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This study aimed to map the spatial patterns of Zn in urban topsoil by usingmultisource geospatial data andma-
chine learning method. Geological map, digital elevation models, and Landsat images were used to extract data
related to geology, relief, and land use types and a vegetation index. Urban functional types were derived from
the fusion of Systeme Probatoire d'Observation de la Terre 5 images, points of interest, and real-time Tencent
user data. A geodetector was adopted to select key environmental covariates. Random forest (RF) and geograph-
ically weighted regression (GWR) were employed to model andmap Zn concentrations in urban topsoil. The re-
sults showed that urban functional type, geology, NDVI, elevation, slope, and aspect were key environmental
covariates. Compared with land use types, urban functional types could better reflect the spatial variation in
Zn. The RF and GWR models were established using the key environmental covariates, with leave-one-out
cross-validated R values of 0.68 and 0.58 and root mean square errors of 0.51 and 0.57, respectively. The results
indicated that digital mapping of Zn in urban topsoil by usingmultisource geospatial data and RFwas feasible. RF
might bemore suitable to fit the stochastic characteristics of Zn in urban topsoils than GWR, which considers de-
terministic trends in modeling.
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1. Introduction

With the rapid urbanization in China, increasing and intensive
human activities have introduced significant amounts of organic and in-
organic contaminants, such as heavy metals, into urban environments,
which accumulate in the topsoil (0–20 cm) (Luo et al., 2012; Tang
et al., 2005). By migrating through water, plants, or wind intermedi-
aries, heavy metal contaminants can enter and harm the human body
through food or air. Approximately 65% of cities in China suffer from se-
vere or extremely severe levels of heavy metal contamination in urban
environments (Wei and Yang, 2010). To satisfy the growing demands
for fiber and food for the growing population, soil surveys and research
have mainly focused on forest and agricultural soils and have neglected
urban soils (Lu et al., 2012). Because they are often deeply disturbed by
human activities and mixed with primary and exogenous materials,
spatial heterogeneity is a typical feature of urban soils (De Kimpe and
Morel, 2000). Specific approaches are needed to study such a heteroge-
neous soil environment and to overcome the problems related to soil
heterogeneity, characterization of man-made materials, and detection
of the sources of pollutants (De Kimpe and Morel, 2000).

The SCORPAN framework is a widely used model for exploring the
spatial patterns of soil properties. Soil properties can be estimated as a
function of the soil-forming environment in the SCORPAN framework.
According to Jenny's soil form model and the Dokuchaev hypothesis,
the soil-forming environmental factors related to soil formation in the
SCORPAN model include parent material, climate, organisms (vegeta-
tion, microorganisms, animals and human activities), relief, and time
(Florinsky, 2012; McBratney et al., 2003). Urban soils originate from
natural soil and are disturbed by human activities through mixing
with various inputs of exogenousmaterials. Heavymetals in urban top-
soil were partly derived from parent material during the soil-forming
process and were additionally input by human activities (Zhang,
2006). Therefore, several studies have reported that heavy metals in
soil are affected by multiple environmental covariates, including relief,
parent material, and organisms (Bou Kheir et al., 2014; Liu et al., 2016;
Qiu et al., 2015; Wilford et al., 2016).

Environmental covariates for the analysis of spatial patterns of soil
heavy metals are usually derived from geospatial data, including the-
matic maps and remote sensing data. For example, a geological map
was adopted to extract parent material covariates associated with soil
heavy metals (Bou Kheir et al., 2014). Relief factors (i.e., elevation, as-
pect, and slope)were calculated from a 10m resolution digital elevation
model (Bagheri et al., 2015). Compared with thematic maps, remotely
sensed data are more accessible and timelier. Landsat, Systeme
Probatoire d'Observation de la Terre (SPOT),Moderate-resolution Imag-
ing Spectroradiometer (MODIS), and IKONOS satellite images were
used to produce information about various factors related to organisms,
such as vegetation indices and land use types (Huo et al., 2010; Shi et al.,
2018; Wilford et al., 2016). Moreover, Wilford et al. (2016) calculated
multiple relief factors from advanced space borne thermal emission
and reflectance radiometer (ASTER) data by using digital terrain
analysis.

Land use type data are vital for the spatial analysis of soil properties
(Baritz et al., 2018), as they reflect the diverse effects of factors associ-
ated with organisms on soils. Land use types are acquired from Landsat
or MODIS satellite data using image interpretation methods. Land use
category systems often include agricultural land, forestland, grassland,
water, man-made areas, etc. However, for spatial analysis of heavy
metals in urban soils, the land use category system may not be suitable
because of the deficiency in describing the different impacts of various
human activities on heavy metal accumulation. Inman-made areas, an-
thropogenic activities vary (public events, industrial production, or
commercial activity) and result in different degrees of heavy metal pol-
lution. Several studies have demonstrated that urban functional areas
(industrial areas, commercial areas, medical areas, residential areas,
etc.) can better reflect the spatial variations in soil heavy metals
2

(Wu et al., 2003; Chen et al., 1997; J. Wang et al., 2016; Y. Wang et al.,
2016). Therefore, it is necessary to introduce detailed information
about urban functional types (i.e., residential areas, industrial areas,
commercial areas, etc.) into models to distinguish different human ac-
tivities and portray the spatial distributions of heavy metals in urban
topsoil.

In the past, itwas almost impossible to classify these functional types
using satellite-based remote sensing images, especially in densely pop-
ulated cities, such as Tokyo, Beijing, Shenzhen, and New York. With the
emergence of communication and information technologies, the avail-
ability of geotagged social sensing big data that record human activities
and behaviors, including points of interests (POIs), social media check-
in data, andmobile phone positioning data (Cao et al., 2020), is increas-
ing. The data fusion of remote sensing images and social sensing big
data has provided an innovative approach to classify urban function
types. For example, Zhang et al. (2019) integrated remote sensing
data, POIs, and mobile phone position data to portray urban functional
types. Tu et al. (2018) combined mobile phone position data and satel-
lite imagery to classify urban functional zones using hierarchical
clustering.

The usefulness of the environmental covariates and their relation-
ship with soil heavy metals must be reviewed before soil mapping.
The multicollinearity of environmental covariates was assessed using
the variance inflation factor and was overcome using principal compo-
nent analysis (Baritz et al., 2018). Key environmental covariates were
identified statistically based on the a linear Pearson correlation with
heavy metals (Lin et al., 2002; Navas and Machin, 2002). However, lin-
ear statistics, such as the variance inflation factor and Pearson correla-
tion, may be unsuitable to fit the nonlinear relationship between
environmental covariates and heavy metals. Moreover, environmental
covariates are always represented by categorical data and, therefore,
may not be suitable for linear statistical methods, such as Pearson
correlation.

A geographical detector, called a geodetector, is a more suitable
method for determining the key environmental covariates for mapping
heavy metals. Geodetectors are developed based on the spatially strati-
fied heterogeneity of geographical characteristics (Wang et al., 2010).
This assumption indicates that key environmental covariates share sim-
ilar spatial heterogeneitywith heavymetals. Unlike the Pearson correla-
tion or variance inflation factor, which are based on a linear statistical
assumption, geodetectors do not require normally distributed data
and are suitable for processing geospatial data and categorical data.
Luo et al. (2015) adopted a geodetector to identify the environmental
covariates dominating the spatial pattern of dissection density over the
entire conterminous United States. Therefore, the use of geodetectors
to select key environmental covariates for mapping heavy metals in
urban topsoil may be appropriate.

Currently, geostatistical and hybrid approaches, such as kriging, co-
kriging and geographically weighted regression (GWR), are the two
main methods for mapping heavy metals in urban soils (Chen et al.,
2016; Chen et al., 2015; Guo et al., 2012; Imperato et al., 2003; Maasa
et al., 2010; Saby et al., 2006; Sun et al., 2013). Kriging is based on the
neighborhood approach of spatial autocorrelation but fails to consider
inexpensive and available covariates in modeling (McBratney et al.,
2003; McBratney et al., 2000). As a multivariate extension of kriging,
cokriging uses a linear regression method to integrate environmental
covariates in the prediction process (McBratney et al., 2000). Because
urban soil consists of a mixture of various anthropogenic exogenous
materials and original soil materials, it is characterized by strong spatio-
temporal heterogeneity (Morel and Heinrich, 2008; Shi et al., 2018).
This suggests that geostatistical and hybrid approaches mainly consid-
ering deterministic trends may not suitably predict the stochastic char-
acteristics of heavymetals in urban topsoils. Machine learningmethods,
such as random forest (RF), may be a more appropriate approach for
fitting the nonlinear relationship between environmental covariates
and heavy metals, and predicting the stochastic spatial structure of
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heavy metals in urban topsoils. Therefore, studies on the use of RF to
map heavy metals in urban topsoil are needed.

Zinc (Zn) is a universal heavy metal element in urban soil. The in-
creasing and significant Zn pollution in urban soil poses a major threat
to human health and environmental safety. The traditional method for
soil Zn determination is large-scale sampling and long-termexperimen-
tal analysis. Although concentration determination is highly accurate, it
requires long periods and has a high cost, and it is difficult to achieve
large-scale mapping of Zn. Mapping the spatial patterns of Zn in urban
soils may enrich soil science knowledge and improve the identification
of pollution sources and protection of the health of citizens.

In this study, a survey was conducted to map the spatial patterns of
Zn in urban topsoils in Shenzhen city. A total of 221 soil samples were
collected and analyzed for Zn. Multiple geospatial data, including the-
matic maps, social sensing data, and remote sensing images, were
used to extract environmental covariates, especially urban functional
types. A geodetector was employed to select key environmental covar-
iates, and the RF and GWR methods were used to map the spatial pat-
tern of heavy metals, and the prediction accuracies were compared.
This research offers an approach for exploring the spatial patterns of
heavy metal contamination in urban environments.

2. Materials and methods

2.1. Study area and field work

Due to its rapid urbanization and industrialization, Shenzhen city
(113°46′E to 114°37′E, 22°27′N to 22°52′N) was selected as the study
area. It is located in Guangdong Province, southern China. Shenzhen
has a subtropical maritime climate with a mean annual precipitation
of 1993.3 mm and an average annual temperature of 22.4 °C. This
study was focused on the western area of Shenzhen (Fig. 1), including
theGuangming, Bao'an, Futian,Nanshan, Luohu, Longgang, and Longhua
districts. Most of the inhabitants of Shenzhen live in these districts.
Lateritic red soil is the dominant soil type in Shenzhen (Chang et al.,
2020). Due to rapid urbanization over the past 40 years, the soil in
Shenzhen city has been intensely disturbed by human activities. Nearly
half of the city's areas have been transformed into urban built-up areas,
and the historical natural and agricultural soil types and profile struc-
tures have been completely destroyed (Chang et al., 2020).

Shenzhen features the quickest urbanization and industrialization in
China. Its gross domestic product (GDP) grew from 270million yuan to
2.77 trillion yuan and rose 10,000-fold from 1980 to 2020. Moreover,
the urban built-up area of Shenzhen expanded from 2.81 km2 to 661
km2 in this period. Due to the low intensity of its development before
the Chinese economic reform, Shenzhen is a suitable area to study
Fig. 1. Locations of the study area and sampling points. The background is a true
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environmental stress caused by rapid urbanization and industrialization
since 1980.Moreover, social-media data (POIs, real-time Tencent users)
are readily accessible in Shenzhen, where headquarters of Tencent are
located. Based on its characteristics, Shenzhen was chosen as the repre-
sentative city in our study.

For soil sampling, the study area was first divided into 2 × 2 km2

regular grids. A sampling site was then randomly chosen in the grids
during the sampling process. The geographical coordinates of the
sampling sites were recorded using a GPS (global positioning sys-
tem) receiver, and their positions are displayed in Fig. 1. The samples
were collected from vegetated or exposed soils in parks, gardens,
greenbelts, etc., and impervious areas were avoided. At each site,
we collected approximately 1.5 kg soil samples (0–20 cm) using a
shovel, from which plant residues and artificial deposits were re-
moved. Finally, 221 soil samples were collected for Zn concentration
analysis.

2.2. Soil heavy metal measurement

The soil samples were air-dried at 20–26 °C and then ground into
powder using an agate mortar. The soil powder was passed through a
100-mesh sieve. The ground soil samples were digested using HNO3-
HCl-HClO4, and then the soil Zn concentrations were determined
using the atomic absorption flame spectrometer method (Lu, 2000).
Digestion and chemical analyses were conducted three times for each
sample to measure Zn concentrations, and the average value was calcu-
lated as the final concentration.

2.3. Environmental covariates

2.3.1. Geology
A geological map of Shenzhen city was downloaded from the

website of the Urban Planning Land and Resources Commission of
Shenzhen Municipality (http://www.szpl.gov.cn) (Fig. S1). The geolog-
ical thematic map was georeferenced based on a standard administra-
tive map of Shenzhen. The georeferenced geological map was then
clipped to correspond to the study area. The digital geological map
was then classified to distinguish the geological types using an object-
oriented image segmentation method and a support vector machine
(OB-based SVM) classifier (Shi et al., 2018).

2.3.2. Relief
ASTER (http://www.gscloud.cn) provides global production of

digital elevation models at a spatial resolution of 30 m. In this
study, the relief covariates of surface topography, such as slope,
elevation, and aspect, were calculated from the ASTER digital
color image from Systeme Probatoire d'Observation de la Terre 5 (SPOT 5).

http://www.szpl.gov.cn
http://www.gscloud.cn


Table 1
Statistical description of the zinc (Zn) concentration (mg kg−1)a.

Minimum Maximum Mean Median S.D. Skewness

Zn 2.70 145.00 36.70 31.68 22.93 1.55

a S.D. is standard deviation.
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elevation model data of ASTER using digital terrain analysis
techniques.

2.3.3. Land use type and vegetation index
A Landsat image (No. LC81220442016038 LGN00, spatial resolution

of 30m, downloaded fromhttps://glovis.usgs.gov) that covers the study
area was used to obtain land use types and the vegetation index. The
Landsat image was first geometrically and radiometrically corrected.
The radiance of the image was then converted into a reflectance value
using the fast line-of-sight atmospheric analysis of the spectral hyper-
cube model. The normalized difference vegetation index (NDVI) was
calculated from the spectral reflectance. Three land use types, including
artificial objects,water bodies, and terrestrial vegetation,were classified
using the OB-based SVM method (Hu et al., 2016) with an accuracy of
0.893, and the training datasets for the classifier were identified by vi-
sual interpretation.

2.3.4. Urban function
A SPOT 5 images, POI data, and real-time Tencent user (RTU) data

(Fig. S2) were employed to infer urban functional types. The SPOT 5
image was pansharpened and contained four spectral images with a
spatial resolution of 2.5 m per pixel. The POI data contained 156,303 re-
cords, including commercial sites, residential communities, medical fa-
cilities, entertainment facilities, landscape sites, education facilities,
and industrial facilities. The RTU data reflect the hourly population of
phone users who use Tencent applications, such as WeChat and QQ,
which contain daily human activity information.

A data fusion approach based on cross-correlation was developed to
infer urban functions. Physical semantics were extracted from the SPOT
5 images. Human semantics were derived from POIs and social media
users. These semantics, which were mined by a probabilistic topic
model, and their cross-correlations,whichweremined by kernel canon-
ical correlation analysis, were integrated to unearth urban functional
types using the RF method. Finally, a grid covering the whole city was
labeled with six types of urban functions (commercial land, residential
land, industrial land, green and forestland, public management and ser-
vice land, and water body), with an overall accuracy of 0.851.

2.4. Geodetector

In this study, a geodetector was applied to assess the spatially strat-
ified heterogeneity of Zn and to determine the key environmental co-
variates controlling the spatial pattern. Detailed descriptions of the
geodetector are provided in the studies by J. Wang et al. (2016), Y.
Wang et al. (2016) and Wang and Xu (2017). The spatially stratified
heterogeneity was evaluated by the q-statistic; for q∈[0, 1], a stronger
spatially stratified heterogeneity corresponded with a higher q value.
The environmental covariates must be categorized before calculating
the q value. Therefore, continuous variables, such as slope, elevation, as-
pect, and NDVI, need to be classified into categorical data using the k-
means method. The number of categorized types was selected by the
optimal q value and passed a significance test (J. Wang et al., 2016; Y.
Wang et al., 2016). Moreover, an interaction geodetector was used to
evaluate the interaction between two environmental covariates.

2.5. Soil mapping method

RF andGWRwere used to predict andmap the Zn concentrations. RF
is a machine learningmethod, and GWR is a hybrid approach that com-
bines geostatistical and predictive statistical approaches. In this study,
all 221 samples were used to train regression models. Leave-one-out
cross-validation was used to test the predictive ability of the RF and
GWR models.

RF has been adopted by many researchers for digital soil mapping
(Poggio et al., 2013; Rad et al., 2014). Compared with geostatistical
and hybrid models, RF is free of assumptions, and reduces potential
4

overfitting and data noise (Wiesmeier et al., 2011). Considering its
merits, RF was applied to predict heavy metal concentrations in urban
topsoil in this study. RF, which was developed by Breiman (2001), as-
sembles multiple decision trees, and each tree is trained using a boot-
strap sample set selected from the entire training dataset. The key
environmental covariates determined by the geodetector were used as
explanatory variables for the RFmodel. For each tree, a subset of explan-
atory variables was randomly selected to confirm the node-splitting
rules.

The formula of the GWR models is as follows:

yi ¼ β0 ui, við Þ þ∑
n

k¼1
βk ui, við Þxik þ εi ð1Þ

where βk(ui,vi) is the regression coefficient for each environmental
covariate xik at location i and εi is the error. GWR is based on the frame-
work of ordinary least square regression (OLSR).When the same regres-
sion coefficient occurs at different locations i, the model is an OLSR. For
GWR, the regression coefficient at each location is different and is deter-
mined by a geographically weighted function using neighborhood sam-
ples (Odeh et al., 1995).

3. Results

3.1. Statistical description of zinc concentrations

The percent mean standard error for Zn determination was 2.3%.
Table 1 shows the statistical characteristics of the Zn concentrations in
the 221 topsoil samples. The mean Zn concentration was 36.70 ±
22.93mgkg−1,with a range of 2.70–145.00mg kg−1. Themean concen-
tration of Zn in the urban topsoils did not exceed the values recom-
mended by the Shenzhen environmental background values of soil
(DB4403/T 68-2020) (84.1 mg kg−1 for Zn). The distribution of Zn
was strongly skewed, with a skewness value of 1.55. Skewness reflects
the degree of asymmetry in the statistical distribution of the Zn concen-
trations. The Zn concentration values were transformed to Napierian
logarithms (Fig. 2) to obtain a normal distribution and stabilize the var-
iation for the following analyses.

3.2. Environmental covariates

The results of the land use type classification are displayed in Fig. S3.
The areas occupied by artificial objects, water bodies, and terrestrial
vegetation were 832.07, 49.72, and 531.91 km2, respectively (Fig. S3).
Artificial objects occupied 58.89% of the land surface in the study area,
which indicates the high intensity of human activity in Shenzhen.
However, compared with the urban functional types (Fig. 3), the land
use types did not reflect the diversity of human activities in the urban
area, such as commercial, daily, and industrial activities.

Urban functional use showed clear spatial heterogeneity. Built-up
areas, such as residential land, industrial land, and public service land,
are widely distributed in the southern, western, and northern areas,
and other parts of the study area (Fig. 3). Moreover, large areas of
green land and water bodies are embedded in the developed areas,
thereby forming a complementary functional layout. Fig. 3 shows that
industrial land occupied the largest area, at approximately 446.88
km2, especially in the Bao'an, Guangming, Longhua, and Longgang dis-
tricts; public service land occupied the second largest area, at approxi-
mately 348.81 km2, and had a very high degree of spatial penetration;

https://glovis.usgs.gov
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Fig. 2. Distributions of the Napierian logarithm-transformed Zn concentrations.

Table 2
q statistics of environmental covariates and their interactions.

Heavy metals Environmental covariates and interactions q statistic

ln(Zn)

Urban functional types 0.57
Land use types 0.04
Geology 0.17
Urban functional types∩Geology 0.66
Urban functional types∩NDVI 0.60
Urban functional types∩Elevation 0.62
Urban functional types∩Slope 0.60
Urban functional types∩Aspect 0.60
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and the total area of residential land was close to that of public service
land, covering approximately 306.65 km2. In contrast, commercial
land area was very limited, with only approximately 5.30 km2, which
was located in the Futian and Nanshan districts. In addition, green
land andwater bodies comprised a relatively large area, therebymaking
the area very suitable for urban living. In general, Shenzhen has diverse
urban land functional types, and its spatial layout is practical.

Fig. S4 displays the major geological types that were detected from
the thematic geological map of Shenzhen. Early Cretaceous, Holocene,
Middle Jurassic, and Late Pleistocenewere the four dominant geological
types. Geological types reflect the various parentmaterials that contrib-
ute to soil development in Shenzhen and reveal the different natural
and matrix origins of heavy metals. Moreover, the NDVI and relief fac-
tors are shown in Figs. S5 and S6, respectively. The ranges of the NDVI,
elevation, and slope were −0.87 to 0.69, 0 to 936 m, and 0° to 58°,
respectively.

3.3. Geo-detection statistics

The geodetection statistics (q value) for the Zn concentration and
environmental covariates and their interactions are shown in Table 2.
The results indicated that environmental covariates of the urban func-
tional types dominated the spatial distribution of Zn in the study area
and explained 57% of the spatial variation in Zn. However, land use
Fig. 3. Urban functional types of study
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types could not explain the spatial variation in Zn, with a q value of
0.04. Geology, another dominant factor, explained 17% of the spatial
variation. The NDVI, elevation, slope, and aspect were categorized into
six, four, five, and five types, respectively, using the k-means method.
The urban functional types were bi-enhanced with geology, NDVI, ele-
vation, slope, and aspect explaining 66%, 60%, 62%, 60%, and 60% of the
spatial variation in Zn, respectively.

3.4. Soil mapping of Zn

According to the geodetection results, environmental covariates of
the urban functional types, geology, NDVI, elevation, slope, and aspect
were selected to model ln(Zn). The RF depends on two parameters,
namely, trees in the forest and variables in each tree, which were opti-
mized as 100 and 5, respectively. The leave-one-out cross-validation
of the RF model resulted in an R of 0.68 and a root mean square error
(RMSE) of 0.51 (Fig. 4a). Compared with the RF model, the GWR
model obtained lower estimation accuracy, with a leave-one-out
cross-validated R of 0.58 and RMSE of 0.57 (Fig. 4b). This result con-
firmed the assumption described above that RF may be a more appro-
priate approach for fitting the stochastic spatial structure of Zn in
urban topsoils.

The RF and GWR models were used to map the spatial distribu-
tion of Zn concentrations in the study area. As illustrated in Fig. 5,
the maps of the Pb concentrations produced by the RF and GWR
models showed similar spatial distributions. However, the map pro-
duced by the RF model (Fig. 5a) reflected the spatially heteroge-
neous details of the Zn concentrations, whereas that produced by
the GWR (Fig. 5b) modelled the spatial continuity of Zn. Moreover,
compared with the RF, the GWR-based map underestimated the Pb
concentrations.
area, the spatial resolution is 30 m.
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Fig. 4. Reference vs. estimated ln(Zn) values from random forest (a) and geographically weighted regression (b) models. The dashed lines are the regression lines between the predicted
and reference values, and the solid lines are the 1:1 lines.
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As shown in Fig. 5a, the highest Zn concentrations were located in
the south (Nanshan and Futian districts) and west (Bao'an district) of
the study area. The hotspots with the highest soil Zn concentrations co-
incided with the spatial distributions of residential and industrial areas
(Fig. 3). Moreover, the Zn hotspots were mainly clustered in areas with
Holocene and Late Pleistocene geology types (Fig. S4). The results indi-
cated that the elevated soil Zn concentrations may be mainly related to
human activities, such as domestic waste, industrial fumes, and coal
Fig. 5. Map of the Zn concentrations in urban topsoils based on random forest (a) and
geographically weighted regression (b) models. The ln(Zn) values were transformed to
Zn concentrations (mg kg−1), and the spatial resolution of the maps is 30 m.
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burning exhausts. Geological parent materials may be the primary
source of Zn in this area.

4. Discussions

Digital soil mapping originated from the quantitative analysis of the
relationships between soil properties and environmental covariates.
Since the 1990s, various environmental covariates, data sources, quanti-
tative methods, and soil properties have been explored by many
researchers (McBratney et al., 2003; Zhang et al., 2017; Zhang et al.,
2004). Despite great progress in digital soil mapping, Zhang et al.
(2017) pointed out the challenges of soil modeling in areas with
complex landscapes and intense human activity, which result in a
highly heterogeneous soil environment. For instance, urbanization and
strong anthropogenic disturbances cause high soil variation and spatial
heterogeneity, which challenge conventional soil mappingmodels. This
study, which employed environmental covariates derived from multi-
source geospatial data tomap soil Zn concentrations in urban areas, pro-
vides a case study for expanding knowledge on digital soil mapping in
high-density cities.

In the past decade, much progress has been achieved in developing
effective environmental covariates for targeted soil properties (Zhang
et al., 2017). Climate and terrain covariates are commonly used factors
in digital soilmapping. At a relatively small spatial scale, the effects of cli-
mate on soil formation are homogeneous (Zhu et al., 2018). Therefore, in
this study, climate data were not used as environmental covariates due
to their homogeneous characteristics. Soil parentmaterial reflects the in-
teraction of bedrock and geomorphic processes over long periods of time
and is the material basis for the soil development. Because of the diffi-
culty in obtaining parent material covariates, most studies have used li-
thology or geology to approximate parent material variables (Kumar
et al., 2012; Schuler et al., 2010; Zhang et al., 2018). Therefore, this
study employed geology type to represent the parent material. Pedolog-
ical data of the study area are available from the National Earth System
Science Data Center (http://www.geodata.cn/); however, these data
have a proportional scale of 1:1000000 and were not detailed enough,
showed only one soil type. Pedological data with a fine proportional
scale are urgently needed for digital soil mapping at the urban scale.

Land use is a commonly used environmental covariate for digital soil
mapping (Baritz et al., 2018). For example, Lado et al. (2008) employed
multiple auxiliary spatial data, including land cover, to automatically
map heavy metals in European soils. Land use was also adopted by
Hengl et al. (2017) as an environmental auxiliary to spatiallymap global
soil information at a 250 m scale. At a global or continental scale, land
usemay demonstrate the different effects of human activities. However,

http://www.geodata.cn/
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at an urban scale, it is necessary to distinguish the types of human activ-
ities. Therefore, in this study, the urban function type was used as an al-
ternative covariate to reflect the diversity of human activities in urban
environment.

This study demonstrates that anthropogenic activities and geology
control the formation and accumulation of Zn in the study area. This re-
sult was consistentwith the previousfinding by Chang et al. (2020) that
the level of Zn pollutants in Shenzhen was relatively high in sites with
high-densities of human activities, such as industrial, traffic, commer-
cial, and residential areas. These results indicated that the production
and daily activities of urban residents were the major contributors to
Zn pollutants in Shenzhen.

Chang et al. (2020) employed the Nemero index and potential eco-
logical hazard indices to quantify the ecological risk levels of Zn in differ-
ent urban functional zones, and determined the relationship between
Zn and urban functional zones. However, this study showed that the
geodetection provides more direct evidence to indicate the causal rela-
tionship and spatial consistency between Zn concentrations and envi-
ronmental covariates. Linear correlation analysis is another method
that has been widely used to explore the relationships between soil
properties and environmental covariates. For example, Liu et al.
(2012) employed linear regression analyses to demonstrate the effec-
tiveness of covariates derived from MODIS in differentiating spatial
patterns of soil texture. Navas andMachin (2002) used Pearson correla-
tions to analyze the relationships between soil heavy metals and other
covariates, such as organic matter, cation exchange capacity, pH, clay,
and fine silt. However, Wang and Xu (2017) declared that it is more dif-
ficult to obtain statistical significance for a q statistic than for a linear
correlation. Moreover, geodetector statistics are more suitable for
processing categorical data than other types of data. Therefore,
geodetection is an effective method for exploring the sources of heavy
metal pollution and finding key environmental covariates.

Previous studies have conducted meaningful explorations andmade
important progress in the digital mapping of Zn in soils (Lado et al.,
2008; Maasa et al., 2010; Navas and Machin, 2002). For example,
Navas andMachin (2002) used ordinary block kriging tomap the spatial
distribution of Zn in soils in Aragon (northeastern Spain), with an R2 of
0.179. Compared with geostatistical approaches, hybrid approaches for
mapping Zn resulted in greater accuracy. For instance, Maasa et al.
(2010) employed a cokriging method to spatially map the distribution
of Zn in urban, suburban, and agricultural soils in the Mediterranean
city of Algeria, resulting in an R2 of 0.54. Lado et al. (2008) adopted a re-
gression kriging method to model the spatial distribution of Zn in
Europe, with marginally satisfactory accuracy (prediction accuracy of
37% of the total variance; R2 = 0.37), and the prediction accuracy of
the regression kriging approach was generally 20% higher than that for
the ordinary kriging. Our study found that themachine learningmethod
obtained higher prediction accuracy than the GWR. Therefore, in gen-
eral, machine learning methods outperformed hybrid approaches and
geostatistical approaches for mapping heavy metals in urban topsoils.

It is well known that the urban environment is largely covered by
impervious surfaces. The spatial distribution map of Zn in this study
could reflect the risk of Zn pollution in the whole area, although some
areas were not covered by soil. In other research, the classification sys-
tem of urban functional types was adjusted to adapt to the pollution
sources caused by different human activities. Moreover, a hybrid ap-
proach combining machine learning methods and geostatistical
methods, such as RF kriging (Viscarra Rossel et al., 2014), could take
full advantage of the high prediction accuracy of RF and the spatial con-
tinuity of kriging. Therefore, it may be useful to apply RF kriging to the
digital mapping of heavy metals.

5. Conclusions

In this study, we mapped the spatial patterns of Zn in urban topsoil
using multisource geospatial data and the RF method. The geospatial
7

data included thematicmaps, remote sensing images, and social sensing
data. The geological types were distinguished using a geological map.
Relief factorswere calculated fromASTER data usingdigital terrain anal-
ysis. The vegetation index and land use type were interpreted from a
Landsat images. The urban functional types were derived from the fu-
sion of the SPOT 5 images and social sensing data (POI and RTU). A
geodetector was adopted to select key environmental covariates. GWR
and RFwere employed tomodel the Zn concentrations in urban topsoil.
The main conclusions of this study are as follows:

(1) The geodetector explained the spatial consistency between the
Zn concentrations and the environmental covariates and could
be used to select key covariates for Zn mapping.

(2) Compared with the land use types, the urban functional types
better explained the spatial variation in Zn. This indicates that
urban functional types may better reflect the diversities in Zn
sources from multiple human activities.

(3) Social sensing data, such as POI and RTU, could be used to extract
the environmental covariates of urban functional types. These
covariates are useful for digital soil mapping in urban environ-
ments.

(4) Compared with the GWR, RF might be more suitable to fit the
stochastic characteristics of Zn in urban topsoils.
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