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Abstract: Surface albedo directly affects the radiation balance and surface heat budget, and is a crucial variable in 

local and global climate research. In this study, the spatial and temporal distribution of the surface albedo is ana-

lysed for Beijing in 2015, and the corresponding individual and interactive driving forces of different explanatory 

factors are quantitatively assessed based on geographical detectors. The results show that surface albedo is high 

in the southeast and low in the northwest of Beijing, with the greatest change occurring in winter and the smallest 

change occurring in spring. The minimum and maximum annual surface albedo values occurred in autumn and 

winter, respectively, and showed significant spatial and temporal heterogeneity. LULC, NDVI, elevation, slope, 

temperature, and precipitation each had a significant influence on the spatial pattern of albedo, yielding explanatory 

power values of 0.537, 0.625, 0.512, 0.531, 0.515 and 0.190, respectively. Some explanatory factors have signifi-

cant differences in influencing the spatial distribution of albedo, and there is significant interaction between them 

which shows the bivariate enhancement result. Among them, the interaction between LULC and NDVI was the 

strongest, with a q-statistic of 0.710, while the interaction between temperature and precipitation was the weakest, 

with a q-statistic of 0.531. The results of this study provide a scientific basis for understanding the spatial and 

temporal distribution characteristics of surface albedo in Beijing and the physical processes of energy modules in 

regional climate and land surface models. 
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1  Introduction 

Surface albedo is a non-dimensional parameter defined as a 

ratio of surface-reflected radiation to incident radiation 

(Ranson et al., 1991; Russell et al., 1997). It is one of the 

most critical parameters in surface energy budget studies, 

and its temporal and spatial changes are closely related to 

global climate change and regional weather systems (Dick-

inson, 1983; Richardson et al., 2013). Therefore, under-

standing the spatial and temporal distribution of surface 

albedo and its influencing factors can provide not only a 

powerful reference for simulating environmental climate 

change but also a theoretical basis for the parameterization 

of surface albedo models. 

Surface albedo is usually determined by the land cover 

type and, as such, changes in land use can have strong in-

fluences on surface albedo (Bounoua et al., 2002; Liu et al., 

2015; Liu et al., 2019). It is also affected by many factors, 

including solar elevation angle, surface roughness, normal-

ized difference vegetation index (NDVI), meteorological 

factors, soil moisture, etc. (Govaerts et al., 2008; Loarie et 

al., 2011; Xiao et al., 2011; He et al., 2014). In previous 

studies, the linear regression method was usually used to 

analyze the correlations between surface albedo and driving 

factors (Yang et al., 2020). However, because of the com-
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plex process of the surface albedo responses to driving fac-

tors, the inflexible statistical linear models may not be able 

to accurately describe the internal relationships between the 

two variables. Spatial heterogeneity is a common feature of 

ecological geographical phenomena. Studies have shown 

that the spatio-temporal distribution of surface albedo dis-

play distinct geographical differences (Zhang et al., 2010; 

Nikolaos and Nektarios, 2015). The traditional linear analy-

sis method usually only unifies the relationships between 

independent variables and dependent variables, and lacks 

the consideration of spatial heterogeneity of the variables. 

Geographical detectors are a set of statistical methods which 

can detect spatial stratified heterogeneity (SSH) and reveal 

the driving forces behind them. The central premise of these 

methods is the assumption that if the sum of the variances of 

the subregions is less than the total regional variances, then 

spatial differentiation exists. If an independent variable has 

an important influence on a dependent variable, the spatial 

distributions of the independent and dependent variables 

should be similar (Wang et al., 2010; Wang et al., 2016). 

Geographical detectors were first used in health studies 

to determine the environmental factors associated with neu-

ral tube defects in new-borns and earthquake deaths (Liao et 

al., 2010; Hu et al., 2011; Wang et al., 2012). This approach 

can be used to measure and characterise the spatial hetero-

geneity of a target variable (Golkar et al., 2018; Malahlela et 

al., 2019), assess the degree of coupling between two varia-

bles, and investigate the interaction between two explanato-

ry variables forced by a response variable (Yuan et al., 

2019). Studies have applied geographical detectors to iden-

tify the driving factors of PM2.5 pollution (Lou et al., 2016; 

Yang et al., 2018; Ding et al., 2019), the driving force anal-

ysis of the spatial and temporal distribution of urban expan-

sion (Wang et al., 2019; Yan et al. 2020), the impact of new 

transportation modes on population distribution (Wang et al., 

2018), and many other relationships. Factor detector and 

interaction detector were used to detect that cumulative 

temperature, soil salinity and their interactions were the key 

factors affecting winter wheat yield (Chu et al., 2019). The 

interaction detector has shown that the interaction between 

economic activities and the urban environment has the 

greatest influence on the temperature of the Yangtze River 

Delta region (Zhou et al., 2020). The stratification hetero-

geneity of traffic accidents in Shenzhen was found by using 

geographical detector, and the results of factor detector 

showed that the influencing factors of fatalities and injuries 

are different (Zhang et al., 2020). 

Since 2010, geographical detectors have been increas-

ingly used in studies of natural, humanistic, economic and 

other factors with spatial heterogeneity. However, the detec-

tion of factors affecting the distribution of surface albedo 

using geographical detectors remains limited. To address 

this gap, this study sought to analyse the spatio-temporal 

distribution of surface albedo in Beijing in 2015 using the 

Global Land Surface Satellite (GLASS) albedo products. 

Based on the geographical detectors approach, the following 

explanatory factors of surface albedo were detected: land 

use and land cover (LULC), NDVI, elevation, slope, aver-

age temperature, and cumulative precipitation. In this study, 

the quantitative relationship between surface albedo changes 

and their driving factors in Beijing were studied by using 

geographical detector. The contributions of different driving 

factors to surface albedo change were compared, and the 

correlations of driving factors in influencing surface albedo 

change were studied. The results provide not only a new 

method for studying the driving factors of surface albedo 

variability but also a reference for improving regional-scale 

climate and land-surface process simulations.  

2  Materials and methods 

2.1  Study area 

Beijing, the capital of China, is the national centre of poli-

tics, culture, and scientific and technological innovation, is 

located in the north of China and the north of the North 

China Plain, at 39°54'20"N and 116°25'29"E (Fig. 1). The 

total area of Beijing is 16412 km2, with a built-up area of 

1485 km2. The terrain of the city is high in the northwest 

and low in the southeast with the mountainous areas ac-

counting for 62% of the total area and the remaining 38% 

consisting of flatter plains. The average elevation is 43.5 m, 

while the elevation of the plain is 20–60 m, and the eleva-

tion of the mountain is generally 1000–1500 m. Beijing’s 

climate is a typical north temperate semi-humid continental 

monsoon climate, with a high temperature and rainy in 

summer, cold and dry in winter, and a short spring and au-

tumn. The average annual sunshine hours in Beijing are 

between 2000 and 2800 hours and the annual average solar 

radiation is 112–136 kcal cm‒2. Therefore, Beijing is taken 

as the research area for the exploration of spatial heteroge-

neity and driving factors of surface albedo in this study. 

 

Fig. 1  Study area: Beijing, China. 
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2.2  Datasets 

2.2.1  Surface albedo  

Surface albedo data were obtained in the form of the Global 

Land Surface Satellite (GLASS) products from the National 

Earth System Science Data Sharing Infrastructure, National 

Science & Technology Infrastructure of China (http://www. 

geodata.cn) (Liu et al., 2013a; Liu et al., 2013b; Qu et al., 

2014). These data have a 1-km spatial resolution and an 

eight-day temporal resolution. Compared to the Moderate 

Resolution Imaging Spectroradiometer (MODIS) MCD43 

product, GLASS albedo products overcome the missing 

values resulting from snow-covered areas (Schaaf et al., 

2002). By including black-sky albedo and white-sky albedo 

data, the GLASS albedo product has been widely favoured, 

and its level of precision can meet the needs of most surface 

albedo spatio-temporal analyses. 

Data for 46 periods in 2015 were obtained as a total of 92 

HDF files. The black-sky and white-sky albedo data were 

first extracted from each file and converted to an appropri-

ate file format. A mosaic was then created for Beijing from 

two images acquired during the same period. Average 

black-sky and white-sky albedo values were then deter-

mined to quantitatively represent the surface albedo across 

the city. Finally, the average surface albedo during each pe-

riod was determined along with the annual average (2015). 

2.2.2  Explanatory factors 

Land-use data for 2015 were acquired from the current Chi-

nese Land-Use/Cover Datasets of Resource and Environment 

Data Cloud Platform (http://www.resdc.cn/) (Liu et al., 2014). 

The spatial resolution of land use data used in this study is 1 

km, and the primary land-use classifications include 

cropland, forestland, grassland, water bodies, built-up land, 

and unused land. Figure 2a shows the distribution of 

land-use types and land covers in Beijing in 2015, which 

yields the following ranked order: forestland > cropland > 

built-up land > grassland > water body > unused land. 

Cropland and built-up land are mainly distributed in the 

southeast of the city, while forestland and grassland are 

mainly distributed in the northwest. 

The Normalized Difference Vegetation Index (NDVI) 

products were the Terra Moderate Resolution Imaging Spec-

troradiometer (MODIS) Vegetation Indices (MOD13A3) 

obtained from the National Aeronautics and Space Admin-

istration (NASA). The data are provided monthly at 1km 

spatial resolution. In this study, the MODIS NDVI data for 

Beijing in 2015 were used to calculate its average to repre-

sent the characteristics of NDVI in Beijing. As shown in Fig. 

2b, the NDVI of Beijing in 2015 is between 0.08–0.74, and 

the spatial distribution of NDVI in Beijing is quite similar to 

the spatial distribution of LULC. The NDVI of built-up land 

in the south-central part is the lowest, while the NDVI of 

grassland and forest land in the northwest is higher, and the 

NDVI of cropland is moderate. 

A digital elevation model (DEM) of Beijing is available 

from the Geospatial Data Cloud Site, Computer Network 

Information Center, Chinese Academy of Sciences (http:// 

www.gscloud.cn). These datasets were processed using the 

Advanced Spaceborne Thermal Emission and Reflection 

Radiometer Global Digital Elevation Model (ASTER 

GDEM V1), which is a digital elevation data product with a 

global spatial resolution of 30 m. The elevation map of Bei-

jing is shown in Fig. 2c and spans an altitudinal range of 

between –129 m and 2270 m. Slope data for Beijing were 

generated from the DEM, which refers to the angle between 

the tangent plane passing through one point on the ground 

surface and the horizontal ground surface. A lower slope 

value indicates flatter terrain while a higher slope value in-

dicates steeper terrain. The obtained slope values were cat-

egorised into five levels as shown in Fig. 2d. 

Average temperature and cumulative precipitation data 

were acquired from the Resource and Environment Data 

Cloud Platform (http://www.resdc.cn/Default.aspx). The 

spatial interpolation database of annual temperature and 

precipitation data provided for China by the website is 

based on the daily observation data of more than 2400 me-

teorological stations in China, which is generated through 

sorting, calculation and spatial interpolation. The data for 

Beijing in 2015 were clipped using ArcGIS. The annual 

mean temperature of Beijing in 2015 ranged from 2.5 ℃ to 

13.5 ℃, and annual total cumulative precipitation ranged 

from 534 mm to 630 mm. The spatial distribution of precip-

itation and rainfall are shown in Fig. 2e and Fig. 2f, respec-

tively. 

When exploring the relationships between independent 

variables and dependent variables, the geographical detector 

requires that the independent variables should be discrete 

data. If the independent variables are continuous data, they 

need to be discretized. Data discretization is the process of 

dividing continuous data into several intervals, where each 

interval corresponds to a qualitative symbol. The discretiza-

tion can be based on expert knowledge or classified using 

algorithms such as k-means. User-defined discretization can 

also be used for geographical detector models (Wang et al., 

2010; Hu et al., 2011; Cao et al., 2013). The explanatory 

factors in this study are all continuous data except for the 

LULC, therefore, the remaining five variables needed to be 

discretized. As shown in Table 1, the NDVI is discretized 

into six intervals: N1(0.08–0.30), N2(0.30–0.37), N3(0.37– 

0.44), N4(0.44–0.50), N5(0.50–0.56), N6(0.56–0.74); The 

elevation is discretized into six intervals: E1(–129–158 m), 

E2(158–389 m), E3(389–617 m), E4(617–854 m), E5 

(854–1187 m), E6 (1187–2270 m); The slope is discretized  
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Fig. 2  Explanatory factor classification maps for (a) land use and land cover (LULC); (b) NDVI; (c) elevation; (d) slope; (e) 

annual mean temperature; and (f) annual cumulative precipitation. 
 

Table 1  Discretization results of explanatory factors 

Factors 
NDVI Elevation Slope Temperature Precipitation 

Values Types Values (m) Types Values (°) Types Values (℃) Types Values (mm) Types 

1 0.08–0.30 N1 ‒129‒158 E1 <2 I 2.5‒7.5 T1 534‒565 C1 

2 0.30–0.37 N2 158‒389 E2 2‒6 II 7.5‒9.5 T2 565‒575 C2 

3 0.37–0.44 N3 389‒617 E3 6‒15 III 9.5‒10.5 T3 575‒585 C3 

4 0.44–0.50 N4 617‒854 E4 15‒25 IV 10.5‒12.0 T4 585‒595 C4 

5 0.50–0.56 N5 854‒1187 E5 >25 V 12.0‒13.5 T5 595‒630 C5 

6 0.56–0.74 N6 1187‒2270 E6 ‒ ‒ ‒ ‒ ‒ ‒ 

Note: ―‒‖ means that the data is only divided into five categories. 
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into five intervals: I (<2), II (2‒6), III (6‒15), IV (15‒ 

25), V(>25); The temperature is discretized into five in-

tervals:  T1(2.5‒7.5 ℃),  T2(7.5‒9.5 ℃),  T3(9.5‒10.5 

℃), T4(10.5‒12 ℃), T5(12‒13.5 ℃); And the precipitation 

is discretized into five intervals: C1 (534–565 mm), C2 

(565–575 mm), C3 (575–585 mm), C4 (585–595 mm), C5 

(595–630 mm). The slope is discretized based on expert 

knowledge, while NDVI, elevation, temperature and precip-

itation are discretized according to the actual values of each 

factor in Beijing. 

2.3  Methods 

Geographical detector is a novel tool for the measurement 

and attribution of SSH. It includes four detectors: factor 

detector, risk detector, ecological detector and interaction 

detector. In this study, geographical detectors were used to 

determine the influence of the explanatory factors outlined 

in Section 2.2.2 (LULC, NDVI, elevation, slope, average 

temperature, and cumulative precipitation) on the spatial 

pattern of surface albedo in Beijing. The factor detector, 

ecological detector, and interaction detector were applied as 

follows. 

2.3.1  Factor detector 

The factor detector mainly measures the SSH of variable Y, 

or the influencing power of an explanatory variable X on Y.  

Therefore, the power of the determinant of the explanatory 

factors of albedo can be measured by the q-statistic of factor 

detector by the following method (Wang et al., 2010): 

 

2
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k k
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where N and 
2  stand for the number of units and the 

variance of surface albedo in a study area, respectively; the 

population surface albedo is composed of n strata (k = 1, 

2, …, n) divided by the explanatory factors, Nk and 
2
k  

stand for the number of units and the variance of surface 

albedo in stratum k, respectively. The value of q is within [0, 

1], and q = 0 indicates that there is no coupling between 

surface albedo and the explanatory factors, while q = 1 in-

dicates that the surface albedo is completely determined by 

the explanatory factors. 

2.3.2  Ecological detector 

The ecological detector identifies the difference in the im-

pacts of two explanatory variables and is measured by the F 

statistic (Wang et al., 2010): 
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where 
1x

N  and 
2xN  are the numbers of units of the two 

explanatory factors, and 
1

2
x  and 

2

2
x  are the population 

dispersion variances of the two factors, respectively, where 

the null hypothesis is 
1 2

2 2
0 :H x x  . If the null hypothesis 

is rejected at the significance level, then two factors are 

considered to have significantly different effects on the spa-

tial distribution of surface albedo. 

2.3.3  Interaction detector 

The interaction detector can be used to identify the interac-

tions between different explanatory factors on the spatial 

distribution of the dependent variable. This detector com-

pares the interaction between two factors A and B on the 

surface albedo, and determines whether the two determi-

nants when taken together weaken or enhance each another, 

or are independent in affecting the surface albedo. This rela-

tionship evaluation method involves comparing q(A), q(B), 

and q(A∩B) and includes weakening, independent, and 

enhanced relationships, with the five relationships shown in 

Table 2 (Wang et al., 2012). Therefore, the interaction re-

sults not only indicate the contributions of the two factors to 

surface albedo, but also reveal whether there is co-linearity 

between the two factors. 

 

Table 2  Types of interactions between two covariates 

  Description Interaction 

1 ( )< min ( ( ), ( ))q A B q A q B  Weaken, nonlinear 

2 min ( ( ), ( )) ( ) max ( ( ), ( ))q A q B q A B q A q B    Weaken, univariate 

3 ( ) max ( ( ), ( ))q A B q A q B   Enhance, bivariate 

4      q A B q A q B    Independent 

5      q A B q A q B    Enhance, nonlinear 

 

3  Results 

3.1  Spatio-temporal variation of surface albedo in 

Beijing, 2015 

Annual average surface albedo can be used to characterise 

the overall albedo of a region. The average surface albedo of 

46 periods was calculated to represent the surface albedo of 

Beijing. Based on Fig. 3, the annual average surface albedo 

in Beijing varied between 0.050 and 0.196 in 2015 and 

showed marked spatial variation; values were relatively 

high in the southeast of the city (0.14–0.18) and relatively 

low in the northwest (0.05–0.14). The surface albedo of 

most regions was between 0.10 and 0.18, and the maximum 

(0.18–0.20) or minimum (0.05–0.10) surface albedo only 

occupied a small part of the region. As shown in Fig. 3, the 

spatial distribution of surface albedo is roughly similar to 

that of LULC, but there are differences. That is, the surface 

albedo of given land use type is not exactly the same and 

may show significant variations even within the same 

land-use category. For example, the surface albedo of an 

area of built-up land in the south-central region of the city 

was notably lower than the surrounding land of the same 

cover type. This indicates that the surface albedo is not only 
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determined by the type of land use, but is also affected by 

many other factors. For example, such as, in the case of 

built-up land, the likely results from the differences in the 

types of buildings or other factors. 

 
 

 

Fig. 3  Spatial pattern of annually averaged surface albedo 

in Beijing, 2015. 

 

The average surface albedo across the whole region was 

determined as a representative value for the entire city. The 

average daily surface albedo of Beijing (as a whole) in 2015 

varied between 0.114 and 0.227, with a mean of 0.131. As 

shown in Table 3, the seasonal averages of surface albedo of 

Beijing in 2015 are ranked in the following order: autumn 

(0.122) < spring (0.127) < summer (0.134) < winter (0.142), 

indicating that the surface albedo is the lowest in autumn 

and the highest in winter. Combining these results with Fig. 

4, the smallest variability occurred in spring, remaining at 

approximately 0.127 (day 30–120), but rising slightly to-

wards the beginning of summer to reach 0.136. A slight de-

crease in variability occurred during the middle and late 

summer (day 145–210) and a more marked decline occurred 

during the autumn (day 210–300) reaching a minimum of 

0.114. Variation was greatest during the winter (day 300–30 

of the next year), reaching a significant peak of 0.227 on 

day 329. 

 
 

Fig. 4  Intra-annual variations in the surface albedo of  

Beijing, 2015. 

Table 3  Seasonal averages of surface albedo in Beijing, 2015. 

Seasons 
Spring   

(day 30–120) 

Summer  

(day 120–210) 

Autumn  

(day 210–300) 

Winter 

 (day 300–30 

of next year) 

Mean 0.127 0.134 0.122 0.142 

Standard 

deviation 
0.001 0.002 0.006 0.030 

 

3.2  Factors influencing albedo 

3.2.1  Driving factor detection 

Factor detector is a method to measure the relative im-

portance of various factors for surface albedo. The greater 

the q-statistic of the factor detector, the greater is the influ-

ence of the respective explanatory factor on albedo. Moreo-

ver, the factor with the largest q-statistic is defined as the 

dominant factor. In this analysis, the response variable was 

taken as the annual average of the surface albedo of Beijing 

in 2015. According to the results of factor detection analysis 

(second row in Table 5), the degrees of influence of the six 

considered explanatory factors are ranked in the following 

order: NDVI (0.625) > LULC (0.537) > slope (0.531) > tem-

perature (0.515) > elevation (0.512) > precipitation (0.190). 

All explanatory factors of surface albedo distribution passed 

the significance test (P < 0.05). 

These explanatory factors all had significant individual 

effects on the spatial distribution of surface albedo values 

(Table 4). Among these different explanatory factors, the 

NDVI q-statistic is the largest, at is 0.625, indicating that 

this driving factor had the greatest influence overall. There-

fore, NDVI is the dominant factor affecting surface albedo 

distribution in Beijing. LULC is the second-largest influ-

ence (q-statistic = 0.537); the influence of slope was less 

than that of LULC, which a q-statistic of 0.531; the average 

temperature and elevation had a similar level of influence 

(q-statistic = 0.515 and 0.512, respectively). These five fac-

tors all accounted for more than 50% of the surface albedo 

distribution. However, the q-statistic of cumulative precipi-

tation is only 0.190, which is the smallest among all explan-

atory factors. That suggests the cumulative precipitation has 

only a minimal influence on the albedo distribution. 

3.2.2  Ecological detection of explanatory factors 

The ecological detector results are shown in Table 4. Y in-

dicates that the influence of each explanatory factor on the 

spatial distribution of surface albedo is significantly differ-

ent at the 95% confidence level, while N indicates that there 

is no significant difference. 

The results show that there are no significant differences 

between the slope and the three other factors on surface al-

bedo except for the NDVI and precipitation; and the influ-

ence of temperature and elevation were not significantly 

different. This shows that these factors have similar effects 

on the spatial distribution of surface albedo. The NDVI and 

cumulative precipitation each have a significantly different 
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influence than all other factors on the pattern of surface al-

bedo; and other than for slope, LULC had significantly dif-

ferent influence compared to NDVI, elevation, temperature 

and precipitation. This shows that these factors play their 

respective roles in influencing the spatial distribution of 

surface albedo. 

3.2.3  Interactive detection of explanatory factors 

The spatial heterogeneity of surface albedo values results 

from multiple factors and there is often no single factor that 

can fully account for this variability. Interaction detector 

was used to assess whether the explanatory factors had an 

interactive influence on surface albedo. Based on the inter-

action detector results (Table 5), all of the considered ex-

planatory factors were found to have a synergistic effect. 

This indicates that the combined influence of any two fac-

tors was greater than their individual effects. The q-statistic 

of the interactive influence between factors on surface al-

bedo are ranked in the following order: NDVI∩LULC 

(0.710) > elevation∩ NDVI (0.691) > slope∩ NDVI 

(0.690) > temperature∩NDVI (0.689) > precipitation∩

NDVI (0.648) > elevation∩LULC (0.645) > slope∩LULC 

(0.644) > temperature∩LULC (0.641) > temperature∩

slope (0.630) > slope∩elevation (0.629) > precipitation∩

LULC (0.573) > precipitation∩slope (0.567) > temperature

∩elevation (0.553) > precipitation∩elevation (0.535) > 

precipitation∩temperature (0.531). 

According to the results of the interaction detection, the 

q-statistic of the interaction between any two factors on the 

surface albedo is greater than the q-statistic for either of the 

two factors individual influences, but less than the sum of 

their q values, showing the bivariate enhancement results. 

Among them, NDVI and LULC had the largest interactive 

effect (0.710) while the combined effect of temperature and 

precipitation was lowest (0.531). The q-statistics of the four 

2-factor combinations of NDVI∩LULC, elevation∩NDVI, 

slope∩NDVI and temperature∩NDVI are all greater than 

0.680, indicating that these factors working together can 

explain more than 68% of the spatial distribution of surface 

albedo. The interaction of NDVI∩elevation is larger than 

that of NDVI∩slope or NDVI∩temperature, while the in-

dividual influence of elevation is smaller than that of slope 

or temperature. Similarly, the degree of interaction of eleva-

tion∩LULC was greater than between temperature∩LULC 

while the individual influence of elevation was lower than 

that of temperature. This indicates that NDVI has a greater 

enhancement of elevation than slope or temperature, and 

LULC enhanced the influence of elevation on surface albe-

do more than the temperature. It also indicates that a given 

factor may have different enhancement effects on the influ-

ence of different factors on surface albedo. In addition, 

while the influence of cumulative precipitation on the other 

factors was small, this factor cannot be ignored when its 

interactive effects are considered. 

 

Table 4  Influence power index of the explanatory factors on the pattern of surface albedo in Beijing, 2015, and the significant 

differences between them. 

Variables LULC NDVI Elevation Slope Temperature Precipitation 

q-statistic 0.537 0.625 0.512 0.531 0.515 0.190 

P value 0.000 0.000 0.000 0.000 0.000 0.000 

LULC – – – – – – 

NDVI Y – – – – – 

Elevation Y Y – – – – 

Slope N Y N – – – 

Temperature Y Y N N – – 

Precipitation Y Y Y Y Y – 

Notes: Y indicates a significant difference between explanatory factors at the 95% confidence level; N indicates no significant difference. 

Table 5  Interactions between explanatory factors in their influences of the spatial pattern of surface albedo in Beijing, 2015 

Variables LULC NDVI Elevation Slope Temperature Precipitation 

LULC 0.537           

NDVI 0.710* 0.625         

Elevation 0.645* 0.691* 0.512       

Slope 0.644* 0.690* 0.629* 0.531     

Temperature 0.641* 0.689* 0.553* 0.630* 0.515   

Precipitation 0.573* 0.648* 0.535* 0.567* 0.531* 0.190 

Notes: * indicates that the interaction results in bivariate enhancement. 
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4  Discussion  

4.1  Spatio-temporal heterogeneity of surface albedo 

The spatio-temporal distribution of surface albedo in Bei-

jing in 2015 was distinctly heterogeneous. The spatial varia-

tion of the average surface albedo in Beijing in 2015 was 

between 0.050 and 0.196. Higher albedo values were mainly 

distributed in the southeast of the city, which is densely 

populated, has a relatively flat topography, and is dominated 

by cropland and built-up land. In the northwest of the city, 

the terrain is higher and the main land-use types are grass-

land and forestland resulting in lower surface albedo values. 

Previous studies obtained the albedo of different surface 

features through remote sensing inversion, and the results 

were as follows: cropland > built-up land > grassland > for-

estland > unused land > water body (Bao et al., 2007). 

Bounoua et al. (2002) found that the surface albedo of for-

estland was significantly lower than that of cropland, be-

cause the color of the forestland canopy was generally 

darker than that of cropland, and the roughness of forestland 

was greater than that of cropland (Betts et al., 2007). The 

finding of these previous studies are consistent with the re-

sults of this study. In fact, even within the same type of land 

use, there are differences in surface albedo. This is because 

the surface albedo, as a quantitative index reflecting the 

reflective ability of the surface of earth to solar radiation, is 

not only related to the type of LULC, but it is also affected 

by other factors such as solar elevation angle, surface 

roughness, soil moisture and meteorological conditions 

(Chen, 1999; Liu et al., 2008; Guan et al., 2009). The factor 

detectors have also shown that LULC is only the dominant 

factor determining the change of surface albedo, not the 

only determinant. Therefore, when a given land use type is 

located in different regions, its climatic conditions, soil 

types and solar radiation received are very different, result-

ing in differences in surface albedo. 

In 2015, the temporal variation of the overall mean sur-

face albedo across the entire city was between 0.114 and 

0.227, with a mean of 0.131. This variation reflected signif-

icant seasonal patterns, with higher and more fluctuating 

values occurring in the winter, relatively stable values oc-

curring in the summer and spring, and a slight decline in 

values in the autumn. Snow and ice have a high albedo to 

solar radiation, only a small part of the incoming solar radi-

ation energy is absorbed by the snow-and ice-covered areas. 

The melting of snow will expose the surface that will sig-

nificantly reduce the surface albedo (Nolin et al., 1997; 

Robinson, 1997). So the large variation of surface albedo 

during the winter is probably due to the snow. These annual 

changes of albedo are consistent with existing research re-

sults (Yang et al., 2006). The spatio-temporal results of this 

study help to understand the temporal and spatial variability 

of Beijing’s surface albedo and provided a powerful refer-

ence for the simulation of environmental climate change. 

4.2  Relative influences of factors on surface albedo 

According to the analysis results of the factor detector, all 

each of the factors considered in this study show a signifi-

cant relationship with the spatial heterogeneity of surface 

albedo. Among these, NDVI had the highest q-statistic value 

of 0.625, indicating it had the greatest level of influence. 

Previous studies have also shown that NDVI has a strong 

negative correlation with the surface albedo (Xue et al., 

2019). This is because NDVI reflects the type of land cover, 

and the change of land cover type directly leads to the dif-

ference of land cover albedo (Li et al., 2012). However, in 

the summer with high NDVI, the surface albedo of Beijing 

is even higher than in spring and autumn when NDVI is low, 

which also indicates that NDVI is only the dominant factor 

determining the spatial distribution of surface albedo, not 

the only determinant. The fact that surface albedo increases 

in summer in Beijing indicates that the decrease of the sur-

face albedo caused by NDVI is less than the increase of the 

surface albedo caused by other factors. LULC is second 

only to NDVI in influencing the spatial distribution of sur-

face albedo, with a q-statistic of 0.537. This is consistent 

with the results of previous studies which have also shown 

that surface albedo is strongly correlated with land use and 

land-cover type (Zhou et al., 2003; Liu et al., 2015). That 

correlation is mainly due to the different surface properties 

of ground objects, which have distinct reflective character-

istics with respect to solar radiation (Zhang, 2008). In addi-

tion, the q-statistics of slope, elevation, and average temper-

ature were all above 0.500 indicating that they also had 

large influences on surface albedo. In comparison, the effect 

of cumulative precipitation was low with a q-statistic of 

0.190, indicating it does not play a dominant role in surface 

albedo. Some studies based on classical statistics can only 

show a good correlation between surface albedo and precip-

itation but cannot indicate how much influence it has (Wang 

et al., 2011). The geographical detector approach has no 

linear hypothesis, so the relationship between dependent 

variables and independent variables is, as such, more relia-

ble than that obtained by classical statistics. It judges the 

influence of independent variables on the spatial differentia-

tion of dependent variables using the q-statistic, whereby 

independent variable X explains the dependent variable Y as 

q, which is also an advantage of the geographical detector 

over classical statistical methods. Comparing the spatial 

distribution maps of the six factors considered with surface 

albedo, the greatest degree of similarity can be seen between 

surface albedo and LULC, NDVI, slope, elevation, and 

temperature. This conforms to the core premise of the geo-

graphical detectors approach, that the spatial distribution of 

a dependent variable should be similar to an independent 

variable if they are significantly associated with each other 

(Wang et al., 2010; Wang et al., 2016). 

The ecological detector results show that some factors 
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are significantly different from other variables in terms of 

their effects on the spatial distribution of surface albedo. For 

example, there are significant differences between cumula-

tive precipitation and other factors in influencing the spatial 

distribution of albedo. These differences also show that 

some factors play their respective roles in influencing the 

distribution of the albedo. The results of the interactive de-

tector show that there is interaction between all variables, 

indicating that the spatial heterogeneity of surface albedo is 

the result of multiple factors. The results also show that the 

interaction of any two factors will enhance the driving force 

for albedo spatial differentiation. However, the driving force 

of the two variables acting together is not simply the sum of 

the driving forces of the two variables acting independently. 

Different variables have different enhancement effects when 

interacting with each other and any given variable has dif-

ferent enhancement effects on other variables. The interac-

tion detector can not only judge whether there is variable 

interaction or not, but it can also judge the strength, direc-

tion, linearity or nonlinearity of the interaction (Wang et al., 

2010). Therefore, it is useful for studying the interactions 

between variables. 

Admittedly, only some of the factors influencing surface 

albedo were quantitatively analysed in this study. In addi-

tion to the factors considered here, previous studies have 

shown that solar height angle, atmospheric composition, 

surface roughness, and snow cover also have important in-

fluences on surface albedo (Davidson and Wang, 2005; 

Wang, 2005). In addition, this study only used the average 

surface albedo of Beijing in 2015 to quantitatively analyse 

the driving forces of various factors on the spatial heteroge-

neity of the surface albedo, which lacked the consideration 

of the time changes of the driving forces. In the follow-up 

work, we analysed the change of the q-statistic between the 

explanatory variable and surface albedo with the changes of 

time and space. Studies have shown that the main factors 

affecting the albedo of temperate grassland surfaces are dif-

ferent in different periods (Wang and Davidson, 2007). 

Therefore, the influence of other possible factors on the spa-

tial distribution of surface albedo and their variability over 

time in urban areas such as Beijing require further research. 

5  Conclusions 

This study used GLASS surface albedo data to study the 

spatial and temporal distribution of surface albedo in Bei-

jing in 2015. Combined with LULC, NDVI, elevation, slope, 

average temperature, and cumulative precipitation data, the 

degree of influence of these factors on albedo was studied 

by using the geographical detector approach. The results 

show that: 

(1) The annual average albedo in Beijing ranged between 

0.050 and 0.196, and there were significant spatial differ-

ences with higher values in the southeast and lower values 

in the northwest of the city. Across the year, the spatially 

averaged albedo varied between 0.114 and 0.227, with an 

annual mean of 0.131. Albedo was relatively stable during 

the spring, peaked at 0.227 during the winter, and reached 

its lowest value of 0.114 in the autumn. 

(2) The factor detector analysis showed that each of the 

considered factors had a significant influence on the spatial 

heterogeneity of surface albedo, with their effects being 

ranked based on their q-statistics in the following descend-

ing order: NDVI (0.625) > LULC (0.537) > slope (0.531) > 

temperature (0.515) > elevation (0.512) > precipitation 

(0.190). As such, NDVI had the greatest influence on the 

spatial heterogeneity of surface albedo in 2015 and precipi-

tation had the smallest influence.  

(3) The relative influences of the explanatory factors on 

the spatial distribution of surface albedo varied significantly. 

For example, both NDVI and precipitation are significantly 

different from all the other factors. Except for slope, LULC 

also had a significantly different effect than the other factors. 

However, interactions occurred among all of the factors, 

with the combination of any two explanatory factors having 

an enhanced effect on surface albedo; the effects of these 

interactions were additive. LULC and NDVI had the 

strongest interactive effect, with a combined q-statistic of 

0.710, while the interactive effect between temperature and 

precipitation was weakest, with a combined q-statistic of 

0.531. Overall, these findings demonstrate that the observed 

spatial and temporal patterns of albedo were the result of 

multiple, interacting factors. 

References 

Bao P Y, Zhang Y J, Gong L, et al. 2007. Study on consistency of land 

surface albedo obtained from ETM+ and MODIS. Journal of Hohai 

University (Natural Sciences), 35(1): 67–71. (in Chinese). 

Betts A K, Desjardins R L, Worth D. 2007. Impact of agriculture, forest and 

cloud feedback on the surface energy budget in BOREAS. Agricultural 

and Forest Meteorology, 142(2–4): 156–169. 

Bounoua L, Defries R, Collatz G J, et al. 2002. Effects of land cover con-

version on surface climate. Climatic Change, 52(1–2): 29–64. 

Cao F, Ge Y, Wang J F. 2013. Optimal discretization for Geographical 

Detectors-based risk assessment. Giscience & Remote Sensing, 50(1): 

78–92. 

Chen X H. 1999. Relationship between surface albedo and some meteoro-

logical factors. Journal of Chengdu Institute of Meteorology, 14(3): 

233–238. (in Chinese) 

Chu L, Huang C, Liu Q S, et al. 2019. Spatial heterogeneity of winter 

wheat yield and its determinants in the Yellow River Delta, China. Sus-

tainability, 12(1): 135. DOI: 10.3390/su12010135. 

Davidson A, Wang S S. 2005. Spatiotemporal variations in land surface 

albedo across Canada from MODIS observations. Canadian Journal of 

Remote Sensing, 31(5): 377–390.  

Dickinson R E. 1983. Land surface processes and climate—Surface albe-

dos and energy balance. Advances in Geophysics, 25: 305–353. 

Ding Y T, Zhang M, Qian X Y, et al. 2019. Using the geographical detector 

technique to explore the impact of socioeconomic factors on PM2.5 con-

centrations in China. Journal of Cleaner Production, 211: 1480–1490.  

Golkar F, Sabziparvar A A, Khanbilvardi R, et al. 2018. Estimation of in-



618 Journal of Resources and Ecology Vol.12 No.5, 2021 

 

 

stantaneous air temperature using remote sensing data. International 

Journal of Remote Sensing, 39(1): 258–275.  

Govaerts Y, Lattanzio A. 2008. Estimation of surface albedo increase dur-

ing the eighties Sahel drought from Meteosat observations. Global and 

Planetary Change, 64(3–4): 139–145. 

Guan X D, Huang J P, Guo N, et al. 2009. Variability of soil moisture and 

its relationship with surface albedo and soil thermal parameters over the 

Loess Plateau. Advances in Atmospheric Sciences, 26(4): 692–700. 

He T, Liang S L, Song D X. 2014. Analysis of global land surface albedo 

climatology and spatial-temporal variation during 1981–2010 from 

multiple satellite products. Journal of Geophysical Research: Atmos-

pheres, 119(17): 10281–10298.  

Hu Y, Wang J F, Li X H, et al. 2011. Geographical Detector-based risk 

assessment of the under-five mortality in the 2008 Wenchuan Earth-

quake, China. Plos One, 6(6): 1–8. 

Li H F, Yuan Z L, Yu T, et al. 2012. Surface albedo estimating based on 

HJ-1/CCD and relationship analysis between albedo and NDVI. Remote 

Sensing Information, 27(4): 16–21. (in Chinese). 

Liao Y L, Wang J F, Wu J L, et al. 2010. Spatial analysis of neural tube 

defects in a rural coal mining area. International Journal of Environ-

mental Health Research, 20(6): 439–450.  

Liu H Z, Wang B M, Fu C B. 2008. Relationships between surface albedo, 

soil thermal parameters and soil moisture in the semi-arid area of 

Tongyu, northeastern China. Advances in Atmospheric Sciences, 25(5): 

757–764.  

Liu J Y, Kuang W H, Zhang Z X, et al. 2014. Spatiotemporal characteristics, 

patterns, and causes of land-use changes in China since the late 1980s. 

Journal of Geographical Sciences, 24(2): 195–210.  

Liu N F, Liu Q, Wang L Z, et al. 2013a. A statistics-based temporal filter 

algorithm to map spatiotemporally continuous shortwave albedo from 

MODIS data. Hydrology and Earth System Sciences, 17(6): 2121–2129. 

Liu Q Q, Cui Y P, Liu S J, et al. 2019. Study on surface albedo of spectral 

radiation of different land use types in China. Remote Sensing Technol-

ogy and Application, 34(1): 45–56. (in Chinese). 

Liu Q, Wang L Z, Qu Y, et al. 2013b. Preliminary evaluation of the 

long-term GLASS albedo product. International Journal of Digital 

Earth, 6(S1): 69–95. 

Liu Z J, Shao Q Q, Tao J, et al. 2015. Intra-annual variability of satellite 

observed surface albedo associated with typical land cover types in 

China. Journal of Geographical Sciences, 25(1): 35–44. 

Loarie S R, Lobell D B, Asner G P, et al. 2011. Direct impacts on local 

climate of sugar-cane expansion in Brazil. Nature Climate Change, 1(2): 

105–109. 

Lou C R, Liu H Y, Li Y F, et al. 2016. Socioeconomic drivers of PM2.5 in 

the accumulation phase of air pollution episodes in the Yangtze River 

Delta of China. International Journal of Environmental Research and 

Public Health, 13(10): 1–19. 

Malahlela O E, Adjorlolo C, Olwoch J M, et al. 2019. Integrating geostatis-

tics and remote sensing for mapping the spatial distribution of cattle 

hoofprints in relation to malaria vector control. International Journal of 

Remote Sensing, 40(15): 5917–5937.  

Nikolaos B, Nektarios C. 2015. Estimation of the land surface albedo 

changes in the Broader Mediterranean Area, based on 12 years of satel-

lite observations. Remote Sensing, 7(12): 16150–16163. 

Nolin A W, Stroeve J. 1997. The changing albedo of the Greenland ice 

sheet: Implications for climate modeling. Annals of Glaciology, 25: 

51–57. 

Qu Y, Liu Q, Liang S L, et al. 2014. Direct-estimation algorithm for map-

ping daily land-surface broadband albedo from MODIS data. IEEE 

Transactions on Geoscience and Remote Sensing, 52(2): 907–919.  

Ranson K J, Irons J R, Daughtry C S T. 1991. Surface albedo from bidirec-

tional reflectance. Remote Sensing of Environment, 35(2–3): 201–211.  

Richardson A D, Keenan T F, Migliavacca M, et al. 2013. Climate change, 

phenology, and phenological control of vegetation feedbacks to the cli-

mate system. Agricultural and Forest Meteorology, 169: 156–173. 

Robinson D A. 1997. Hemispheric snow cover and surface albedo for mod-

el validation. Annals of Glaciology, 25: 241–245. 

Russell M J, Nunez M, Chladil M A, et al. 1997. Conversion of nadir, nar-

rowband reflectance in red and near-infrared channels to hemispherical 

surface albedo. Remote Sensing of Environment, 61(1): 16–23. 

Schaaf C B, Gao F, Strahler A H, et al. 2002. First operational BRDF, al-

bedo nadir reflectance products from MODIS. Remote Sensing of Envi-

ronment, 83(1–2): 135–148. 

Wang G, Han L, Ji X J. 2011. Research of the reason for variations of sur-

face albedo in different areas in China from 1982 to 1998. Journal 

Chongqing University Technology (Nature Science), 28(4): 79–83. (in 

Chinese) 

Wang J F, Hu Y. 2012. Environmental health risk detection with GeogDe-

tector. Environmental Modelling & Software, 33: 114–115. 

Wang J F, Li X H, Christakos G, et al. 2010. Geographical detectors-based 

health risk assessment and its application in the neural tube defects 

study of the Heshun Region, China. International Journal of Geo-

graphical Information Science, 24(1): 107–127. 

Wang J F, Zhang T L, Fu B J. 2016. A measure of spatial stratified hetero-

geneity. Ecological Indicators, 67: 250–256. 

Wang L Z, Chen L J. 2018. The impact of new transportation modes on 

population distribution in Jing-Jin-Ji region of China. Scientific Data, 5: 

170204. DOI: 10.1038/sdata.2017.204 

Wang S S, Davidson A. 2007. Impact of climate variations on surface al-

bedo of a temperate grassland. Agricultural and Forest Meteorology, 

142(2–4): 133–142.  

Wang S S. 2005. Dynamics of surface albedo of a boreal forest and its 

simulation. Ecological Modelling, 183(4): 477–494. 

Wang Z B, Liang L W, Sun Z, et al. 2019. Spatiotemporal differentiation 

and the factors influencing urbanization and ecological environment 

synergistic effects within the Beijing-Tianjin-Hebei urban agglomera-

tion. Journal of Environmental Management, 243: 227–239. 

Xiao D, Tao F, Moiwo J P. 2011. Research progress on surface albedo 

under global change. Advances in Earth Science, 26(11): 1217–1224. 

Xue H Z, Zhang G D, Zhou H M, et al. 2019 Time series variation charac-

teristics and parameterization of land surface albedo in several typical 

land cover types. Journal of Beijing Normal University (Natural Sci-

ence), 55(2): 272–283. (in Chinese). 

Yan Y C, Ju H R, Zhang S R, et al. 2019. Spatiotemporal patterns and driv-

ing forces of urban expansion in coastal areas: A study on urban ag-

glomeration in the Pearl River Delta, China. Sustainability, 12(1): 191.

DOI: 10.3390/su12010191 

Yang J Q, Li Z, Zhai P, et al. 2020. The influence of soil moisture and solar 

altitude on surface spectral albedo in arid area. Environmental Research 

Letters, 15(3): 1‒10. 

Yang J, Chen H B, Wang K C, et al. 2006. Analysis of the surface albedo 

distribution and variation in Beijing region by using the MODIS data. 

Remote Sening Technology and Application, 21(5): 503–506. (in Chi-

nese). 

Yang W T, Deng M, Xu F, et al. 2018. Prediction of hourly PM2.5 using a 

space-time support vector regression model. Atmospheric Environment, 

181: 12–19.  

Yuan L H, Chen X Q, Wang X Y, et al. 2019. Spatial associations between 

NDVI and environmental factors in the Heihe River Basin. Journal of 

Geographical Sciences, 29(9): 1548–1564.  

Zhang X T, Liang S L, Wang K C, et al. 2010. Analysis of global land 

surface shortwave broadband albedo from multiple data sources. IEEE 

Administrator
高亮



LIU Qinqin, et al.: Spatio-temporal Pattern of Surface Albedo in Beijing and Its Driving Factors based on Geographical Detectors  619 

 

 

Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing, 3(3): 296–305.  

Zhang Y H, Lu H P, Qu W C. 2020. Geographical detection of traffic acci-

dents spatial stratified heterogeneity and influence factors. International 

Journal of Environmental Research and Public Health, 17(2): 572. DOI: 

10.3390/ijerph17020572. 

Zhang Y M. 2008. Spectrum characteristics of surface features reflection 

and high spectral imaging remote sensing. Electro-Optic Technology 

Application, 23(5): 6–11. 

Zhou C, Zhu N N, Xu J H, et al. 2019. The contribution rate of driving 

factors and their interactions to temperature in the Yangtze River Delta 

region. Atmosphere, 11(1): 32. DOI: 10.3390/atmos11010032. 

Zhou L, Dickinson R E, Tian Y, et al. 2003. Comparison of seasonal and 

spatial variations of albedos from Moderate-Resolution Imaging Spectro-

radiometer (MODIS) and Common Land Model. Journal of Geophysical 

Research: Atmospheres, 108(D15): 4488. DOi: 10.1029/2002JD003326. 

 

基于地理探测器的北京市地表反照率时空分异及其驱动因素研究 

刘亲亲 1, 2，田亦陈 2，尹  锴 2，张飞飞 2，袁  超 2，杨  光 2
 

1. 中国科学院大学，北京 100049；  

2. 中国科学院空天信息创新研究院，北京 100101 

摘  要：地表反照率直接影响着辐射平衡和地表热收支，是地球-大气系统研究中的关键因子。本文研究了 2015 年北京市地

表反照率的时空分布特征，并基于地理探测器定量分析了地表反照率空间分异的驱动因素及其交互作用。结果表明：北京市地表

反照率呈东南高、西北低的趋势；冬季变化最大，春季变化最小；年地表反照率最小值出现在秋季，最大值出现在冬季，具有显

著的时空异质性。土地覆盖类型、NDVI、高程、坡度、温度和降水对地表反照率的空间分异均有显著影响，影响力分别为 0.537、

0.625、0.512、0.531、0.515 和 0.190；且一些驱动因素对反照率空间分布的影响存在显著差异。任意两种驱动因素之间均存在交

互作用，表现出双变量增强的结果。其中，地表覆盖类型与 NDVI 的交互作用最大，影响力为 0.710，而温度与降水的交互作用

最弱，影响力为 0.531。研究结果为了解北京市地表反照率的时空分布特征以及区域气候和陆面模式中能量模块的物理过程提供

了科学依据。 
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