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Farmland ecosystem service is an important output of agricultural production, but it has been incom-
pletely reflected in current studies on eco-efficiency. In this study, the value of improved farmland
ecosystem services is used as one of the expected outputs. The data envelopment method is used to
evaluate the agricultural eco-efficiency (AEE) of 31 provincial administrative regions in China from 2006
to 2018. The spatial autocorrelation method is used to explore the characteristics of AEE in China.
Geographical detector model (Geodetector) is adopted to detect the driving factors of AEE spatial dif-
ferentiation in China. China’s AEE trend from 2006 to 2018 was downward with the efficiency value
decreasing from 1.023 to 0.995. China’s AEE level has improved with an average of 1.004. The spatial
distribution pattern represented in space is in the following order: eastern region > western
region > northeast region > central region. The AEE gap among provinces in the western region is the
largest, and that in the northeast region is the smallest. China’s AEE spatial correlation distribution
presents random distribution characteristics. During the research period, the low—high (LH) efficiency
response area has centered on Yunnan Province. The low—low (LL) level concentration area has centered
on Inner Mongolia autonomous region and Liaoning Province. The high—low (HL) level diffusion effect
agglomeration area has centered on Heilongjiang Province. Energy input, water resource input, and
carbon emission are the core drivers of AEE spatial differentiation in China. Water resource input,
pesticide input and labor input are the significant control factors of AEE spatial differentiation in the
eastern, central, and western regions of China.
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1. Introduction

In 2019, the Food and Agricultural Organization of the United
Nations released the report on the state of the world’s food security
and nutrition; the report indicated that 821.6 million people in the
world are still dealing with food shortage by 2018; the solution for
this problem is the profound change in the global food and agri-
culture system. The global demand for food is expected to double
by 2050. Meeting the growing demand for food production while
reducing adverse environmental impacts in the face of climate
change and competition for natural resources is a major
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agricultural sustainability challenge (Cui et al., 2018). Sustainable
agricultural production ensures high yield while protecting the
local environment and ensuring livelihood (Pretty and Bharucha,
2014; Smith et al., 2017). Agricultural production in China has
redundant inputs, unexpected outputs, and excessive application of
materials that lead to high energy consumption and high pollution
because of the country’s relatively low agricultural eco-efficiency
(AEE) level (Su et al., 2019; Zhang et al., 2012). The problem of
supply and demand of cultivated land will seriously affect the
sustainable development of agriculture in China. Therefore, the
coordination of economic and ecological benefits needs to be the
focus in agricultural production rather than the blind pursuit of
high efficiency to solve the current agricultural development
dilemma in China (Tilman et al., 2002). The scientific and reason-
able evaluation of AEE and the formulation of corresponding
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countermeasures are important for sustainable development in
agriculture (Table 1).

In this context, the concept of “eco-efficiency” was proposed by
(Verfaillie, H.A, 2000) as meeting human needs and improving
quality of life by creating products and services that has a
competitive price, while keeping its environmental impact and
resource utilization intensity within the Earth’s carrying capacity
level. Ecological efficiency is expressed by the ratio of the economic
value of a product or service to its environmental impact. In 1998,
the World Economic Cooperation Organization refined eco-
efficiency as a measurement of input elements and output ele-
ments and defined it as “the efficiency of using ecological resources
to meet human needs.” Nowadays, with the more prominent
resource and environmental problems, ecological efficiency is an
effective tool to measure resource environment and social economy
(Fet, 2004). The development of agricultural “ecological efficiency”
plays a pivotal role in achieving the 2030 Sustainable Development
Goals in the future (Mugambiwa and Tirivangasi, 2017; Shaofeng
et al,, 2019). AEE indicates that agricultural production activities
are carried out within the carrying capacity of the agricultural
ecosystem to produce good-quality agricultural output values and
service with less resource loss and environmental damage. A high
level of AEE affects the synergy between agricultural production,
economic development, and ecological services. The research on
AEE need to be done at micro, meso, and macro scales in recent
years (Maxime et al., 2006; Zhang and Qing, 2010). Researchers are
inclined to explore the influencing factors of AEE and analyze the
reasons for low agricultural ecological benefits. Many factors affect
AEE, including economic and social factors, such as industrial
structure, production technology, and management policies (Zou
et al., 2020), or natural environmental factors, such as geographic
conditions and climate. Large-scale studies such as Italy (Coderoni
and Esposti, 2014) have found a long-standing relationship be-
tween greenhouse gas emissions from agriculture and agricultural
productivity, and climate change is associated with ecological ef-
ficiency in agriculture (Liu et al., 2020). Proposes to improve the
efficiency of water use in agriculture, such as irrigation, regulated
water shortage irrigation and fertilization, energy can improve AEE.
Meso-scale studies such as those conducted in Spain (Maia et al.,
2016) have found that the level of agricultural machinery, foreign
investment in agriculture, and agricultural education are all
important means to effectively improve AEE. With the help of
existing farm-level technology, substantial increases in agricultural
output and lower costs can be achieved as an important means to
improve the level of efficiency (Binam et al., 2003). However, few
micro-scale studies conducted in recent years. The inefficiency of
analysis in Spain is closely related to the inefficiency of technology
in input management, and the general agricultural policy

Table 1
Abbreviations.
Abbreviation Full name
AEE Agricultural eco-efficiency
DEA Data envelopment analysis
DMU Decision making unit
SBM Slack-based measure
ESV Ecosystem Service Value
NDVI Normalized Difference Vegetation Index
NPP Net primary productivity
HH High-High aggregation
HL High-Low aggregation
LL Low-Low aggregation
LH Low-High aggregation
S-SBM; Supper-efficiency slacks-based model without ESV
S-SBM> Supper-efficiency slacks-based model with ESV
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agricultural environment plan is an effective policy to improve
ecological efficiency (Picazo-Tadeo et al., 2011).

AEE evaluation methods include Stochastic Frontier Approach
(Kuosmanen and Kortelainen, 2010), ratio method (Godoy-Durdn
et al., 2017), Life Cycle Approach (Roy et al., 2009), etc., wherein
packet analysis is the most used method to measure AEE. Data
envelopment analysis (DEA) is a non-parametric statistical method
based on the concept of relative efficiency proposed by other re-
searchers (Charnes et al., 1982). It can evaluate the technical effi-
ciency of multiple decision-making units and is widely used in
agriculture, finance, transportation, and other fields. For example,
researchers (Han et al., 2020) combined the analysis framework of
meta-frontier analysis and inseparable hybrid model to analyze the
in efficiency of agricultural ecology in each province from the two
dimensions of management and technology. Biswas (2019) after
using DEA to evaluate the efficiency of funds, the MABAC method is
used to screen funds, and finally, the funds are selected to
Ecosystem Service Value (ESV) form the best investment portfolio.
The DEA method is used to measure the city’s performance from
the perspective of efficiency. In these studies, an undesired output
SBM model (Tone, 2001) that considers slack measurement pro-
cessing is often used to measure AEE. The SBM-DEA models
adopted in this paper are used to construct a comprehensive
measurement of sustainable agricultural development in the form
of AEE. Compared with other models, the advantage of this
method’s framework is that it combines a set of indicators that can
combine multiple and diverse ecological benefits and different
evaluation perspectives. The index weight is randomly determined
by the actual sample, which has the advantage of being insensitive
to the dimension of input and output variables. It can effectively
avoid the shortcomings of other methods, such as single index,
multiple index, principal component analysis, and decoupling
analysis. It objectively reflects the development status of AEE in
each region.

Many previous studies on AEE evaluation have been based on
environmental-social perspectives, mainly on human well-being
and consumer benefits, and the evaluation process tends to over-
look the efficacy of ecosystem services. A researcher (Costanza,
1987) believes that ecosystem services are the benefits that
humans obtain directly or indirectly from nature when they come
in contact with nature in the process of life and production. Con-
stanza (Costanza, 1987) emphasized that if the value of ecosystem
services is not fully embodied or fully quantified, its importance
will be gradually ignored in future policies. Such neglect will
negatively affect human sustainable development and cause a high
amount of damage. Therefore, the main innovation of this paper is
to integrate farmland ecosystem services as part of the expected
output into the agricultural ecological efficiency index system. The
level of farmland ESV can indicate whether the input and output of
the research area are reasonable. When quantifying the value of
farmland ecosystem services, the supply and demand of agricul-
tural products need to be weighed, and agricultural welfare for
human society need to be targeted to conduct agricultural pro-
duction. (2) Geodetector is used to detect the spatial driving factors
of China’s agroecological efficiency to analyze the existing spatial
differences at the national and regional levels and the key drivers of
improving agroecological efficiency. The study helps determine the
significant driving force of AEE at the national level. It helps
discover the core driving factors that lead to regional differences in
agroecological efficiency among provinces and cities in China and
that quantify the impact of explanatory variables.

In order to realize the green transformation of agriculture and
construct a resource-saving and eco-friendly agricultural produc-
tion system, the differences in resource endowment, climatic
conditions, farming structure and industrial system are reduced.
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This article considers the heterogeneity of production of different
regions of China, investigates the sources of agricultural in-
efficiency, and identifies the spatial distribution characteristics and
regional differences of China’s AEE from 2006 to 2018. Three
research questions are raised, as follows. (1) How can a system that
reflects nature and comprehensive ESV assessment models on
ecological and agricultural industry characteristics be built? (2)
What are the characteristics and spatial patterns of AEE evolution
in the different provinces of China from 2006 to 2018 with the
application of the Super-SBM model? (3) Through the use of
geographic detectors, what are the reasons for the loss of AEE in
each regional? The research results provide a scientific basis for
increasing AEE, reducing regional agricultural development differ-
ences, and assisting in the formulation of local policies to coordi-
nate agricultural growth of resource development and
environmental protection.

2. Methods and data
2.1. Super efficiency SBM model

Super efficiency SBM model (Andersen and Petersen, 1993;
Tone, 2001) is a super efficiency DEA model, and its main feature is

the consideration of relaxation variables. The super efficiency SBM
model regards different evaluation elements as Decision making
unit (DMUs), evaluates the effectiveness of the same type of DMUs
with multi-input and multi-output index characteristics, and de-
termines whether the efficiency is effective while judging the
effective production frontier and comprehensively analyzing the
gap between each the model and DMU. This study uses Max DEA
software to select the super efficiency SBM model of non-radial and
variable return scale to calculate the AEE values of 31 provinces and
cities in China in 2006, 2010, 2014, and 2018. The specific structure
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Y, Z. 1 represents the weight of each input index. The relaxation
matrix of the indexes of resource input, expected output, and non-
expected output is respectively represented by s—. s*. s?~. The
indexes of resource input, expected output, and non-expected
output are respectively expressed as X, Yi. Zj-

2.2. Spatial autocorrelation analysis

Spatial autocorrelation imports the AEE value of a given year
into ArcGIS 10.5 software (An et al., 2015) and sets the software to
divide the 4-year efficiency value processing into seven levels of
AEE value partition based on the natural breakpoint method. The
hierarchical map is imported into Geoda software adjacent to rook
in binary proximity. The global Moran index is calculated by
repeating the random arrangement method for 999 times. The AEE
scatter, LISA cluster, and LISA significant maps of the research area
are obtained.

Global spatial autocorrelation is the representation of the global
Moran index, which is used to determine whether the spatial dis-
tribution characteristics of AEE in China are clustered, random, or
discrete. The calculation formula of global Moran’s I value is as
follows:

> (=3 0n/m)’] ®)

n is the number of DMUs, wy; is the spatial weight between
element i and element j, and x; is the attribute value of element i. In
this study, n =31 and I €[-1,1]. I > 0 indicates that each region has
a positive correlation in space. I = 0 means that no spatial corre-
lation exists among regions. I < 0 implies that the regions are
negatively correlated in space. The significance level of spatial
autocorrelation is tested using the standardized statistic Z, and the
expression is as follows:

ming’ = (1-1/m>"s7 /i) /[141 ) (mm) (S57 Jyue Sost /2100 (1)
i=1 r=1 =1

of the model is as follows:

XA+5 =Xy
Y-St =Yg
S Zh+ 5 =7, (2)

A>0,S >0S">0,5 >0

In the above-mentioned equation, p” is the efficiency evaluation
standard. The slack of the indexes of resource input, expected
output, and non-expected output is respectively expressed as
s+ st. sf~. The matrix of the indexes of resource input, expected
output, and non-expected output is respectively represented by X,

Z:U—HM/M%MU) (4)

In the formula, E(I) is the expectation of autocorrelation of observed
variables, and VAR(I) is the variance.

Local spatial autocorrelation is the local expression of Moran
index, which is used to judge the degree of clustering or dispersion
in local areas and its significance level. The expression is as follows:

B /e G

j=1,i#]
(5)
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I; represents the local Moran index in region I, and other parame-
ters are the same as above. I > 0 means the clustering together of a
high-value region with another high-value region. When a low-
value region and another low-value region cluster together, this
case belongs to the positive correlation of space. A large I indicate a
small spatial difference. I < 0 means the clustering of a high-value
region with a low-value region, which is a space of negative cor-
relation. A small I correspond to a large difference in space. I = 0
means that the attribute values are randomly distributed in space,
and the clustering of the region can be intuitively analyzed through
the Moran scatter diagram.

2.3. Pearson correlation model

Pearson correlation coefficient is a method proposed by British
statistician Pearson in the 20th century to determine whether two
datasets can be concentrated on a line function (Siegel and
Castellan, 1988). It is often used to determine the linear relation-
ship between variables.

r=3(X-X)(Y-Y) /NWZ(Y*V)Z} (6)

The value of the Pearson correlation coefficient r is in the range
of (—1, 1). Two variables, namely, X and Y, are assumed. If the
calculated r is 0, then X and Y have no relationship or are not lin-
early correlated. If the correlation coefficient is greater than 0, then
Xand Y are positively correlated. If the correlation coefficient is less
than 0, then X and Y are negatively correlated.

2.4. Index selection

Based on the perspective of ecological environment, the aim of AEE
is to achieve the maximum number of agricultural products with as
little resource loss and environmental pollution as possible. There-
fore, evaluating AEE needs good understanding of economic, envi-
ronmental, and ecological performance indicators. In recent years,
many experts and scholars have continuously and deeply studied the
construction of the evaluation index system, and a relatively complete
evaluation system has been gradually established. Therefore, based
on the specific conditions of China, this article introduces the estab-
lishment of sustainable development evaluation index systems at
home and abroad. A set of AEE index systems that selects 10 con-
ventional elements and 1 innovation index is constructed. The AEE
evaluation system constructed in this paper is divided into two stages,
namely, the AEE indicator system (stage 1) and the construction of the
influencing factors of AEE evolution (stage 2). The two-stage AEE
evaluation indicators are as follows:
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2.4.1. Phase 1: AEE indicator system

Input indicators: These refer to the eco-efficiency evaluation
indicator system constructed by previous scholars (Pan, 2013a; Pan
and Ying, 2013b). This paper selects the following: land, labor,
machinery, water resources, fertilizers, pesticides, agricultural film,
and energy input as resource input indicators; agricultural output
value and farmland ecosystem services as expected output in-
dicators; and carbon emissions as undesired output indicators.
Land multiple cropping and intercropping are the factors consid-
ered in the selection. The total sown area of crops can be used to
characterize land input indicators. The size of its area is expressed
as the actual utilization rate of cultivated land, revealing the agri-
cultural structure and production intensity, which play an impor-
tant role in the balance of supply and demand of farmland in
agricultural production and ultimately affect AEE. Considering the
availability of data, the number of labors in the tertiary industry is
used as an indicator of labor input, and agricultural production
activities directly reflect the input of agricultural labor. Fertilizers,
pesticides, and energy are closely related to agricultural carbon
emissions, and the intensity of agricultural machinery input affects
the use of chemical substances, such as agricultural fertilizers and
pesticides, which in turn affect AEE. Therefore, this paper selects
agricultural water consumption as the input index of natural re-
sources, the total power of agricultural machinery as the input in-
dex of machinery, and the amount to pesticides, chemical
fertilizers, and agricultural film as the input index of chemical
substances. The use of agricultural diesel is selected as an energy
input index (Table 2).

Output index: the total output value of agriculture is the ideal
output index of agricultural production. Agricultural carbon emis-
sion is used as the poor output index of agricultural production in
the stage of agricultural production. Agricultural undesired output
includes two types of agricultural carbon emissions (Liu et al., 2014)
and agricultural non-point source pollution (Tian et al., 2014). The
two types of indicators are measured for each pollution source
emission and their respective carbon emissions. This article choo-
ses agricultural carbon emissions as the undesired output. On the
one hand, agricultural carbon emissions cover a wider range
compared with agricultural non-point source pollution. On the
other hand, agricultural carbon emissions are easier to quantify for
data collection.

2.4.2. Phase 2: AEE evolution’s influencing factors index
construction

AEE is affected by many factors. Based on the results of a pre-
vious study (Liu et al., 2020) and other related studies and based on
the principles of data availability, quantification, and comparability,

Table 2
China AEE evaluation index system.
Index type Indicators category Variable Variable declaration Driving
factors
Resource input Agricultural resource consumption Land input Total sown area/10°*hm? X1
Labour input Agricultural workers/10* X2
Machinery input Total power of agricultural machinery/10*kw X3
Water resources input Effective irrigated area/10°hm? X4
Environmental pollution caused by agricultural Fertilisers input The amount of chemical fertilizer applied to X5
production agriculture/10%t
Pesticides input Consumption of pesticides/10% Xg
Agricultural film input Consumption of agricultural film/10% X7
Energy input Consumption of agricultural diesel oil/10% Xg
Output Expected output Agricultural output The total value of agricultural output/10® ¥ X9
indicators Farmland ecological service  Value of ecosystem services/10% ¥ X10
system
Unexpected output Carbon emissions Agricultural carbon emissions/10% X11
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phase 1 is still used in the evaluation system. AEE is selected as the
dependent variable. To avoid the two-way interaction between
efficiency and explanatory variables leading to endogenous prob-
lems, the 11 variables of AEE are tested for Hausman endogeneity
between dependent and explanatory variables. After excluding
invalid variables, this paper selects X1, X2, X3, X4, X5, Xg, X7, Xg, X9, and
X10, Which are used as explanatory variables of AEE.

2.5. Geodetector analysis

Geodetector (Hu and Xu, 2018; Onozuka and Hagihara, 2017;
Wang and Xu, 2017) is commonly used to detect the diversity of
geospatial existence and reveal whether its driving factors are
consistent in space and the interaction among factors. In this study,
geodetector is used to analyze the driving factors of AEE spatial
differentiation in China in 2006, 2010, 2014, and 2018. A total of 10
index data affecting AEE in each province are imported into ArcGIS
10.5. The software uses natural breakpoint method to discretize the
data into five levels. After the geodetector data processing, the
single factor g value and the double factor q value are judged after
superposition. Therefore, the direction and strength of the inter-
action factors are determined. The driving force intensity q value is
calculated as follows:

/ I
q=1- 1/nz2 D> " mez? (7)
1

In the formula, q represents the detection force value of detection
factor X. Its range is [0, 1], and a large q value indicates a large in-
fluence on AEE. n represents all samples in the study area, n; rep-
resents the number of samples contained in the type k of the
driving factor, and z° represents the discrete variance of the area.

The purpose of interaction detection is to evaluate whether the
influence factors x; and x;, increase or decrease the explanatory
power of poverty incidence y when they work together or whether
the effects of these factors on poverty incidence y are independent.
The evaluation method calculates the g values of two influencing
factors x1 and x; for y, namely, q (Xx1) and g (x2); calculates the g
values when they interact, namely, q (X1 N X2); and compares q (X1),
q (X2), and q (x1 N x2). The relationship between the two factors can
be divided into five categories.

2.6. Calculation method of ESV

This study is based on the ecological service value of Costanza
(1987) and Xie (2003). Using the equivalent factor method, 31
provinces and cities in the study area are revised regionally. The
dynamic coefficient is revised to construct a dynamic evaluation
model of regional farmland ESV and to calculate the dynamic
changes in ESV in the four periods, namely, 2006, 2010, 2014, and
2018. The value of farmland ecosystem services in this study refers
to the basic equivalent table of ecosystem service functions per unit
area in 2011 presented previously (Xie et al., 2015). The value of
ecosystem services using a standard equivalent factor is 3406.5
yuan/hm?; 1 standard unit ESV of equivalent factor refers to the

Table 3
Value equivalent of farmland ecosystem services in China.
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economic value of food produced by 1 hm? farmland each year
(Table 3).

The study area is revised according to farmland. First, the
equivalent standard proposed by Xie Gaodi and others is adjusted
from the average grain output value of farmland in China to the
grain output value of 31 provinces and cities. This study focuses on
narrow sense agriculture. Thus, the annual average agricultural
output values of provinces and cities in 2006, 2010, 2014, and 2018
are considered the representative grain output. The revised formula
of regional ecological service equivalent (Li et al., 2015; Xie and
Xiao, 2013) is as follows:

1=Q/Qo (8)

A stands for the regional revision coefficient of ecological services.
Q and Qg stand for the total agricultural output value of the study
area and China in that year.

With the basic value equivalent table of ecosystem services, the
equivalent value correction of spatiotemporal dynamic change of
farmland ecosystem services is constructed, as follows:

F=Pi*F¢ (9)

F; refers to the unit area value equivalent factor of farmland
ecosystem in class C ecological service function of province i; P;
refers to the Net Primary Productivity (NPP) regulation factor of the
year in province i of farmland ecosystem; and F. refers to the value
of one standard equivalent factor of agricultural system service in
2011, which is 3406.5 yuan/hm?.

The calculation method of NPP spatiotemporal adjustment fac-
tor is as follows:

P;=B;j/B (10)

Bj; refers to the NPP of the j month in the i region of such an
ecosystem, and B refers to the annual average NPP of such
ecosystem in China. Some studies have shown that the normalized
vegetation index (NDVI) value has a strong correlation with the
value of ecological services. Moreover, NPP data are lacking. Thus,
this study replaces NPP with NDVI data to reflect the spatial differ
(Han and Deng, 2020)ences in the value of farmland ecosystem
services. After data processing by ArcGIS 10.5 software, NDVI co-
efficient is selected as the index to revise the dynamic equivalent.

EAV,-t:A X Sk X Fci
Ir=1, 2, ... , 31) a1
In the formula, EAV;, represents the service value of farmland
ecosystem in the t year of i province. The area of farmland
ecosystem type in the study period is represented by S;. F; is the
same as above, and E; is the same as above.

2.7. Data sources

The data of this study come from the statistical data of the Na-
tional Bureau of Statistics, China Rural Statistical Yearbook

Supply Regulating service Support service Cultural service

service

Water supply Gas Climate Purify Hydrological Soil Nutrients cycle Biodiversity Aesthetic
regulation regulation environment regulation conservation maintenance landscape

0.02 0.67 0.36 0.1 0.27 1.03 0.12 0.13 0.06
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—&— Total Table 5 . . - s .
o Estem Comparison of provinces and municipalities with S-SBM.
13 = Cenral DMU Area SSBM; Ranking (1) S-SBM, Ranking (2)
—o— Western
12 4 e Northeast Shanghai Eastern 1.222 5 1.215 5
Guangdong Eastern 1.184 6 1.131 10
1 Beijing Eastern 1.602 2 1.554 2
Shandong Eastern 1.102 12 1.09 12
1 Hainan Eastern 1.15 7 1.135 9
Jiangsu Eastern 1.103 11 1.078 13
09 4 Zhejiang Eastern 1.045 15 1.043 16
’ Hebei Eastern 0.807 23 0.896 21
Fujian Eastern 1.069 13 1.051 14
0.8 1 Tianjin Eastern 1.047 14 1.047 15
Henan Central 1.12 10 1.193 6
0.7 1 Shanxi Central 1.224 4 1.166 7
Hunan Central 0.922 19 0.914 19
0.6 Hubei Central 0.828 22 0.895 22
2006 2010 2014 2018 Anhui Central 0433 31 0477 28
Jiangxi Central 0.553 27 0.45 29
Fig. 1. Evolution trend of AEE in 2006—2018. Shanxi Central 0.457 30 0.434 30
Tibet Western 3.218 1 2.565 1
Guizhou Western 1.277 3 1.245 4
(2006—2018), statistical yearbook of provinces and cities Sichuan Western  1.125 9 11538
(2006—2018), and China Statistical Yearbook (2006—2018). MODIS Kinjiang pesern L3 8 ol
NDVI data come from the international scientific data image center Guangxi Western 0867 21 1.016 17
of the computer network information center of the Chinese Acad- Ningxia Western 0915 20 0.839 24
emy of Sciences. In 2006, 2010, 2014, and 2018, the monthly Yunnan Western ~ 0.519 28 0.587 27
composite data of MODND1M of Terra, which is a synthetic product Ehongqmg wesiem g'ig; ;g 8‘;’;5 i?
of the NDVI vegetation in China, are processed by ArcGIS 10.5 Q?:gsﬁai w:tgﬁ 0954 17 0872 23
software to generate the NDVI value during the research. Heilongjiang  northeast  0.805 24 132 3
Liaoning northeast  0.925 18 0.932 18
Jilin northeast  0.577 26 0.689 26
3. Results and discussion Note: S-SBM; does not have an ESV-based super-efficiency relaxation model, and S-

SBM, has an ESV-based super-efficiency relaxation model.
3.1. Measurement and analysis of AEE in China

Fig. 1 Evolution trend of AEE in 2006—2018 has remained in the range of 3% with a weak inverted V-shaped downward fluctuation.

Table 4
Shows the calculation of AEE in China.

DMU Area 2006 score 2010 score 2014 score 2018 score Average Comprehensive ranking
Shanghai Eastern 1.334 1.296 1.129 1.102 1.215 5
Guangdong Eastern 1.202 1.117 1.101 1.102 1.131 10
Beijing Eastern 1.165 1.337 1.673 2.042 1.554 2
Shandong Eastern 1.142 1.101 1.081 1.037 1.090 12
Hainan Eastern 1.129 1.117 1.152 1.140 1.135 9
Jiangsu Eastern 1.042 1.088 1.086 1.096 1.078 13
Zhejiang Eastern 1.041 1.063 1.030 1.039 1.043 16
Hebei Eastern 1.027 1.048 1.003 0.505 0.896 21
Fujian Eastern 1.023 1.045 1.063 1.073 1.051 14
Tianjin Eastern 1.022 1.018 1.037 1.109 1.047 15
Henan Central 1.299 1.336 1.077 1.061 1.193 6
Shanxi Central 1.197 1.213 1.184 1.070 1.166 7
Hunan Central 1.033 1.094 1.058 0.469 0.914 19
Hubei Central 0.759 0.807 1.002 1.013 0.895 22
Anhui Central 0.553 0.542 0.446 0.366 0.477 28
Jiangxi Central 0.526 0.455 0.406 0411 0.450 29
Shanxi Central 0.402 0.576 0.423 0.335 0.434 30
Tibet Western 2.855 2.787 2491 2.125 2.565 1
Guizhou Western 1.247 1.141 1.218 1.374 1.245 4
Sichuan Western 1.236 1.108 1.142 1.127 1.153 8
Xinjiang Western 1.129 1.155 1.040 1.055 1.095 11
Inner Western 1.088 1.001 0.468 0.386 0.736 25
Guangxi Western 1.019 1.029 1.004 1.013 1.016 17
Ningxia Western 1.015 1.004 0.319 1.017 0.839 24
Yunnan Western 0.696 0.504 0.578 0.569 0.587 27
Chongqing Western 0.541 1.014 1.057 1.034 0.912 20
Gansu Western 0.430 0.454 0.346 0.300 0.383 31
Qinghai Western 0.284 1.051 1.111 1.042 0.872 23
Heilongjiang northeast 1.224 1.219 1.412 1.423 1.320 3
Liaoning northeast 1.051 1.032 1.016 0.630 0.932 18
Jilin northeast 1.016 0.705 0.697 0.338 0.689 26
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The overall level is better, but the ineffectiveness can still be
improved. The average values of China’s AEE in the four periods are
1.023 (2006), 1.047 (2010), 0.995 (2014), and 0.948 (2018). In
2006—2010, AEE values in China grew the fastest with values from
1.023 to 1.047. In 2010—2018, AEE values continued to decline from
1.047 to 0.948. AEE gradually increased in the early stage of the
study but decreased in the later stage of the study. During the study
period, only 17 provinces and cities, such as Beijing, Fujian,
Guangdong, Guangxi, Guizhou, Hainan, and Henan, kept AEE
completely effective. Among them, nine provinces and cities were
along coastal areas in the east, five in the west, two in the middle,
and one in the northeast. Other provinces, such as Liaoning, Hunan,
Chongqing, Hebei, Hubei, Qinghai, Ningxia, Inner Mongolia, Jilin,
Yunnan, Anhui, Jiangxi, Shanxi, and Gansu, had AEE means of less
than 1. They were noneffective AEE areas, and the inputs and out-
puts of the provinces needed to be changed for efficiency value to
reach the efficiency level (Table 4).

To judge the importance of the ecological index ESV to the
evaluation of AEE, this paper uses S-SBM to calculate the feasibility
test of the Chinese provincial AEE with the 4-year average effi-
ciency value (Table 5).

ESV is not considered in S-SBMj, and the result shows that there
are 15 provinces and cities valid. The eastern region except Hebei
Province is effective. The average value of the eastern region is
1.133. Compared with the eastern region, none of the other three
regions are effective. The average values are 0.79 (Central Region),
0.89 (Western Region) and 0.769 (Northeast Region). In the calcu-
lation of S-SBMy, the effective provinces and cities of S-SBMj,
Guangxi and Heilongjiang, which are included in the dynamic ESV
the calculation, have also achieved effectiveness, and the ranking
has risen significantly. Whether or not ESV is considered, the
average AEEs in the eastern region are still the highest (1.124).
However, before the inclusion of ESV, the AEE performance is in the
following order: eastern > central > western > northeast. After
adding ESV, the efficiency value of northeast and western regions
has improved, and the performance is in the following order:
eastern > western > northeast > central. The results show that
Guangxi, Heilongjiang, and other western provinces and cities have
low S-SBM, but S-SBM; increases sharply. As shown in a previous
study (Yuan, 2020; Zhang et al., 2019), agricultural ecology areas
with high system service value are concentrated in Inner Mongolia,
Xinjiang, Heilongjiang, Yunnan, and other places. Higher ESV has
effectively improved the AEE of these places. In addition, the AEE
gap between regions has also changed. Compared with S-SBMy, the
gap between the east and northeast of S-SBM, has narrowed the
most. This finding reflects the current status of China’s ecological
environment. The eastern and western desert regions of China are
of low ecological importance. The western plateau, undeveloped
areas, and the northeastern region are rich in forest resources and
have high ecological importance, thereby providing higher ESV.
However, some provinces in the central and western regions, such
as Ningxia, Qinghai, and Chongqing, show a small decline. This
difference may be due to the unexpected effects of some ecological
protection projects (Zhang et al., 2019).

According to the above analysis, ESV is an important factor that
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can be used to accurately assess the sustainability of regional
agricultural production development. If the regional ESV is ignored,
then the assessment of sustainability of regional agricultural effi-
ciency may be biased. Therefore, considering both ESV and agri-
cultural production value is necessary to assess China’s provincial
AEE.

3.2. Correlation among factors

To further verify whether the selected indicator variables
conform to the law of macroeconomic production and whether the
input variables and output variables meet the “homotropy hy-
pothesis,” taking 9 indicator data from 31 provinces and cities in
China as the object, using Pearson’s correlation theory and stata
software to analyze and test the correlation between China’s agri-
cultural production value and other 8 index variables. Among them,
I represent the input item (using undesired output as input), O
represents the output item, and the data processing is shown in the
following (Table 6):

The analysis results show the correlation strength and direction
between input and output indicators, as well as the correlation
coefficients between input and output variables, are all positive.
The tested P values are less than the critical value of 0.01 and have
passed the two-tailed test. During the study period, the optimiza-
tion of the indicator is conducive to the improvement of efficiency.
If the correlation coefficient is negative, then the opposite is true
(Table 7).

Results of comparison of the AEE correlation coefficients of
eastern, central, and western regions indicate that labor input,
agricultural film input, carbon emission, fertilizer input, and land
input have all passed the AEE significance test of 5% in the eastern
region. However, land input shows a positive effect, and the others
show a negative effect and have decreased in turn. Land investment
is also significant in the two other regions. A negative effect is seen
on the western region, but the opposite effect is obvious on the
central region. A strong positive correlation is observed. In the
western region, except for the agricultural film input, the remaining
driving factors have passed the 1% level of the significance test.
These factors exert varying degrees of inhibition on AEE. The cen-
tral region’s AEE impact is positive. Specifically, labor input, energy
input, fertilizer input, and carbon emissions are all significant at
levels above 1%. The correlation coefficients are all greater than 0.4,
which indicates a strong correlation.

3.3. Spatial change pattern of AEE in China

Fig.2 show that the average AEEs of each region in four years are
112, 1.04, 0.79, and 0.98 in the eastern, western, central, and
northeastern regions, respectively. They show a spatial distribution
pattern in the following order:
eastern > western > northeast > central. Among the regions, Tibet
has a high efficiency value of 2.564, followed by Beijing (1.554),
Heilongjiang (1.319), Guizhou (1.245), Shanghai (1.215), Henan
(1.193), Shaanxi (1.166), Sichuan (1.153), Hainan (1.134), and
Guangdong (1.13). The main reason may be that the eastern region

Table 6
China AEE isotropic test.
0 I X1 X2 X3 Xa X5 Xg X7 Xg X11
X9 Pearson correlation coefficient 0.829%3x* 0.573 %% 0.880%* 0.887%** 0.744%%* 0.617%** 0.497 %* 0.775%%x* 0.872%x*
Test P value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
X10 Pearson correlation coefficient 0.577%%* 0.545%%* 0.708%* 0.714%*%* 0.572%* 0.509%** 0.474 % 0.822%* 0.717*
Test P value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: *** ** and * represent 1%, 5%, and 10% significance levels.
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Table 7
Correlation coefficient of AEE factors in China.
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y X1 X2 X3 X4 Xs5 X6 X7 Xs X9 X10 X11
Eastern 0.209** —0.240%* —0.099 -0.127 —0.223%x* —0.172* —0.233*x* -0.138 -0.135 -0.013 —0.225%*
Central 0.414** 0.617%*+* 0.327* 0.295 0.523 % 0.071 0.309 0.609%** 0.456%** 0.448%* 0.497#x*
Western —0.365%* —0.332%* —0.338** —0.385 —0.348%* —0.305* —0.235 —0.426%** —0.366** —0.319%* —0.375%%*

*k
China —0.18%** —0.152* —0.087 -0.123 —0.138 —0.214%* —0.167* —0.057 -0.079 0.03 —-0.155
Note: *** ** and * represent 1%, 5%, and 10% significance levels.
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pays more attention to the coordinated development of resources
and the environment than other regions, and at the same time, the
agricultural technology is more advanced. Although the central and
western regions, such as Sichuan and Guizhou, are relatively lack-
ing in terms of scientific research investment technology, their
agricultural carbon pollution control is relatively low. Therefore,
the efficiency value of these regions is high. Provinces and cities
with low AEE, such as Gansu, Shanxi, and Jiangxi, are underdevel-
oped. They have long been dominated by extensive industries with
high resources that result in pollution, thereby seriously affecting
the improvement of AEE in the region.

3.4. Analysis of the evolution of China’s AEE time series

From the perspective of the time series (Fig. 3), the efficiency
value of the eastern region in 2006—2018 shows a gentle trend that
is relatively stable. The gap between provinces is small. The AEEs of
Beijing, Tianjin, Guangdong, and other provinces and cities increase
significantly. In 2006, 2010, and 2014, the AEE of regional provinces
and cities achieve full efficiency, except for that in 2018 in Hebei
Province, which did not reach the effective level. The trend of ef-
ficiency value in the central region decreases annually, and the
overall AEE is also low. In 2006, 2010, and 2018, four provinces and
cities have failed to reach the effective surface, among which
Jiangxi, Shanxi, and Anhui provinces have shown a significant
decline trend. The overall efficiency value trend in the western
region is in the form of “N” and the gap between the efficiency
values of regional provinces and cities is the most significant. The
sudden decline of the western region in 2010—2014 is probably due
to the increase in over investment and ineffective use of agricul-
tural machinery and land, which have resulted in the reduction of
efficiency in Inner Mongolia during this period. The gap between
AEE provinces in northeast China is the smallest. The efficiency
value of Jilin Province decreases continually with fluctuations,
possibly because the excessive investment in land, pesticide, and
machinery in Jilin Province has been relatively prominent in
2006—2018, thereby decreasing the AEE value. From 2010 to 2014,
Heilongjiang increased the input of agricultural labor force, thereby
promoting the AEE value to some extent. This event causes a short-
term recovery in the northeast region.

3.5. Spatial correlation analysis of Chinese AEE

Table 8 reflects the global autocorrelation results of AEE in the
31 provinces of China in 2006, 2010, 2014, and 2018.

Table 8 shows that the global Moran index of AEE from 2006 to
2018 fluctuates up and down between [—0.1, 0.02], and the p-value
fluctuates up and down within [0.1, 0.5]. During the study period,
Moran’s I are negative except in 2014. However, none of the study
years have passed the 10% significance test. Thus, no significant
spatial autocorrelation is shown, and the null hypothesis cannot be
rejected. Therefore, the spatial correlation of AEE from 2006 to 2018
does not show a regular distribution. The overall performance of
the characteristics of random distribution is shown in Fig. 4.

Using Geoda software, based on the 0-1 adjacency matrix, the
Moran scatter plots of 31 provinces and cities in China are drawn.

Table 8

Spatial autocorrelation Moran index of agricultural eco-efficiency.
Year Moran’s | Z-value P-value
2006 —0.148 -1.217 0.103
2010 —0.089 -0.610 0.281
2014 0.017 0.415 0.337
2018 —0.042 -0.126 0.464

10
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The results show that China’s AEE is dominated by two distribution
types, namely, LL and HL. From 2006 to 2010, the number of LH, LL,
and HL types of provinces and cities has increased, whereas the
number of HH types has decreased. Thus, provinces and cities that
coordinated with environmental and economic conditions have
excessively pursued economic output value, neglected environ-
mental coordination, and turned into low-efficiency AEE. They
cannot form sufficient spillover effects on the surrounding cities,
which in turn causes the surrounding cities to gradually turn into a
double-low type. From 2010 to 2018, the number of LL-type prov-
inces and cities has increased, whereas the number of HL-type
provinces and cities has decreased, indicating that the original
low-efficiency provinces and cities have reduced pollution-
inducing production, have strengthened their compliance with
national policies, and have pursued the continuous strengthening
of environmental governance. Eco-friendly construction has
obvious effects on ecological environment protection and shows a
higher level of spillover effect; it plays a good leading role in sur-
rounding provinces and cities with low AEE.

Spatial correlation scatter plot cannot show the significance of
each province and city. By analyzing the LISA spatial agglomeration
map, we can show the efficiency similarities and differences be-
tween each province and city and the surrounding provinces and
cities.

Fig. 5 shows that only Yunnan Province has passed the 5% sig-
nificance level test in 2006 and 2010, and Yunnan Province is in the
LH agglomeration area. In 2014, only Yunnan Province has passed
the 1% significance level test. Inner Mongolia Autonomous Region
and Shaanxi Province have passed the 5% significance level test.
Yunnan is still in the LH agglomeration area, Inner Mongolia
Autonomous Region is in the LL agglomeration area, and Shaanxi
Province is in the agglomeration area. Yunnan and Liaoning prov-
inces have passed the 1% significance level test in 2018, and Inner
Mongolia and Heilongjiang provinces have passed the 5% signifi-
cance level test. Liaoning and Inner Mongolia Autonomous Region
are in the LL aggregation area. Yunnan has always remained in the
LH aggregation area, and Heilongjiang is in the HL aggregation area.
Therefore, China’s AEE has formed an LH effect area centered on
Yunnan Province for a long time, and its influence by the high value
area is not significant. In the later stage of the study, a horizontal
concentration of LL centered on Inner Mongolia Autonomous Re-
gion and Liaoning Province was formed. Heilongjiang Province is an
HL concentration area because it has little effect on nearby prov-
inces and cities, which contributes to polarization.

3.6. Quantitative attribution of spatial differentiation of Chinese
AEE

This study imports the data of 31 provinces in China from 2006
to 2018 into the geodetector and identifies which variable factors
are the significant factors affecting the spatial differentiation of
China’s AEE. Whether the force between the two factors and AEE is
positive or negative and whether the effect is an independent in-
fluence, or a two-way influence are determined. The number is
relatively small given that the northeast region has only three
research provinces and cities. The three northeast provinces are
merged into the eastern region for analysis and accurate
calculation.

The running result of the factor detector shows the following:

Table 9 shows that from the Chinese level, the explanatory po-
wer of the 10 explanatory variables on the spatial differentiation of
AEE in China is small, the performance of the core impact factors is
not prominent, and the spatial differentiation at the national level
is affected by its basic factors. Fertilizer usage (q = 0.287), pesticide
discharge (q = 0.308), water resource input (¢ = 0.37), and land
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Fig. 4. Moran’s [ scatter plot of China’s agricultural eco-efficiency in 2006, 2010, 2014 and 2018.

input (q = 0.468) are significant control factors of AEE at different
time points in China. Among these, water resource input has the
most prominent explanatory power for AEE. In 2007, the No.l
Document of the CPC Central Committee stated the following: “We
will continue to make solving problems of agriculture, rural areas,
and farmers the top priority in the work of the whole Party. We will
increase investment in agriculture, promote agricultural moderni-
zation, and establish an agricultural risk prevention mechanism
(Chen et al., 2020).” The provinces have begun to emphasize energy
conservation, emission reduction, and ecological environmental
protection, focusing on the coordination of economic and social

1

development and ecological construction. In the early stage of
policy implementation, the eastern region implemented measures
first. At this stage, the central and western regions still had a large
amount of resource consumption and serious environmental
pollution. The maintenance of extensive agricultural economic
development methods has created the increasing gap in AEE be-
tween the east and the west (Pan and Ying, 2013b). From 2010 to
2014, China has entered a new normal period. The agricultural in-
dustry structure has been optimized and adjusted, and the gov-
ernment’s environmental governance has intensified. As a result,
the drawbacks of the early stage, in which industries relied on
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Fig. 5. LISA agglomeration map of AEE in

Table 9
Statistical table of Q-value of AEE influencing factors in China.
Detection year Western Central Eastern China
X1 2006 0.194 0.173 0.395 0.129
Xo 2006 0.168 0.968 0.369 0.131
X3 2006 0.088 0.618 0.140 0.159
X4 2006 0.310 0.682 0.395 0.215
X5 2006 0.252 0.682 0.522 0.287
Xe 2006 0.181 0.586 0.363 0.165
X7 2006 0.252 0.555 0.379 0.216
Xg 2006 0.225 0.533 0.299 0.129
Xg 2006 0.168 0.682 0.586 0.108
X10 2006 0.077 0.682 0.465 0.193
X1 2010 0.576 0.535 0.560 0.289
Xo 2010 0.127 0.826 0.215 0.293
X3 2010 0.264 0.814 0.345 0.235
X4 2010 0.476 0.702 0.255 0.221
X5 2010 0.152 0.963 0.458 0.258
Xg 2010 0.638 0.702 0.188 0.266
X7 2010 0.401 0479 0.272 0.200
Xg 2010 0.227 0.311 0.603 0.264
Xg 2010 0.376 0.926 0.379 0.308
X10 2010 0.227 0.684 0.379 0.279
X1 2014 0.333 0.389 0.641 0.201
Xo 2014 0.261 0.176 0.383 0.131
X3 2014 0.059 0473 0.490 0.279
X4 2014 0.486 0.858 0.439 0370
X5 2014 0.038 0.448 0.288 0.185
Xe 2014 0.328 0.297 0.389 0.168
X7 2014 0.462 0.342 0.439 0.255
Xg 2014 0.383 0.459 0.603 0414
Xg 2014 0.155 0.692 0.389 0.277
X10 2014 0.354 0313 0.633 0.259
X1 2018 0.670 0.328 0.824 0.468
Xo 2018 0.524 0.514 0.184 0.172
X3 2018 0.161 0.735 0.370 0.162
X4 2018 0.161 0.867 0.388 0.329
X5 2018 0.292 0.735 0.449 0.257
Xe 2018 0.378 0.523 0.486 0.283
X7 2018 0.286 0.514 0.266 0.091
Xg 2018 0.360 0.735 0.431 0.330
X9 2018 0.449 0.540 0.489 0.374
X10 2018 0.298 0.867 0.627 0.291

12

China in 2006, 2010, 2014 and 2018.

chemical pollutants and extensive development, have been allevi-
ated. In this context, regional differences have narrowed due to
pesticide emissions. Yet, as shown previously (Pan, 2013a), the
excessive redundancy of water resources in the central and western
regions has increased in prominence; this has become the reason
for the restriction of AEE at this stage. From 2014 to 2018, after the
accumulation of early resource elements, residents’ awareness of
environmental protection has increased, and people have focused
more on the coordination of resources and the environment.
However, the scale of land management is small, the degree of land
marketization is low, and the resources have not been used well,
thereby resulting in the large redundancy of land input.

From the regional analysis, the main reason for the significant
difference in factor detection force q is that the regional economic
development level and natural resources are similar, but there are
certain differences in the timing of the country’s construction in the
three major regions; thus, its effect is more prominent under
similar levels of economic, social, and environmental development
(Qian and He, 2011; Yang et al., 2020). The results in Table 9 reveal
that the significant impact factors of AEE in the eastern and western
regions during the study period are the land inputs. The former has
increased from 64.1% to 82.4% in 2018, and the latter has a weaker
explanatory power of AEE (19.4%) at the beginning of the study
period. However, the explanatory power was as high as 67% in 2018.
According to the survey and evaluation data of China’s cultivated
land reserve resources, the cultivated land reserve resources have
been concentrated on the economically underdeveloped areas in
the central and western regions from 2006 to 2018. Five provinces,
namely, Xinjiang, Heilongjiang, Henan, Yunnan, and Gansu,
accounted for the reserve resource area, nearly half of the country
and the 11 eastern provinces with faster economic development
accounted for only 15.4%. In this context, insufficient agricultural
planting of the available land in the eastern region makes it difficult
to meet the needs of agricultural production and severely checks
and balances the improvement in efficiency in the eastern region
(Jiang et al., 2020). In addition, the total land area of the western
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region is about 491.1889 million hm?, accounting for 67.19% of the
total land area of the country, of which the arable land area ac-
counts for 10.27% of the total land area in the western region, the
per capital arable land area is 0.136 hm?, far higher than the na-
tional average of 0.098 hm?/person (Zhu et al., 2018). However, the
overall efficiency of land use of the western region is not high,
extensive waste and inefficient land use are common (Yang, 2017).
The reasons for these phenomena may be the excessive land
release, unreasonable supply structure, imperfect land supply
mode, and the failure of relevant departments to form a joint reg-
ulatory force. As the redundancy problem of land input becomes
increasingly serious, it has become a controlling factor restricting
the difference in efficiency between provinces and cities in the
western region. Since the central region initiated the central re-
gion’s rise strategy in 2006, the proportion of total industrial output
values in the country’s total output value increased from 17.5% in
2005 to 21.5% in 2012. According to the 2017 National Water Re-
sources Development Bulletin, the effective utilization coefficient
of agricultural irrigation is 0.548, i.e. only 0.548 cubic meters of
irrigation water are absorbed and utilized by crops. The dense

13

population and the development of industry and agriculture in the
central region increase the demand for water resources, while the
low utilization rate of water resources. In addition, the aging water
conservancy facilities and the frequent occurrence of flood and
water logging disasters in the central region have made the prob-
lem of agricultural water in the central region increasingly promi-
nent in recent years (Chang et al., 2020).

The interaction detector results in Fig. 6 show a nonlinear
enhancement among most factors, that is, the influence of the
factor on the interaction was greater than the sum of the two-factor
independent forces. Only two types of AEE driving factor interac-
tion force, namely, two-factor and nonlinear enhanced types, are
observed in China. No independent factor has been found. Among
the years 2006, 2010, 2014, and 2018, the synergy between x1 and
Xg was strongest in 2018 (q = 0.86). The two-factor superposition of
X1 and xg could explain 86% of the AEE the difference, which is the
significant control factor of AEE. The remaining significant factors
are X4 and Xg in 2014 (g = 0.838), xg and X5, X1. X3 in 2006 and
2010. Rationally distributing clean energy, increasing the precise
supply of fertilizers and the scale of agricultural labor input, and
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developing emerging agricultural high-tech industries have a sig-
nificant positive impact on AEE. Compared with the nonlinear
enhanced type, the two-factor enhanced type is insignificant. The
weakest two-factor enhanced model is x nx3 in 2006, which has an
explanatory power of 27%. The rest are x;nX11 in 2014 (q = 0.345),
X2Nx3in 2006 (g = 0.424), and x4nx5 (q = 0.462) in 2018. Among the
two-factor interaction types, the highest explanatory power of AEE
is 86%, and the lowest is 27%.

4. Discussion

The spatial evolution and driving factors of AEE in China are
analyzed. The results show some differences among the research
results of scholars in similar research years. For example, some
scholars (Akbar et al.,, 2020) believe that the spatial order for
China’s AEE is as follows east > central > western > northeast. Some
scholars believe that a significant positive spatial correlation and a
constantly changing spatial agglomeration of AEE exist (Zeng and
Liu, 2019; Wang et al, 2020). Thus, this article attributed this
phen omen on to two reasons. First, it may be due to different years
of data selection. Second, the main reason may be that the ESV
evaluation index system constructed in this paper quantifies the
value of farmland ecosystem services as part of the expected
output. Through comparison, it is found that after adding dynamic
farmland ecosystem service factors, AEE in some coastal provinces
in the east has decreased, whereas AEE in some provinces in the
west and northeast has increased. The AEE frontiers in the north-
east and western regions with ecological value advantages move as
a whole, and AEE increases.

The above results show that the following problems still exist in
the AEE development process: (1) AEE regional gap is too large; (2)
AEE significant factors are different among regions; and (3) the
importance of ESV in various regions has not been the focus of
research. To improve the AEE, this article puts forward the
following suggestions. First: improve the implementation of the
overall AEE. The difference between the eastern region and the
central and western regions of the country as a whole shows that
the amount of land input and the state of water resources input are
the factors to eliminate the large efficiency gap, the area of agri-
cultural cultivated land available in most eastern provinces is not
enough to meet the demand of local agricultural production, the
use of land in the western region is inefficient, resulting in land
redundancy, while the overall efficiency of water resources utili-
zation in the central region is low. Through the geographical
exploration of various factors, it can be found that the two factors of
land input and agricultural output value, water resources and
pesticide input have the strongest co-action force, which means
that the two-way balance between the factors is the key entry point
to optimize and enhance AEE. This puts forward strict requirements
for the balance between agricultural land and total agricultural
output value, optimizing the use of various agricultural factor in-
puts under limited farming land, improving the scientific utilization
rate of agricultural materials, and encouraging the effective use of
factors of production in each regional ecosystem. At the same time,
in optimizing the water resources system to achieve efficient water
use, save water in the field, reduce the loss of water transmission at
the same time, to ensure the accurate delivery of pesticides. This is
a long-term, dynamic combination that needs to consider not only
regional advantages, but also integration and coordination with
national policy implementation. In addition, considering the het-
erogeneity of regional technology, the central and western regions
should also strengthen technical exchanges and cooperation with
the eastern regions and strive to promote the rational interregional
flow of agricultural production factors. Second: the implementa-
tion of reducing regional differences. In the process of upgrading
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AEE, the eastern region needs to pay more attention to land utili-
zation rate. The government should give policy support to create
convenient conditions for the large-scale production and operation
of agricultural production, promote the process of large-scale
operation of agricultural land, alleviate the contradiction between
economic development and the protection of agricultural land,
strictly protect basic agricultural land, and plant suitable agricul-
tural products according to local conditions, thereby increasing the
output of agricultural products such as grain. The central region
needs to emphasize the improvement of water resources man-
agement measures and the development of sustainable water re-
sources suitable for the local strategy. In general, we should correct
the polluting agricultural water use methods and establish the
agricultural water use methods of water-saving irrigation and
ecological irrigation. The western region should focus on improving
the structure and mode of supply of agricultural land and
improving the efficiency of land use. Develop healthy green agri-
culture, cleaner production, and reduce the use of toxic chemical
products such as fertilizers and pesticides. Third: the imple-
mentation of ESV measures. The importance of the service value of
farmland ecosystem should be fully recognized, and farmland
should be used rationally and effectively protected. Agricultural
production should be reasonably developed according to the nat-
ural conditions in different regions, and scientific planting tech-
niques and efficient management methods should be used to
ensure the quality of agricultural products. Local governments
should, in the light of their own realities, formulate measures that
are consistent with the region’s efforts to increase the value of ad
agricultural ecosystem services. We will further build a resource-
saving and eco-friendly agricultural production system.

This paper proposes a wireless hypothesis method of detecting
AEE spatial data. At present, the regional differentiation of AEE
driving factors subjected to quantitative analysis can hardly do both
considering the influences of the factors of the AEE simultaneously.
Solving the problem of spatial stratified heterogeneity is also an
issue. Geographic detectors can meet both requirements at the
same time. They can test the spatial differentiation of univariate
factors and can also quantitatively evaluate the driving factors and
detect their interactions, thereby effectively solving the qualitative
problem of AEE in spatial stratification. Finally, there are still some
defects to be solved in this paper. First, although this article has
created an AEE indicator evaluation system based on the dynamic
ESV model, the calculation of coefficients in this article does not
include all spatial characteristics. For example, a previously pub-
lished article (Xie et al., 2015) provides a value coefficient table of
China, but it may not be enough for application to all areas. In
China, its assessment does not reflect the regional natural geogra-
phy and social economic characteristics (Liu and Sun, 2019).
Therefore, subsequent studies can reflect the regional physical ge-
ography and socio-economic characteristics of the dynamic
adjustment of the value coefficient. Secondly, the exploration of the
drivers for AEE space differentiation factor only discusses the
interaction between the two factors. Interactions between three or
more factors are not explored in this study; thus, they require
further in-depth exploration.

5. Conclusion

This study attempts to build an AEE evaluation index system
from the perspective of agricultural ecological services. The super
efficiency SBM model is used to measure the AEE of 31 provinces
and cities in China (excluding Hong Kong, Macao, and Taiwan) in
2006, 2010, 2014, and 2018. The spatial autocorrelation method is
utilized to analyze the spatial distribution characteristics of effi-
ciency in China’s four periods. The geodetector method is used to
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analyze the leading factors of AEE spatial differentiation. The de-
gree of interaction among these factors is obtained as follows. The
AEE of China fluctuates within 3% and shows a decreasing trend in
2006—2018. The average AEEs of the four periods are 1.023, 1.047,
0.995, and 0.948. However, the level can still be improved. The AEE
development of each province is not balanced. During the study
period, the average AEEs of the eastern, western, central, and
northeast regions are 1.12, 1.04, 0.79, and 0.98, respectively. The
ranking among the regions is as follows:
eastern > western > northeast > central. The gap between the
western region and the other regions is the widest, whereas that
between the northeast region and other regions is the smallest.
From the perspective of spatial correlation, the global Moran’s I of
AEE in China has failed to pass the 10% significance test during the
study period. The spatial distribution shows the characteristics of
random distribution. During the research period, AEE in China has
formed a low—high effect area centered on Yunnan Province and a
low—low level agglomeration area centered on Inner Mongolia
Autonomous Region and Liaoning Province. Heilongjiang Province
was in the high—low level diffusion effect agglomeration area. From
the perspective of spatial differentiation effect, no significant dif-
ference has been observed in AEE driving factor q values on a na-
tional scale. The core factor is not prominent. A significant
difference has been found in driving factors at the regional scale,
and the leading factor is prominent. Energy input and water
resource input are significant driving factors of AEE spatial differ-
entiation among the provinces and cities of China. Thus, this paper
emphasizes the introduction of agricultural high-technology ma-
chinery and the improvement of the utilization rate of agricultural
land. Central financial support for agriculture in the central and
western regions needs to be increased to narrow regional dispar-
ities. The central government’s agricultural support to the central
and western regions needs to be increased to narrow regional
differences. Ecological protection measures need to be introduced
to further build a resource-saving and ecological-friendly agricul-
tural production system.

Regarding the question on how to expand the Super-SBM model
used in this article for future applications, the construction of
sustainable indicators and the scope of expected output can be
further extended. The inclusion of different types of public products
can be considered. In addition, the combination of Super-SBM and
geospatial detection methods can also be applied to macro-level
data analysis to detect and analyze the efficiency values of
different departments in the country (Guan et al., 2020) to promote
ecological protection. The planning and implementation of high-
quality development strategies provide references to explore the
driving factors of the comprehensive energy efficiency of the Yel-
low River Basin. To improve the efficiency of comprehensive
transportation, the coordinated development of regional trans-
portation and regional economy needs to be promoted. To detect
the efficiency of comprehensive transportation, the geographic
detector models are adopted. Potential limitations related to this
method are quantifiable indicators required by the DEA model.
However, it is difficult to quantify indicators that have important
impacts on AEE, such as the level of national policy implementation
and environmental protection. These issues still need to be
addressed and provide direction for future research.
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