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1. Joint nuclei segmentation and classification in histopathology
images

Histopathological assessment remains a cornerstone of the clinical diagnosis and classifi-

cation of cancer. The underlying tissue architectures in histopathological images provide

a wealth of information about the nature of disease, cytogenetic abnormalities, and char-

acteristics of the microenvironment [1]. For example, malignant tumor cells can be dis-

tinguished from benign cells by the features of their nuclei [1], and the extent of

lymphocyte infiltration in the microenvironment often has prognostic significance [2].

Furthermore, phenotypic variations among tumor cells, which are indicative of intratu-

mor heterogeneity, have consequences for treatment strategies for cancer patients [3].

Therefore, the development of algorithms for refined segmentation and classification

of histopathological structures, such as lymphocytes and cancer nuclei, can help improve

the clinical management of cancer.

Nuclei segmentation and classification are both challenging tasks. The size of nuclei is

much smaller compared to that of glands or organs, and the nuclei are often close to each
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other, making it hard to segment individual nuclei accurately. The fine-grained classifi-

cation of nuclei is also difficult due to the large interclass and intraclass variances in nuclear

shapes and textures. Traditional methods like thresholding, watershed, clustering, and

region growing [4] are not able to cope with these challenges well. Early learning-based

methods learn to segment or classify nuclei using low-level handcrafted features such as

color, texture, and gradients of geometric features [5–7], or learn kernel and hashing

functions for classification based on handcrafted features [8–10], which have limited rep-

resentation capability.

Recently, deep convolutional neural networks (CNNs) have achieved great success

for image classification and segmentation [11–14]. Furthermore, many deep learning-

based methods have been proposed for histopathology image analysis [15, 16], such as

metastasis detection [17, 18], invasive cancer localization [19], nuclei segmentation

[15, 20–22], and nuclei classification [23, 24]. Xing et al. [20] utilized CNNs to obtain

an initial shape of nuclei and then to separate individual nuclei using a deformable model.

In Refs. [15, 21], nuclei segmentation is performed by classifying the pixels into classes

using a patch around each pixel as the input to an image classification network. The com-

putational cost is large because each patch predicts only 1 pixel. Fully convolutional neu-

ral networks (FCNs) [13, 14], which directly output the same size of segmentation map as

the input image, are more efficient and effective for image segmentation tasks and have

been used in nuclei segmentation [22]. Compared to nuclei segmentation, there are

fewer works about nuclei fine-grained classification using deep learning. Sirinukunwat-

tana et al. [23] built two CNNs to detect nuclei and then classified them into subcate-

gories. Zhou et al. [24] proposed a sibling CNN with objectiveness prior to detect and

classify nuclei simultaneously.

Although the current methods have achieved good accuracy, they focus on segmen-

tation or classification. They are not able to produce the pixelwise masks of different types

of nuclei at the same time, and thus they cannot generate both nucleus features and spatial

distributions, which are important for histopathology image analysis. Actually, the net-

work structures for two tasks are similar; both need to extract feature representations from

the input image.

In this chapter, we propose a framework to solve these two tasks jointly. As opposed

to previous methods, our model outputs the segmentation map for every type of nuclei

and the background, which can segment individual nuclei, as well as classifying them into

tumor, lymphocyte, and stroma subcategories. In addition, we use one more channel to

predict the contours of nuclei, aiming at separating any touching nuclei. To improve the

segmentation accuracy further, we take advantage of the perceptual loss [25] that can

measure small differences in two images. In addition, transfer learning is utilized to pro-

mote the training due to the small size of the annotated dataset.
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1.1 Training data generation
1.1.1 Dataset
To evaluate the performance of joint nuclei segmentation and classification algorithms,

we annotated a dataset that consists of 40 H&E stained tissue images from eight lung ade-

nocarcinoma or lung squamous cell carcinoma cases, with each case having five images

about 900�900 in size. There are around 24,000 annotated nuclei in the dataset, and

each nucleus is marked as one of the following three types: a tumor nucleus, a lymphocyte

nucleus, and a stroma (e.g., fibroblasts, macrophages, neutrophils, and endothelial cells)

nucleus. For each image, we use one labeled image to encode the segmentation mask and

classify the class information of each nucleus. In a ground-truth label image, pixels of

value 0 are in the background. Pixels that have the same positive integer belong to an

individual nucleus. Therefore, each nucleus has a unique ID, as shown in Fig. 8.1B.

The integer value ID also indicates the class of the nucleus, as follows (where mod is

the modular operation):

• Tumor nucleus: mod(id, 3)¼0

• Lymphocyte nucleus: mod(id, 3)¼1

• Stroma nucleus: mod(id, 3)¼2

It is easy to extract the class information from this encoding. Fig. 8.1 shows an example of

an original image and its labels.

In many machine learning tasks, a dataset consists of three parts: a training set that is

used to train the model, a validation set for choosing the best model during training, and a

test set that aims to evaluate the performance of the trained model. Following this rule,

this dataset is split into three parts: 24 images for training, 8 for validation, and the remain-

ing 8 for testing. The training set contains three images for each case, and the other two

sets have one image for each case.
Fig. 8.1 Example of an image and its labels. (A) Original image; (B) ground-truth label; (C) classification
label, red, green, and blue (dark gray, gray, and light gray) represent tumor, lymphocyte, and stroma
nuclei, respectively); (D) segmentation label (distinct colors indicate different nuclei).



188 Computer Vision for Microscopy Image Analysis
1.1.2 Preprocessing
As the tissue images come from different patients, there is a large variation in image colors,

whichhas anegativeeffect on the segmentation results.Therefore,weuse the color transfer

method [26] to eliminate the color variation of these images. This method transforms the

color of an image to a similar color as the referenced image in a three-step process:

1. Transform both images from the RGB color space to the lαβ color space, aiming at

removing the correlation of different color axes.

2. Adjust the mean and standard deviation of source image according to the

referenced image.

3. Transform the corrected image from the lαβ color space to the RGB color space.

This method is fast and effective to normalize all images in the dataset. Two images before

and after color normalization are shown in Fig. 8.2.

Data augmentation is crucial for training deep neural networks when only a few train-

ing images are available, which is exactly the case in our task. For each large image in the

training set, we extract 16 image patches with size 250�250 uniformly with overlap,

resulting in 384 small image patches. For each patch, a 224�224 image is randomly

cropped as the network input. Other augmentations include random scale, random hor-

izontal and vertical flip, random affine transformation, random elastic transformation,

random rotation, and normalization with mean and standard deviation by channel.
1.2 Deep learning-based segmentation and classification
1.2.1 Network structure
Our proposed framework is shown in Fig. 8.3. It consists of two parts: the prediction

network, which generates the segmentation mask of each type of nuclei; and the percep-

tual loss network, which computes the perceptual loss between the predicted and

ground-truth labels.

The prediction network is the routine encoder-decoder structure. We utilize the

powerful representation ability of residual networks [12] to extract the features. The

encoder is from ResNet34 [12], without the average pooling and fully connected layers,
Fig. 8.2 Images before and after color normalization. (A) image 1, (B) image 2, (C) image 1 after color
normalization, (D) image 2 after color normalization.



Fig. 8.3 System overview. Our framework consists of the prediction network and the perceptual loss
network. The prediction network takes the feature extraction part of ResNet34 as the encoder and
outputs the segmentation map of different types of nuclei. The loss network uses the fixed,
pretrained VGG16 model as a feature extractor and computes the perceptual loss.
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and is initialized with the pretrained parameters from image classification tasks. It extracts

features of the input image layer by layer, from low level to high level. The decoder part

recovers the resolution of feature maps and generates the segmentation results, with the

help of the skip connections between the encoder and the decoder. This network outputs

five probability maps: the background, the inner part of tumor nuclei, the inner part of

lymphocyte nuclei, the inner part of stroma nuclei, and the contours of all nuclei. The

contour map mainly aims to capture the contours of crowded and touching nuclei. As a

result, the predicted inner parts of each nucleus are not connected, and we can obtain the

instance segmentation of individual nuclei. The final nuclei mask is generated by a mor-

phological dilation operation. In this way, we can obtain each individual nucleus without

much extra effort.

The perceptual loss network is utilized to improve the segmentation accuracy of

details in the image. It originates from Johnson et al. [25], in which the authors compute

the loss between high-level features of the transformed image and the original image. The

pretrained VGG16 model [27] is a feature extractor and is fixed during training and test-

ing. Four levels of features are extracted using this network for the output of the predic-

tion network and the ground-truth label (i.e., feature maps after the last ReLU layer of

the first, second, third, and fourth blocks of the VGG16 model), denoted as relu1–2,

relu2–2, relu3–3, and relu4–3.Themean squared loss is then computed between the feature

sets of two inputs.
1.2.2 Loss function
The loss function of the method consists of two parts. The first part is the cross-entropy

loss for five classes (i.e., background, inside tumor, inside lymphocyte, inside stroma, and

contour). It is defined as
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whereN is the number of all the pixels, yi
(m) is the probability of pixel i belonging to class
m, ti
(m)2{0,1} is the corresponding ground-truth label of classm, wi is the optional weight

for pixel i, and the default value is 1 for all pixels.

When training deep-learning models, a problem is the highly skewed frequencies of

various classes in the dataset (i.e., the class imbalance problem). For example, in our data-

set, the frequency of nuclear contour pixels is much less than that of noncontour pixels.

One possible solution to this problem is to assign different values of wi for different classes

of pixels. We set the weight using a similar method in Ref. [14]:

w xið Þ¼ 1+w0 � exp � d1 xið Þ+ d2 xið Þð Þ2
2σ2

 !
(8.2)

where d1 and d2 are the distances to the nearest and the second-nearest nuclei, respec-
tively. In the experiments, we set σ¼5 pixels and w0¼10. In this setting, pixels between

close or touching nuclei are assigned much larger weights because those pixels are more

important to split nuclei.

The second part is the perceptual loss. Let us denote the trained VGG16 model as a

function f. The features after the ReLU layer of the kth block can be written as fk(x),

where x is the input of VGG16. The size of kth-level features is denoted asCk�Hk�Wk.

The perceptual loss is
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where ŷ¼ arg max y is the prediction map obtained from the output probability map y.
The loss function of the whole network is

L¼Lce + βLper (8.4)

where β is a parameter that adjusts the weight of the perceptual loss and is set to 0.1 in the
experiments.
1.2.3 Postprocessing
Because our model outputs the inside areas of each nucleus, we need postprocessing to

get the final segmentation and classification results. The initial segmentation map is

obtained by setting contour pixels as the background. Then we adopt several simple mor-

phological operations (i.e., removal of small areas, connected component labeling, and
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dilation with a disk filter) to generate the final results. The dilation operation aims to

recover the whole mask of nuclei from the inside mask.
1.2.4 Evaluation methods
The performance of our method is evaluated using commonmetrics in segmentation and

classification tasks. For nuclei segmentation, we use the F1-score to measure the detec-

tion accuracy. It is defined as the harmonic mean of precision and recall, as follows:

F1¼ 2� precision� recall

precision+ recall
¼ 2TP

2TP +FP +FN
(8.5)

where TP, FP, and FN are the number of true positives, false positives, and false nega-
tives, respectively. A segmented nucleus is considered as a true positive if it overlaps with

at least 50% of a ground-truth nucleus. Otherwise, it is a false positive. All ground-truth

nuclei that have no corresponding segmented nuclei are treated as false negatives.

The object-level Dice coefficient [28], Jaccard index [29], and Hausdorff distance are

used to measure the segmentation accuracy. The Dice coefficient and Jaccard index mea-

sure howwell the ground-truth objectG and predicted object S overlap with each other:

Dice G, Sð Þ¼ 2|G\S|
|G|+ |S| , Jaccard G, Sð Þ¼ |G\S|

|G[S| (8.6)

where | � | denotes set cardinality. The higher these values are, the better the segmented
results overlap with the ground-truth objects. The Hausdorff distance is utilized to mea-

sure the shape similarity between G and S, and defined as

Haus G, Sð Þ¼ max sup
x2G

inf
y2S

d x, yð Þ, sup
y2S

inf
x2G

d x, yð Þ
( )

(8.7)

A lower Hausdorff distance indicates better shape similarity for two objects. Directly
applying these metrics to the whole segmentation image results in pixel-level accuracies,

which is not enough to represent the performance of instance-level segmentation.

Therefore, we employ the object-level metrics defined in Ref. [30]:

Mobj G, Sð Þ¼ 1

2

XnG
i¼1

γiM Gi, Sið Þ+
XnS
j¼1

σjM eGj, eSj� �( )
(8.8)

γi ¼
|Gi|XnG

n¼1
|Gn|

, σj ¼ |Sj|XnG

n¼1
|Sn|

(8.9)

whereM can be a Dice coefficient, Jaccard index, or Hausdorff distance; nG and nS are the
number of objects in the ground-truth image and segmented image, respectively; Gi is a
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ground-truth object; Si is its corresponding true positive segmentation; eSj is a segmented

object; and eGj is its true positive ground-truth. Here, true positive has the same meaning

as that in F1-score. The object-level metrics measure not only how well the segmented

objects overlap with ground-truth objects, but also how well the ground-truth objects

overlap with segmented ones. The area of each object is also taken into consideration

by applying the weights γi and σj.
For nuclei fine-grained classification, we only consider the accuracy among

true-positive segmented nuclei because they have the true class labels. For those false,

positively segmented nuclei, no ground-truth labels are available. The accuracy is not

sufficient to represent the performance due to the various numbers of true positives.

Therefore, we list the number of correctly classified nuclei for reference.
1.3 Experimental results
Here, we test the proposed method on the lung cancer dataset mentioned in Section 1.1

and compare it to two popular approaches for segmentation. One is the fully convolu-

tional network proposed by Long et al. [13], which is the first FCN used for segmentation

tasks. The other is U-Net [14], which has been widely used in medical image segmen-

tation. Both networks output five probability maps as ours. For all models, we trained 300

epochs with the Adam optimizer. The learning rate, batch size, and weight decay are

0.0001, 8, and 0.0001, respectively.

The nuclei segmentation and classification results using FCN-8s, U-Net and our

method are shown in Tables 8.1 and 8.2. It can be observed that all three models have

achieved relatively good segmentation and fine-grained classification results, showing that

our idea of combining the two tasks is feasible. Compared to FCN-8s and U-Net, our

method makes improvements on the segmentation of all types of nuclei, especially lym-

phocytes. The improvements to subcategory nuclei are larger than those to all nuclei

because the classification results also affect the subclass metrics (i.e., wrongly classified

nuclei have no corresponding ground-truth ones, thus reducing the F1, Dice coefficient,

and Jaccard values and increasing the Hausdorff distance). For nuclei classification, our

method achieves thebest accuracies except for lymphocytes.However, thenumberof cor-

rectly classified lymphocytes is 32% and 8%more than that of FCN-8s andU-Net, respec-

tively. Therefore, our method also outperforms FCN-8s and U-Net on the fine-grained

classification.

To illustrate the effects of transfer learning and the perceptual loss, we report the

results for our model without perceptual loss or the pretrained weights of the encoder

part. It is evident that both techniques can promote the performance of segmentation

and classification. The results without transfer learning are worse than those without

the perceptual loss, showing that transfer learning is more important than the perceptual

loss for this small dataset. Without transfer learning, the training images are not sufficient

to train the whole network well enough.



Table 8.1 Nuclei segmentation results of various types of nuclei on the test set using FCN-8s [13],
U-Net [14], our method without perceptual loss (Ours w.o. Lper), our method without transfer learning
(Ours w.o. TL), and our method

Method FCN-8s [13] U-Net [14] Ours w.o. Lper Ours w.o. TL Ours

All F1 0.8630 0.8735 0.8742 0.8652 0.8859

Diceobj 0.8418 0.8651 0.8695 0.8633 0.8759

Jaccardobj 0.7696 0.8092 0.8141 0.8041 0.8205

Hausobj 5.17 4.68 4.40 4.67 4.14

Tumor F1 0.7775 0.8022 0.8059 0.7970 0.8263

Diceobj 0.8072 0.8313 0.8385 0.8311 0.8459

Jaccardobj 0.7417 0.7803 0.7877 0.7764 0.7949

Hausobj 8.52 7.58 6.93 7.43 6.66

Lymphocyte F1 0.5274 0.6198 0.6204 0.6346 0.6709

Diceobj 0.5653 0.6220 0.6370 0.6257 0.6677

Jaccardobj 0.5219 0.5893 0.6039 0.5924 0.6323

Hausobj 41.52 36.99 28.13 31.75 27.26

Stroma F1 0.5619 0.5928 0.6186 0.5850 0.6223

Diceobj 0.5281 0.5663 0.5986 0.5658 0.5889

Jaccardobj 0.4670 0.5150 0.5458 0.5125 0.5361

Hausobj 17.88 15.93 14.36 15.88 14.99

Note: Bold numbers indicates the best values.

Table 8.2 Nuclei fine-grained classification accuracies (%) of different types of nuclei on the test set
using FCN-8s [13], U-Net [14], our methodwithout perceptual loss (Ours w.o.Lper), our methodwithout
transfer learning (Ours w.o. TL), and our method

Method FCN-8s [13] U-Net [14] Ours w.o. Lper Ours w.o. TL Ours

All 80.96 (3448) 83.00 (3653) 83.86 (3709) 83.19 (3618) 84.75 (3735)

Tumor 85.14 (2103) 88.72 (2139) 89.56 (2144) 90.66 (2059) 90.29 (2139)

Lymphocyte 81.43 (421) 75.85 (515) 80.00 (488) 72.73 (544) 75.44 (556)

Stroma 72.64 (924) 76.20 (999) 75.90 (1077) 76.32 (1015) 79.94 (1040)

Note: Bold numbers indicates the best value. The number of correctly classified nuclei is listed in parentheses for reference.
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For the subcategory results of both tasks, the performance on tumor nuclei is the best

because it is easier to distinguish. The shape and size of some lymphocyte and stroma

nuclei are very similar, resulting in relatively lower segmentation and classification accu-

racies. Actually, the segmentation and classification of subcategory nuclei affect each

other. High segmentation accuracy is beneficial for classification, and high classification

accuracy reduces the number of unpaired segmented and ground-truth nuclei, which can

increase the segmentation metrics. Some representative image results of segmentation

and classification are shown in Fig. 8.4.



Fig. 8.4 Representative image results of FCN-8s, U-Net, and the proposed method. The top two rows
(1) and (2) are the results of classification. Red, green, and blue (dark gray, gray, and light gray)
represent tumor, lymphocyte, and stroma nuclei, respectively. The bottom two rows (3) and (4) are
the results of instance-level segmentation. The different colors indicate individual nuclei.
(A) Subimage, (B) true label, (C) FCN-8s, (D) U-net, and (E) Ours.
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2. Applications to imaging genomics

Imaging genomics is an emerging field that explores the phenotype-genotype relation-

ships (i.e., the relationships between imaging features of a disease and genomic features

like genetic alternations, gene expression patterns, and other genome-related character-

istics [31]). Imaging features can provide a comprehensive spatial view of the entire

tumor, as well as the information on peritumoral regions [32]. Some features that seem

irrelevant may have clinical significance. Genomic features, such as gene mutations, are at

the molecular level and lead to the cause and development of cancer. However, it remains

unclear how the genomic features affect many cancers because multiple gene mutations

are often involved. Uncovering correlations between imaging and genetic features can
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promote the understanding of some biologic mechanisms and pathways of gene expres-

sion and lead to finding more biomarkers that are predictive of clinical outcomes, which

are beneficial for cancer diagnosis and treatment.

In imaging genomics, imaging features often come from modalities like computed

tomography (CT) and magnetic resonance imaging (MRI). Many studies have tried to

correlate such imaging features with genomic data [32]. However, features from histopa-

thology images are important as well. The tissue structures from those images also contain

underlying molecular profiles and are related to genetic alterations and gene expression

patterns. Finding the genotype-phenotype correlations for histopathology images provide

a better understanding of tumor biology and further improve the precision of clinical pre-

dictions [33].Thewhole slide images (WSIs) obtained by digitalization of pathologic spec-

imens often have high image quality and contain hundreds of millions of pixels; thus, the

manual feature extraction is laborious and subjective, andmay not be representative of the

whole image. The automatic nuclei segmentation and classification method proposed in

Section 1 can be applied here for imaging feature extraction. In this section, we introduce

two possible applications for the extracted features in imaging genomics.

2.1 Intratumor heterogeneity
Intratumor heterogeneity (i.e., genetic, molecular, and phenotypic differences between

tumor cells within a single tumor) is a major challenge for clinical management of cancer

patients, contributing to therapeutic failure, disease relapses, and drug resistance. For

example, in the work [34], the authors mention that a small part of subclones within

chronic myeloid leukemia (CML) is resistant to the targeted drug tyrosine kinase inhib-

itors that should be effective, which may result from intratumor heterogeneity. The

intratumor phenotypic heterogeneity has been observed since the earliest days of cancer

biology [35], and recent findings suggest that there is extensive intratumor genetic het-

erogeneity in all major cancer types [36]. But it remains to be understood how the genetic

heterogeneity relates to intratumor heterogeneity at the pathway and cell phenotype

levels.

Based on the framework in Section 1, we are able to identify the accurate locations

and shapes of tumor and nontumor nuclei in histopathological slides and then compute

the spatial heterogeneity according to their locations, which can be associated with

genetic heterogeneity.

2.1.1 Intratumor spatial heterogeneity
The term spatial heterogeneity refers to the spatial difference of tumor cells in a single tumor.

Such a difference may lead to a situation in which a biopsy does not provide an adequate

reflection of the phenotypic composition of the whole tumor [35]. With the locations

of all nuclei in a WSI, we can use some measures in ecology, such as q-statistic [37] and

diversity indices, to reflect the extent of local and regional heterogeneity.
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The q-statistic measures the spatial stratified heterogeneity, whichmay imply the exis-

tence of distinct mechanisms in strata/areas (i.e., the various tumor subclones). It ranges

from 0 to 1, where 0 means the spatial stratification of heterogeneity is not significant and

1 means high significance. There are two concepts when computing a q-value, unit, and

stratum. A unit is the smallest block that contains tumor and/or nontumor cells. A stratum

is a relatively large area that consists of a number of units. The split of strata decides which

type of heterogeneity is revealed by the q-statistic. For example, three types of strata are

illustrated in Fig. 8.5. The q-values computed from the patch, row, and column strata

indicate how heterogeneous the tumor is on blocks, in the vertical and horizontal direc-

tions, respectively. The steps to compute a q-statistic of that region are:

1. Divide the tumor region into different strata.

2. Remove strata that are blank or contain a small part of tissue if the ratio of tissue

patches in that stratum is less than a threshold.

3. For each remaining stratum h, compute the stratumvarianceσh
2 and the stratum sizeNh.

4. Compute the variance and size of the whole population, σ2, N.

5. Compute the q-statistic of each tumor region by

q¼ 1�
XL

h¼1
Nhσ2h

Nσ2
(8.10)

After obtaining q-statistic values for all the tumor regions, the q-statistic of the whole
slide image can be calculated by a weighted average of all regions’ q-values according to

the regions’ areas.

There are several diversity indices that can be used for spatial heterogeneity. The

Simpson diversity index [38], introduced by Edward H. Simpson, measures the degree

of concentration when individuals are classified into types [38]. It is defined as

λ¼
XR
i¼1

p2i (8.11)
Fig. 8.5 Three types of strata. (A) Patch strata, (B) row strata, (C) column strata. White areas represent
tissue regions of the whole slide image.
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whereR is the total number of species and pi is the proportion of individuals belonging to

the ith species. The measure equals the probability that two entities taken at random from

the dataset of interest represent the same type [38]. The lower the value, the higher the

diversity is. Another commonly used index is the Shannon index, proposed by Claude

Shannon to measure the entropy in strings of text [39] and defined as

H 0 ¼�
XR
i¼1

pi lnpi (8.12)

The Shannon index measures the uncertainty in predicting the species identity of an
individual that is taken at random from the dataset. A large Shannon index indicates high

uncertainty in prediction, which means high diversity in the dataset; otherwise, it will be

easy to predict the type of species. We can utilize these indices to compute the extent of

spatial heterogeneity using the locations of tumor, lymphocyte, and stroma nuclei within

a local region or for the whole image.

It is also possible to compute the q-statistic and diversity indices for various clones of

tumor cells with the help of immuno-FISH and immunohistochemistry [40, 41], which

can identify the known cancer gene mutation status in tumor cells on the slides, and those

with similar cancer gene mutation status belong to the same subclone.
2.1.2 Intratumor genetic heterogeneity
During the formation of tumors, the driving genetic mutations are associated with the

occurrence of many thousands of somatic genetic alterations [35], resulting in the genetic

diversity of tumor cell populations. The clonal evolution in a branching manner may lead

to clonal diversity as well [35], contributing to genetic heterogeneity within tumors.

We can use some metrics, such as clone numbers and sizes, to quantify the genetic

heterogeneity. Clone numbers and sizes can be inferred using mutation and copy number

data such as the following [36]:

1. Collect the somatic single-nucleotide variant (SNV) and copy number variant (CNV)

data for the same tumors from TCGA.

2. Estimate the cellular prevalence of each SNV in consideration of CNVs and cluster

the cellular prevalence into subpopulations using PyClone [42].

3. The inferred subpopulations are the clones, and the corresponding cellular preva-

lences are the clone sizes.

With measurements of both spatial and genetic heterogeneity, one can perform some

analyses to explore the relationship between phenotype and genotype (e.g., the spatial

heterogeneity scores and the number of clones). The relationships may help understand

how genetic heterogeneity results in phenotype heterogeneity. Further, multiscale anal-

ysis integrating genetic, pathway, and phenotypic heterogeneity will provide
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fundamental insights into “functional” variability within and across cancers, helping to

refine precise approaches to improve the clinical management of cancer patients.

2.2 Tumor-Infiltrating Lymphocytes
Tumor-infiltrating lymphocytes (TILs) are a type of immune cells that have moved from

the bloodstream to a tumor. Because lymphocytes can kill tumor cells, researchers have

explored the relationship between TILs and clinical outcomes and have found that the

presence of high TIL density is associated with better clinical outcomes [43]. In addition,

the spatial statistics of TILs correlate with cancer diagnosis and prognosis [44, 45]. Much

effort have been exerted to correlate TILs with clinical outcomes, but the relationships

between TILs and genetic features have not been well studied. Kochi et al. [46] have

shown that genomic markers are highly associated with TIL levels in breast cancer,

and TIL-associated genomic signatures can predict chemotherapy responses in several

breast cancer subtypes. Therefore, it is meaningful to explore further the correlations

between TILs and genomic features in various types of cancers.

The nuclei segmentation and classification method can automatically extract the

pixels belonging to lymphocytes in a whole slide image with relatively high accuracy.

As a result, we can efficiently compute accurate TIL density/scores instead of evaluating

a rough level of TILs manually in most studies. In addition, we are able to obtain the

spatial maps of TILs, which can be used to generate local and global spatial structures

of lymphocytes or perform hot spot analysis like Ref. [2]. Integrated with genomic fea-

tures and clinical data, these imaging features can be utilized to find possible genomic

biomarkers potentially informative of novel therapeutic strategies. For example, if some

imaging features about TILs are favorable for survival, genes that are associated with these

features may have similar effects. The integrative analysis also may help us understand the

basic biological principles in gene expressions by finding the TIL and genomics features

that both have similar effects on clinical outcomes.
3. Conclusion

In this chapter, we proposed a framework that jointly segments and classifies the various

types of nuclei from histopathology images. The cross-entropy and perceptual losses are

combined to enhance the segmentation of details in the image.We also use transfer learn-

ing tobetter train themodel on a small dataset. Experiments show that ourmethod is able to

achieve good segmentation and fine-grained classification results simultaneously.We then

briefly introduced how to apply the framework to imaging genomics. The segmentation

maps of the various types of nuclei generated by our method can be used to analyze the

nuclear features and their spatial distributions. These imaging features, integrated with

genetic features and clinical outcomes, can be used in analyses of intratumor heterogeneity

and tumor-infiltrating lymphocytes to achieve a better understanding of the genotype-

phenotype relationship, as well as improving the clinical management of cancer.



199Deep learning-based nuclei segmentation and classification
References
[1] M.N. Gurcan, L. Boucheron, A. Can, A.Madabhushi, N. Rajpoot, B. Yener, Histopathological image

analysis: a review, IEEE Rev. Biomed. Eng. 2 (2009) 147.
[2] S. Nawaz, A. Heindl, K. Koelble, Y. Yuan, Beyond immune density: critical role of spatial heteroge-

neity in estrogen receptor-negative breast cancer, Mod. Pathol. 28 (6) (2015) 766.
[3] S. Xx, Yu Q, Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment, Acta

Pharmacol. Sin. 36 (10) (2015) 1219.
[4] H. Irshad, A. Veillard, L. Roux, D. Racoceanu, Methods for nuclei detection, segmentation, and clas-

sification in digital histopathology: a review-current status and future potential, IEEE Rev. Biomed.
Eng. 7 (2014) 97–114.

[5] M. Wang, X. Zhou, F. Li, J. Huckins, R.W. King, S.T. Wong, Novel cell segmentation and online
svm for cell cycle phase identification in automated microscopy, Bioinformatics 24 (1) (2007) 94–101.

[6] H. Kong, M. Gurcan, K. Belkacem-Boussaid, Partitioning histopathological images: an integrated
framework for supervised color-texture segmentation and cell splitting, IEEE Trans. Med. Imaging
30 (9) (2011) 1661–1677.

[7] Y. Al-Kofahi, W. Lassoued, W. Lee, B. Roysam, Improved automatic detection and segmentation of
cell nuclei in histopathology images, IEEE Trans. Biomed. Eng. 57 (4) (2010) 841–852.

[8] X. Zhang, F. Xing, H. Su, L. Yang, S. Zhang, High-throughput histopathological image analysis via
robust cell segmentation and hashing, Med. Image Anal. 26 (1) (2015) 306–315.

[9] X. Zhang, H. Su, L. Yang, S. Zhang, Fine-grained histopathological image analysis via robust segmen-
tation and large-scale retrieval, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Rec-
ognition, 2015, pp. 5361–5368.

[10] M. Jiang, S. Zhang, J. Huang, L. Yang, D.N. Metaxas, Scalable histopathological image analysis via
supervised hashing with multiple features, Med. Image Anal. 34 (2016) 3–12.

[11] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural net-
works, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.

[12] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[13] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 3431–3440.

[14] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmen-
tation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention,
Springer, 2015, pp. 234–241.

[15] A. Janowczyk, A. Madabhushi, Deep learning for digital pathology image analysis: A comprehensive
tutorial with selected use cases, J. Pathol. Inform. 7 (2016).

[16] Z. Li, X. Zhang, H. M€uller, S. Zhang, Large-scale retrieval for medical image analytics:
A comprehensive review, Med. Image Anal. 43 (2018) 66–84.

[17] Y. Liu, K. Gadepalli, M. Norouzi, G.E. Dahl, T. Kohlberger, A. Boyko,
S. Venugopalan, A. Timofeev, P.Q. Nelson, G.S. Corrado, et al., Detecting cancer metastases on
gigapixel pathology images, arXiv preprint arXiv:1703.02442, 2017.

[18] B. Kong, X. Wang, Z. Li, Q. Song, S. Zhang, Cancer metastasis detection via spatially structured deep
network, in: International Conference on Information Processing in Medical Imaging, Springer, 2017,
pp. 236–248.

[19] B. Kong, S. Sun, X. Wang, Q. Song, S. Zhang, Invasive cancer detection utilizing compressed con-
volutional neural network and transfer learning, in: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, Springer, 2018, pp. 156–164.

[20] F. Xing, Y. Xie, L. Yang, An automatic learning-based framework for robust nucleus segmentation,
IEEE Trans. Med. Imaging 35 (2) (2016) 550–566.

[21] N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, A. Sethi, A dataset and a technique for
generalized nuclear segmentation for computational pathology, IEEE Trans. Med. Imaging 36 (7)
(2017) 1550–1560.

http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0010
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0010
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0015
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0015
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0020
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0020
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0025
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0025
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0025
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0030
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0030
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0035
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0035
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0035
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0040
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0040
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0045
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0045
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0050
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0050
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0050
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0055
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0055
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0060
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0060
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0065
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0065
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0070
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0070
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0070
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0075
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0075
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0075
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0080
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0080
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0085
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0085
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0085
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0090
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0090
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0090
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0095
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0095
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0095
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0100
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0100
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0100
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0105
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0105
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0110
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0110
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0110


200 Computer Vision for Microscopy Image Analysis
[22] P. Naylor, M. La�e, F. Reyal, T.Walter, Nuclei segmentation in histopathology images using deep neu-
ral networks, in: Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on, IEEE,
2017, pp. 933–936.

[23] K. Sirinukunwattana, S.E.A. Raza, Y.W. Tsang, D.R. Snead, I.A. Cree, N.M. Rajpoot, Locality sen-
sitive deep learning for detection and classification of nuclei in routine colon cancer histology images,
IEEE Trans. Med. Imaging 35 (5) (2016) 1196–1206.

[24] Y. Zhou, Q. Dou, H. Chen, J. Qin, P.A. Heng, Sfcn-opi: Detection and fine-grained classification of
nuclei using sibling fcn with objectness prior interaction, in: Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[25] J. Johnson, A. Alahi, L. Fei-Fei, Perceptual losses for real-time style transfer and super-resolution,
in: European Conference on Computer Vision, Springer, 2016, pp. 694–711.

[26] E. Reinhard, M. Adhikhmin, B. Gooch, P. Shirley, Color transfer between images, IEEE Comput.
Graph. Appl. 21 (5) (2001) 34–41.

[27] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv
preprint arXiv:1409.1556, 2014.

[28] L.R. Dice, Measures of the amount of ecologic association between species, Ecology 26 (3) (1945)
297–302.

[29] P. Jaccard, The distribution of the flora in the alpine zone, New Phytol. 11 (2) (1912) 37–50.
[30] K. Sirinukunwattana, D.R. Snead, N.M. Rajpoot, A stochastic polygons model for glandular structures

in colon histology images, IEEE Trans. Med. Imaging 34 (11) (2015) 2366–2378.
[31] M.A. Mazurowski, Radiogenomics: what it is and why it is important, J. Am. Coll. Radiol. 12 (8)

(2015) 862–866.
[32] H.X. Bai, A.M. Lee, L. Yang, P. Zhang, C. Davatzikos, J.M. Maris, S.J. Diskin, Imaging genomics in

cancer research: limitations and promises, Br. J. Radiol. 89 (1061) (2016) 20151030.
[33] L.A. Cooper, J. Kong, D.A. Gutman,W.D. Dunn, M. Nalisnik, D.J. Brat, Novel genotype-phenotype

associations in human cancers enabled by advanced molecular platforms and computational analysis of
whole slide images, Lab. Investig. 95 (4) (2015) 366.

[34] J. Liu, H. Dang, X.W. Wang, The significance of intertumor and intratumor heterogeneity in liver
cancer, Exp. Mol. Med. 50 (1) (2018) e416.

[35] A. Marusyk, V. Almendro, K. Polyak, Intra-tumour heterogeneity: a looking glass for cancer? Nat.
Rev. Cancer 12 (5) (2012) 323.

[36] N. Andor, T.A. Graham, M. Jansen, L.C. Xia, C.A. Aktipis, C. Petritsch, H.P. Ji, C.C. Maley, Pan-
cancer analysis of the extent and consequences of intratumor heterogeneity, Nat. Med. 22 (1) (2016)
105.

[37] J.F. Wang, T.L. Zhang, B.J. Fu, A measure of spatial stratified heterogeneity, Ecol. Indic. 67 (2016)
250–256.

[38] E.H. Simpson, Measurement of diversity, Nature 163 (1949) 688.
[39] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (3) (1948) 379–423.
[40] F.C. Martins, S. De, V. Almendro, M. G€onen, S.Y. Park, J.L. Blum, W. Herlihy, G. Ethington,

S.J. Schnitt, N. Tung, et al., Evolutionary pathways in brca1-associated breast tumors, Cancer
Discovery (2012). CD–11.

[41] S.Y.Park,M.G€onen,H.J.Kim,F.Michor,K. Polyak,Cellular andgenetic diversity in theprogressionof
in situ human breast carcinomas to an invasive phenotype, J. Clin. Invest. 120 (2) (2010) 636–644.

[42] A. Roth, J. Khattra, D. Yap, A. Wan, E. Laks, J. Biele, G. Ha, S. Aparicio, A. Bouchard-Côt�e,
S.P. Shah, Py-clone: statistical inference of clonal population structure in cancer, Nat. Methods 11 (4)
(2014) 396.

[43] B. Mlecnik, M. Tosolini, A. Kirilovsky, A. Berger, G. Bindea, T. Meatchi,
P. Bruneval, Z. Trajanoski, W.H. Fridman, F. Pagès, et al., Histopathologic-based prognostic factors
of colorectal cancers are associated with the state of the local immune reaction, J. Clin. Oncol. 29 (6)
(2011) 610–618.

[44] J. Galon, A. Costes, F. Sanchez-Cabo, A. Kirilovsky, B. Mlecnik, C. Lagorce-Pagès, M. Tosolini,
M. Camus, A. Berger, P. Wind, et al., Type, density, and location of immune cells within human
colorectal tumors predict clinical outcome, Science 313 (5795) (2006) 1960–1964.

http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0115
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0115
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0115
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0115
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0120
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0120
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0120
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0125
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0125
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0125
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0130
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0130
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0135
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0135
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0140
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0140
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0145
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0145
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0150
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0155
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0155
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0160
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0160
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0165
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0165
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0170
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0170
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0170
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0175
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0175
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0180
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0180
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0185
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0185
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0185
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0190
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0190
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0195
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0200
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0205
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0205
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0205
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0205
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0210
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0210
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0210
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0215
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0215
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0215
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0215
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0215
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0220
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0220
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0220
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0220
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0225
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0225
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0225
Administrator
高亮

Administrator
高亮



201Deep learning-based nuclei segmentation and classification
[45] J. Saltz, R. Gupta, L. Hou, T. Kurc, P. Singh, V. Nguyen, D. Samaras, K.R. Shroyer,
T. Zhao, R. Batiste, et al., Spatial organization andmolecular correlation of tumor-infiltrating lympho-
cytes using deep learning on pathology images, Cell Rep. 23 (1) (2018) 181.

[46] M. Kochi, T. Iwamoto, N. Niikura, G. Bianchini, S. Masuda, T. Mizoo,
T. Nogami, T. Shien, T. Motoki, N. Taira, et al., Tumour-infiltrating lymphocytes (tils)-related geno-
mic signature predicts chemotherapy response in breast cancer, Breast Cancer Res. Treat. 167 (1)
(2018) 39–47.

http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0230
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0230
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0230
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0235
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0235
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0235
http://refhub.elsevier.com/B978-0-12-814972-0.00008-4/rf0235

	Deep learning-based nuclei segmentation and classification in histopathology images with application to imaging ge
	Joint nuclei segmentation and classification in histopathology images
	Training data generation
	Dataset
	Preprocessing

	Deep learning-based segmentation and classification
	Network structure
	Loss function
	Postprocessing
	Evaluation methods

	Experimental results

	Applications to imaging genomics
	Intratumor heterogeneity
	Intratumor spatial heterogeneity
	Intratumor genetic heterogeneity

	Tumor-Infiltrating Lymphocytes

	Conclusion
	References




