetz, S.J., 2012. Satellite observations of high northern latitude vegetation 
productivity changes between 1982 and 2008: ecological variability and regional 
differences. Environ. Res. Lett. 7 (2) https://doi.org/10.1088/1748-9326/7/2/ 
029501. 

Bonan, G.B., 2008. Forests and climate change: forcings, feedbacks, and the climate 
benefits of forests. Science 320 (5882), 1444–1449. 

Buitenwerf, R., Bond, W.J., Stevens, N., Trollope, W.S.W., 2012. Increased tree densities 
in South African savannas: > 50 years of data suggests CO2 as a driver. Glob. Change 
Biol. 18 (2), 675–684. https://doi.org/10.1111/j.1365-2486.2011.02561.x. 

Cai, D., Fraedrich, K., Sielmann, F., Guan, y., Guo, S., 2016. Land-cover characterization 
and aridity changes of South America (1982-2006): an attribution by 
ecohydrological diagnostics. J. Clim. 29(22), 8175–8189. 

Cai, D., Fraedrich, K., Sielmann, F., Zhang, L., Zhu, X., Guo, S., Guan, Y., 2015. 
Vegetation dynamics on the Tibetan Plateau (1982–2006): an attribution by 
ecohydrological diagnostics. J. Clim. 28 (11), 4576–4584. 

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin, V., 
Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R.R., Myneni, R.B., 
2019. China and India lead in greening of the world through land-use management. 
Nat. Sustainability 2 (2), 122–129. https://doi.org/10.1038/s41893-019-0220-7. 

Chen, H., Ren, Z., 2013. Response of vegetation coverage to changes of precipitation and 
temperature in Chinese Mainland. Bull. Soil Water Conserv. 33 (2), 78–82. https:// 
doi.org/10.13961/j.cnki.stbctb.2013.02.001. 

Corlett, R.T., 2011. Impacts of warming on tropical lowland rainforests. Trends Ecol. 
Evol. 26 (11), 606–613. 

Jong, R., Verbesselt, J., Schaepman, M.E., Bruin, S., 2012. Trend changes in global 
greening and browning: contribution of short-term trends to longer-term change. 
Glob. Change Biol. 18 (2), 642–655. 

Deng, S.-f., Yang, T.-B., Zeng, B., Zhu, X.-F., Xu, H.-J., 2013. Vegetation cover variation 
in the Qilian Mountains and its response to climate change in 2000–2011. 
J. Mountain Sci. 10 (6), 1050–1062. 

Doughty, C.E., Goulden, M.L., 2008. Are tropical forests near a high temperature 
threshold. J. Geophys. Res. 113 (G1), n/a–n/a. https://doi.org/10.1029/ 
2007JG000632. 

Du, Z., Zhang, X., Xu, X., Zhang, H., Wu, Z., Pang, J., 2017. Quantifying influences of 
physiographic factors on temperate dryland vegetation, Northwest China. Sci. Rep. 7 
(1), 1–9. https://doi.org/10.1038/srep40092. 

Fensholt, R., Langanke, T., Rasmussen, K., Reenberg, A., Prince, S.D., Tucker, C., 
Scholes, R.J., Le, Q.B., Bondeau, A., Eastman, R., Epstein, H., Gaughan, A.E., 
Hellden, U., Mbow, C., Olsson, L., Paruelo, J., Schweitzer, C., Seaquist, J., 
Wessels, K., 2012. Greenness in semi-arid areas across the globe 1981–2007 - an 
Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 
121, 144–158. https://doi.org/10.1016/j.rse.2012.01.017. 

Fu, B., Wang, S., Liu, Y., Liu, J., Liang, W., Miao, C., 2017. Hydrogeomorphic ecosystem 
responses to natural and anthropogenic changes in the loess Plateau of China. Annu. 
Rev. Earth Planet. Sci. 45 (1), 223–243. https://doi.org/10.1146/annurev-earth- 
063016-020552. 

Fu, Y., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., Ciais, P., Huang, M., 
Menzel, A., Uelas, J.P., Song, Y., Vitasse, Y., Zeng, Z., Janssens, I.A., 2015. Declining 
global warming effects on the phenology of spring leaf unfolding. Nature 526 
(7571), 104–107. 

Gao, J., Jiao, K., Wu, S., Ma, D., Zhao, D., Yin, Y., Dai, E., 2017. Past and future effects of 
climate change on spatially heterogeneous vegetation activity in China. Earth’s 
Future 5 (7), 679–692. 

Gao, J., Wang, H., 2019. Temporal analysis on quantitative attribution of karst soil 
erosion: a case study of a peak-cluster depression basin in Southwest China. Catena 
172, 369–377. 

Gao, M., Piao, S., Chen, A., Yang, H., Liu, Q., Fu, Y.H., Janssens, I.A., 2019. Divergent 
changes in the elevational gradient of vegetation activities over the last 30 years. 
Nat. Commun. 10 (1), 1–10. https://doi.org/10.1038/541467-019-11035-W. 

Hsu, J.S., Powell, J., Adler, P.B., 2012. Sensitivity of mean annual primary production to 
precipitation. Glob. Change Biol. 18 (7), 2246–2255. 

Huang, K., Xia, J., Wang, Y., Ahlström, A., Chen, J., Cook, R.B., Cui, E., Fang, Y., 
Fisher, J.B., Huntzinger, D.N., Li, Z., Michalak, A.M., Qiao, Y., Schaefer, K., 
Schwalm, C., Wang, J., Wei, Y., Xu, X., Yan, L., Bian, C., Luo, Y., 2018. Enhanced 
peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2 (12), 
1897–1905. 

Huang, S., Zheng, X., Ma, L., Wang, H., Huang, Q., Leng, G., Meng, E., Guo, Y.i., 2020. 
Quantitative contribution of climate change and human activities to vegetation 
cover variations based on GA-SVM model. J. Hydrol. 584, 124687. https://doi.org/ 
10.1016/j.jhydrol.2020.124687. 

Huxman, T.E., Smith, M.D., Fay, P.A., Knapp, A.K., Shaw, M.R., Loik, M.E., Smith, S.D., 
Tissue, D.T., Zak, J.C., Weltzin, J.F., Pockman, W.T., Sala, O.E., Haddad, B.M., 
Harte, J., Koch, G.W., Schwinning, S., Small, E.E., Wlliams, D.G., 2004. Convergence 
across biomes to a common rain-use efficiency. Nature 429 (6992), 651–654. 

Kalisa, W., Igbawua, T., Henchiri, M., Ali, S., Zhang, S., Bai, Y., Zhang, J., 2019. 
Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 
2015. Sci. Rep. 9, 20. https://doi.org/10.1038/s41598-019-53150-0. 

Keenan, T.F., Riley, W.J., 2018. Greening of the land surface in the world’s cold regions 
consistent with recent warming. Nat. Clim. Change 8 (9), 825–828. 

Kharuk, V.I., Dvinskaya, M.L., Im, S.T., Ranson, K.J., 2008. Tree vegetation of the forest- 
tundra ecotone in the Western Sayan mountains and climatic trends. Russ. J. Ecol. 39 
(1), 8–13. 

Krishnaswamy, J., John, R., Joseph, S., 2014. Consistent response of vegetation dynamics 
to recent climate change in tropical mountain regions. Glob. Change Biol. 20 (1), 
203–215. 

Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Safranyik, L., 2008. Mountain pine 
beetle and forest carbon feedback to climate change. Nature 452 (7190), 987–990. 

Lenoir, J., Gegout, J.C., Marquet, P.A., de Ruffray, P., Brisse, H., 2008. A significant 
upward shift in plant species optimum elevation during the 20th century. Science 
320 (5884), 1768–1771. https://doi.org/10.1126/science.1156831. 

Leverkus, A.B., Murillo, P.G., Dona, V.J., Pausas, J.G., 2019. Wildfires: opportunity for 
restoration? Science 363 (6423), 134–135. 

Liu, Y., Lei, H., 2015. Responses of natural vegetation dynamics to climate drivers in 
China from 1982 to 2011. Remote Sensing 7 (8), 10243–10268. 

Luo, W., Jasiewicz, J., Stepinski, T., Wang, J., Xu, C., Cang, X., 2016. Spatial association 
between dissection density and environmental factors over the entire conterminous 
United States. Geophys. Res. Lett. 43 (2), 692–700. https://doi.org/10.1002/grl. 
v43.210.1002/2015GL066941. 

Lü, Y., Zhang, L., Feng, X., Zeng, Y., Fu, B., Yao, X., Li, J., Wu, B., 2015. Recent ecological 
transitions in China: greening, browning, and influential factors. Sci. Rep. 5 (1), 
8732. 

Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., 
Myneni, R.B., Running, S.W., 2003. Climate-driven increases in global terrestrial net 
primary production from 1982 to 1999. Science 300 (5625), 1560–1563. https:// 
doi.org/10.1126/science.1082750. 

Niinemets, U., Flexas, J., Penuelas, J., 2011. Evergreens favored by higher 
responsiveness to increased CO2. Trends Ecol. Evol. 26 (3), 136–142. https://doi. 
org/10.1016/j.tree.2010.12.012. 

Piao, S., Friedlingstein, P., Ciais, P., Zhou, L., Chen, A., 2006. Effect of climate and CO2 
changes on the greening of the Northern Hemisphere over the past two decades. 
Geophys. Res. Lett. 33 (23) https://doi.org/10.1029/2006gl028205. 

Piao, S., Nan, H., Huntingford, C., Ciais, P., Friedlingstein, P., Sitch, S., Peng, S.S., 
Ahlstrom, A., Canadell, J.G., Cong, N., Levis, S., Levy, P.E., Liu, L.L., Lomas, M.R., 
Mao, J.F., Myneni, R.B., Peylin, P., Poulter, B., Shi, X., Yin, G., Viovy, N., Wang, T., 
Wang, X., Zaehle, S., Zeng, N., Zeng, Z., Chen, A., 2014. Evidence for a weakening 
relationship between interannual temperature variability and northern vegetation 
activity. Nat. Commun. 5 (1), 5018. 

Piao, S., Wang, X., Ciais, P., Zhu, B., Wang, T., Liu, J., 2011. Changes in satellite-derived 
vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. 
Change Biol. 17 (10), 3228–3239. https://doi.org/10.1111/j.1365- 
2486.2011.02419.x. 

H. Wang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.ecolind.2021.107831
https://doi.org/10.1016/j.ecolind.2021.107831
https://doi.org/10.1088/1748-9326/7/2/029501
https://doi.org/10.1088/1748-9326/7/2/029501
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0010
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0010
https://doi.org/10.1111/j.1365-2486.2011.02561.x
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0025
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0025
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0025
https://doi.org/10.1038/s41893-019-0220-7
https://doi.org/10.13961/j.cnki.stbctb.2013.02.001
https://doi.org/10.13961/j.cnki.stbctb.2013.02.001
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0040
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0040
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0045
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0045
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0045
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0050
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0050
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0050
https://doi.org/10.1029/2007JG000632
https://doi.org/10.1029/2007JG000632
https://doi.org/10.1038/srep40092
https://doi.org/10.1016/j.rse.2012.01.017
https://doi.org/10.1146/annurev-earth-063016-020552
https://doi.org/10.1146/annurev-earth-063016-020552
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0075
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0075
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0075
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0075
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0080
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0080
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0080
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0085
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0085
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0085
https://doi.org/10.1038/541467-019-11035-W
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0095
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0095
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0100
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0100
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0100
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0100
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0100
https://doi.org/10.1016/j.jhydrol.2020.124687
https://doi.org/10.1016/j.jhydrol.2020.124687
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0110
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0110
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0110
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0110
https://doi.org/10.1038/s41598-019-53150-0
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0120
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0120
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0125
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0125
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0125
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0130
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0130
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0130
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0135
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0135
https://doi.org/10.1126/science.1156831
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0145
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0145
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0150
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0150
https://doi.org/10.1002/grl.v43.210.1002/2015GL066941
https://doi.org/10.1002/grl.v43.210.1002/2015GL066941
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0165
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0165
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0165
https://doi.org/10.1126/science.1082750
https://doi.org/10.1126/science.1082750
https://doi.org/10.1016/j.tree.2010.12.012
https://doi.org/10.1016/j.tree.2010.12.012
https://doi.org/10.1029/2006gl028205
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0195
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0195
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0195
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0195
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0195
http://refhub.elsevier.com/S1470-160X(21)00496-9/h0195
https://doi.org/10.1111/j.1365-2486.2011.02419.x
https://doi.org/10.1111/j.1365-2486.2011.02419.x


Ecological Indicators 128 (2021) 107831

12

Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J.W., Chen, A., Ciais, P., 
Tommervik, H., Nemani, R.R., Myneni, R.B., 2020. Characteristics, drivers and 
feedbacks of global greening. https://doi.org/10.1038/s43017-019-0001-x. 

Piao, S., Yin, G., Tan, J., Cheng, L., Huang, M., Li, Y., Liu, R., Mao, J., Myneni, R.B., 
Peng, R., Poulter, B., Shi, X., Xiao, Z., Zeng, N., Zeng, Z., Wang, Y., 2015. Detection 
and attribution of vegetation greening trend in China over the last 30 years. Glob. 
Change Biol. 21 (4), 1601–1609. 

Qu, L., Huang, Y., Yang, L., Li, Y., 2020. Vegetation restoration in response to climatic 
and anthropogenic changes in the Loess Plateau, China. Chin. Geogr. Sci. 30 (1), 
89–100. 

Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M., 
2013. Climate change, phenology, and phenological control of vegetation feedbacks 
to the climate system. Agric. For. Meteorol. 169, 156–173. 

Song, X., Hansen, M., Stehman, S., Potapov, P., Tyukavina, A., Vermote, E., 
Townshend, J., 2018. Global land change from 1982 to 2016.“. Nature 563 (7732), 
E26. 

Sun, J., Wang, X., Chen, A., Ma, Y., Cui, M., Piao, S., 2011. NDVI indicated characteristics 
of vegetation cover change in China’s metropolises over the last three decades. 
Environ. Monit. Assess. 179 (1–4), 1–14. https://doi.org/10.1007/s10661-010- 
1715-x. 

Stine, A.R., Huybers, P., 2017. Implications of Liebig’s law of the minimum for tree-ring 
reconstructions of climate. Environ. Res. Lett. 12 (11), 114018. https://doi.org/ 
10.1088/1748-9326/aa8cd6. 

Tao, J., Zhang, Y., Dong, J., Fu, Y.u., Zhu, J., Zhang, G., Jiang, Y., Tian, L.i., Zhang, X., 
Zhang, T., Xi, Y.i., 2015. Elevation-dependent relationships between climate change 
and grassland vegetation variation across the Qinghai-Xizang Plateau. Int. J. 
Climatol. 35 (7), 1638–1647. https://doi.org/10.1002/joc.2015.35.issue-710.1002/ 
joc.4082. 

Toms, J.D., Lesperance, M.L., 2003. Piecewise regression: a tool for identifying ecological 
thresholds. Ecology 84 (8), 2034–2041. https://doi.org/10.1890/02-0472. 

Wang, C., Guo, H., Zhang, L.i., Liu, S., Qiu, Y., Sun, Z., 2015. Assessing phenological 
change and climatic control of alpine grasslands in the Tibetan Plateau with MODIS 
time series. Int. J. Biometeorol. 59 (1), 11–23. 

Wang, H., Gao, J., Hou, W., 2018. Quantitative attribution analysis of soil erosion in 
different morphological types of geomorphology in karst areas: based on the 
geographical detector method. Acta Geographica Sinica 73 (9), 1674–1686 (in 
Chinese).  

Wang, J.-F., Li, X.-H., Christakos, G., Liao, Y.-L., Zhang, T., Gu, X., Zheng, X.-Y., 2010. 
Geographical detectors-based health risk assessment and its application in the neural 
tube defects study of the Heshun Region, China. Int. J. Geogr. Inform. Sci. 24 (1), 
107–127. 

Wang, J., Wang, H., Cao, Y., Bai, Z., Qin, Q., 2016a. Effects of soil and topographic 
factors on vegetation restoration in opencast coal mine dumps located in a loess area. 
Sci. Rep. 6 (1), 22058. 

Wang, J., Xu, C., 2017. Geodetector: principle and prospective. Acta Geographica Sinica 
72 (1), 116–134 (in Chinese).  

Wang, J., Zhang, T., Fu, B., 2016b. A measure of spatial stratified heterogeneity. Ecol. 
Ind. 67, 250–256. https://doi.org/10.1016/j.ecolind.2016.02.-052. 

Wang, X., Piao, S., Ciais, P., Li, J., Friedlingstein, P., Koven, C., Chen, A., 2011. Spring 
temperature change and its implication in the change of vegetation growth in North 
America from 1982 to 2006. PNAS 108 (4), 1240–1245. 

Wei, F., Liang, Z.e., Wang, Y., Huang, Z., Wang, H., Sun, F., Li, S., 2020. Exploring the 
driving factors of the spatiotemporal variation of precipitation in the Jing–Jin–Ji 

urban agglomeration from 2000 to 2015. Sustainability 12 (18), 7426. https://doi. 
org/10.3390/su12187426. 

Wu, S., Yin, Y., Zhao, D., Huang, M., Shao, X., Dai, E., 2010. Impact of future climate 
change on terrestrial ecosystems in China. Int. J. Climatol. 30 (6), 866–873. 

Xiao, J., Moody, A., 2005. Geographical distribution of global greening trends and their 
climatic correlates: 1982–1998. Int. J. Remote Sens. 26 (11), 2371–2390. 

Xu, J., Yin, R., Li, Z., Liu, C., 2006. China’s ecological rehabilitation: unprecedented 
efforts, dramatic impacts, and requisite policies. Ecol. Econ. 57 (4), 595–607. 

Yan, S., Wang, H., Jiao, K., 2019. Spatiotemporal dynamic of NDVI in the Beijing-Tianjin- 
Hebei region based on MODIS data and quantitative attribution. J. Geo-inform. Sci. 
21 (5), 767–780 (in Chinese).  

Yang, Y., Fang, J., Ma, W., Wang, W., 2008. Relationship between variability in 
aboveground net primary production and precipitation in global grasslands. 
Geophys. Res. Lett. 35 (23) https://doi.org/10.1029/2008gl035408. 

Zhang, K., Kimball, J.S., Nemani, R.R., Running, S.W., Hong, Y., Gourley, J.J., Yu, Z., 
2015. Vegetation greening and climate change promote multidecadal rises of global 
land evapotranspiration. Sci. Rep. 5 (1) https://doi.org/10.1038/srep15956. 

Zhang, P., Cai, Y., Yang, W., Yi, Y., Yang, Z., Fu, Q., 2020a. Contributions of climatic and 
anthropogenic drivers to vegetation dynamics indicated by NDVI in a large dam- 
reservoir-river system. J. Cleaner Prod. 256, 120477. https://doi.org/10.1016/j. 
jclepro.2020.120477. 

Zhang, W., Wang, L., Xiang, F., Qin, W., Jiang, W., 2020b. Vegetation dynamics and the 
relations with climate change at multiple time scales in the Yangtze River and Yellow 
River Basin, China. Ecol. Indic. 110, 105892. https://doi.org/10.1016/j. 
ecolind.2019.105892. 

Zhang, Y., Wang, X., Li, C., Cai, Y., Yang, Z., Yi, Y., 2018. NDVI dynamics under changing 
meteorological factors in a shallow lake in future metropolitan, semiarid area in 
North China. Sentific Rep. 8 (1) https://doi.org/10.1038/s41598-018-33968-w. 

Zhao, D., Wu, S., 2014. Vulnerability of natural ecosystem in China under regional 
climate scenarios: an analysis based on eco-geographical regions. J. Geog. Sci. 24 
(2), 237–248. 

Zhao, H., Wu, R., Hu, J., Yang, F., Wang, J., Guo, Y., Zhou, J., Wang, Y., Zhang, C., 
Feng, Z., 2020. The contrasting east-west pattern of vegetation restoration under the 
large-scale ecological restoration programmes in southwest China. Land Degrad. 
Dev. 31 (13), 1688–1698. https://doi.org/10.1002/ldr.v31.1310.1002/ldr.3520. 

Zhao, Z., Liu, J., Peng, J., Li, S., Wang, Y., 2015. Nonlinear features and complexity 
patterns of vegetation dynamics in the transition zone of North China. Ecol. Ind. 49, 
237–246. 

Zheng, D., 2008. Chinese eco-geographical regionalization research. The Commercial 
Press, Beijing (in Chinese).  

Zhou, L.M., Tucker, C.J., Kaufmann, R.K., Slayback, D., Shabanov, N.V., Myneni, R.B., 
2001. Variations in northern vegetation activity inferred from satellite data of 
vegetation index during 1981 to 1999. J. Geophys. Res.-Atmos. 106 (D17), 
20069–20083. https://doi.org/10.1029/2000jd000115. 

Zhu, L., Meng, J., Zhu, L., 2020. Applying Geodetector to disentangle the contributions of 
natural and anthropogenic factors to NDVI variations in the middle reaches of the 
Heihe River Basin. Ecol. Ind. 117, 106545. https://doi.org/10.1016/j. 
ecolind.2020.106545. 

Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., 
Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X.u., 
Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B., Pugh, T.A.M., 
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