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Abstract
Fritillariae Cirrhosae Bulbus (FCB) is a famous traditional Chinese medicine, mainly used for relieving cough and resolving 
phlegm. According to Chinese Pharmacopoeia (2020), the medicine comes from dried bulbs of five species and one variety 
in Fritillaria. Due to climate change and human disturbance, the wild resources have become critically endangered in recent 
years. Following three climate change scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) under 2050s and 2070s, geographic 
information technology (GIS) and maximum entropy model (MaxEnt) were used to simulate the ecological suitability of 
FCB, a third-grade rare and endangered medicinal plant species. The results showed that the key environmental variables 
affecting the distribution of FCB were altitude, human activity intensity, and mean temperature of coldest quarter. Under cur-
rent climate situation, the highly suitable areas were mainly located in the east of Qinghai Tibet Plateau, including Western 
Sichuan, southeastern Tibet, southern Gansu, Northwestern Yunnan, and Eastern Qinghai, with a total area of 31.47×104 
 km2, the area within the nature reserve was 7.13×104  km2, indicating that there was a large protection gap. Under the future 
climate change scenarios, the areas of the highly and poorly suitable areas of FCB showed a decreasing trend, while the 
areas of the moderately and total suitable areas showed an increasing trend. The geometric center of the total suitable area 
of the medicine will move to the northwest. The results could provide a strategic guidance for protection,development, and 
utilization of FCB though its prediction of potential distribution based on the key variables of climate change.
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Introduction

With the change of global climate, the frequency and inten-
sity of extreme weather increase significantly, which has a 
serious impact on agriculture, forestry, animal husbandry 
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and other industries (Calvin et al. 2020). As a special agri-
cultural resource, the cultivation, growth, and distribution 
of traditional Chinese medicine are also affected by climate 
change. The change of traditional Chinese medicine resource 
producing areas caused by climate change will change the 
property of traditional Chinese medicine, and then have a 
potential impact on the quality, clinical efficacy, and medi-
cation safety of traditional Chinese medicine (Ma and Gao 
2010). Genuine medicinal materials refer to the Chinese 
medicinal materials with a long history, excellent varieties, 
significant curative effect, obvious regional characteristics, 
and better quality than those from other places. However, the 
genuine areas of traditional Chinese medicine are not fixed, 
and will expand, contract, or migrate under the influence of 
climate change. For example, Cheng et al. (2016) found that 
the warming of historical temperature and excessive pre-
cipitation made the genuine area of Astragalus membrana-
ceus move to the northeast. Zhou et al. (2015) showed that 
compared with the current distribution pattern of suitable 
area, the total area of suitable area of original plants of Rhei 
Radix et Rhizoma would be reduced in different degrees in 
the future. Shen et al. (2017) predicted that the increase of 
annual average temperature in the future will make the main 
distribution area of Gentiana rhodantha expand to higher 
elevation.

Parmesan and Yohe (2003) pointed out that non climatic 
factors dominate the short-term biological changes of plants, 
while climate change will affect the life system of plants. At 
a large scale, climate and topography are important environ-
mental factors limiting species distribution (Brooks et al. 
2006; Loarie et al. 2008; Alkemade et al. 2011). Due to the 
global climate change and lack of effective protection of 
medicinal plant resources, the geographical distribution of 
many medicinal plant species has shrunk sharply, or even 
disappeared (Zhou et al. 2015; Yang et al. 2017a, b). Tra-
ditional investigation of medicinal plant resources mainly 
relies on field work and manual records, which requires a 
large amount of work, takes a long time, and has limited 
evaluation ability. This method could not fully reflect the 
internal relationship between plants and environmental fac-
tors, especially the change of suitable area under the future 
climate scenario (Wang et al. 2002). How to effectively deal 
with climate change and human disturbances in the future 
is a key issue in the plant protection planning of traditional 
Chinese medicine. BCC-CSM2-MR is one of the most com-
monly used climate models developed by China National 
Climate Center to simulate the response of global climate 
to the increase of greenhouse gas concentration, especially 
for China (Shi et al. 2020).

The maximum entropy model (MaxEnt) was first pro-
posed by Jaynes in 1957 (Jaynes 1982). The model can infer 
incomplete information and was applied to predict the poten-
tial distribution of species in 2004. Nowadays, it has been 

widely used in many fields, such as ecology, biochemistry, 
and resource conservation (Phillips et al. 2006; Brito et al. 
2009; Warren et al. 2013). Studies have shown that MaxEnt 
can accurately predict the potential distribution area of spe-
cies even if the information of species distribution data and 
environmental variables in the distribution area are incom-
plete. Therefore, MaxEnt has been widely used in the predic-
tion of potential distribution areas of endangered traditional 
Chinese medicine plants, such as Salvia bowletana Dunn 
(He et al. 2014), Gastrodia elata Bl. (Zhang et al. 2017), 
Astragalus mongholicus Bunge (Wang et al. 2020a, 2020b), 
and Gentiana macrophylla Pall (Tan et al. 2020).

Fritillariae Cirrhosae Bulbus (FCB), also called “Chuan-
beimu,” is a kind of valuable Chinese herbal medicine with 
the functions of clearing heat and moistening lung, relieving 
cough and resolving phlegm, relieving asthma, antibacterial, 
and antiviral (Sun et al. 2013; Zhao et al. 2020). According 
to the 2020 edition of Chinese Pharmacopoeia, original spe-
cies of the medicine includes Fritillaria cirrhosa D. Don, 
F. unibracteata Hsiao et K. C. Hsia, F. przewalskii Maxim., 
F. delavyi Franch., F. taipaiensis P. Y. Li, and F. unibrac-
teata Hsiao et K.C. (Chen et al. 2019; Xiong et al. 2020). 
These species mostly grows in alpine meadow or shrubs with 
an altitude of 3200–4600m, except F. taipaiensis in lower 
regions. And growth and distributions of these species are 
very vulnerable to their wild habitats (Chen et al. 2003). 
FCB is a conventional medicine used in traditional Chinese 
medicine formulations, and there are more than 100 kinds 
of Chinese patent medicines with it as raw materials (Xiao 
et al. 2007; Chen et al. 2014). Due to low biological yield, 
few number of mature fruits, terrible germination, and sur-
vival rate of the species, wild resources are far from meeting 
the growing market demand. Driven by economic interests, 
continuous high-intensity and disordered mining result in 
sharply decline of the wild resources. Therefore, most of 
the species have been listed as the 3rd class protected plant.

At present, the research on FCB and its original species 
mainly focuses on the methods of physiological ecology 
(Chen et al. 2003; Zhang et al. 2010), chemical and phar-
macological components (Cao et al. 2009; Wang et al. 2011, 
2012; Pan et al. 2014), seedling breeding (Wang et al. 2010a, 
b), and molecular biology (Lee and Hsing 2002; Tan et al. 
2011), while the research on its geographical distribution 
mainly focuses on specific species, lacking comprehensive 
research. Based on MaxEnt model, the potential distribu-
tion of FCB under current and future climate conditions 
was simulated by using the latest distribution information 
of the medicine and environmental data, the key environ-
mental variables influencing its distribution were screened, 
the relationship between suitable distribution area of FCB 
and environmental factors was analyzed, and the popula-
tion diffusion degree and suitable area change of FCB in the 
future were revealed. The results of this study can provide 
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a theoretical basis for formulating the protection strategy of 
the precious medicine.

Methods

Occurrence data of FCB

Firstly, the distribution data of original plants of FCB were 
obtained by searching GBIF (Global Biodiversity Informa-
tion Facility) and related journals (Lee and Hsing 2002; 
Chen et al. 2003; Cao et al. 2009; Zhang et al. 2010; Wang 
et al. 2011). Secondly, Google Earth system was used to pick 
up and proofread the longitude and latitude of distribution 
data. Then the repeated distribution points were removed by 
using the data statistics function of Excel, and the longitude 
and latitude data were converted into decimal. Thirdly, the 
spatial analysis function of ArcGIS was used to calculate 
the distance between the distribution points and the center 
of the censored grid to ensure that each censored grid con-
tains only one distribution point closest to the center, so as 
to reduce the impact of spatial autocorrelation (Wang et al. 
2020a, 2020b). Through the above procedure, a total of 484 
distribution points were obtained (Fig. 1).

Environmental variables and human activity 
intensity

The grid data of 19 bioclimatic variables with WGS84 coor-
dinate system and 2.5 arc-minutes resolution were accessed 
through the Worldclim database (https:// www. world clim. 
org/), and the current climate data was obtained by inter-
polating the detailed meteorological information recorded 
by meteorological stations all over the world, with a time 

span of 1970–2000. Beijing Climate Center Climate System 
Model (BCC-CSM2-MR) of the Coupled Model Intercom-
parison Project Phase 6 (CMIP6) was selected as the future 
climate model. CMIP6 Scenario Model Intercomparison 
Project (ScenarioMIP) comprehensively analyzed the shared 
socio-economic pathways (SSPs) and representative concen-
tration pathways (RCPs), and obtained a new prediction sce-
nario closer to the real situation (Eyring et al. 2016). In this 
paper, SSP1-RCP2.6 (SSP1-2.6), SSP2-RCP4.5 (SSP2-4.5), 
and SSP5-RCP8.5 (SSP5-8.5) in 2050s (2041–2060) and 
2070s (2061–2080) were selected as the future climate sce-
narios. SSP1-2.6 scenario is an upgrade of RCP2.6 scenario, 
which adopts a sustainable development path of low matter, 
low resources, and low energy, representing a low level of 
greenhouse gas emissions. SSP2-4.5 is an update of RCP4.5 
scenario, which represents that the greenhouse gas emis-
sion is at a medium level, that is, the future socio-economic 
development model continues to develop along the current 
model. SSP5-8.5 is the updated scenario of RCP8.5, which 
assumes that the social economy is fully developed, but it is 
still based on energy intensive as the economic driver, rep-
resenting a high level of greenhouse gas emissions (Eyring 
et al. 2016; Riahi 2017). The human activity intensity (HAI) 
grids or also known as Human Footprint Index (HFI) grids 
at a spatial resolution of~ 1 km provided by the 2009 Human 
Footprint, Last of the Wild Project, Version 3, 2018 Release 
(LWP-3) was used as one type of environmental variables, 
which expressed the cumulative human pressure on the envi-
ronment through eight variables (i.e., population density, 
built-up environments, electric power infrastructure, roads, 
railways, navigable waterways, crop lands, pasture lands). 
Its value ranges from 0 to 50 (Dong et al. 2021). We then 
derived the layer of distance to the human disturbance using 
Euclidean linear distance analysis in ArcGIS 10.5. The spa-
tial resolution of the above data was 2.5 arc minute. Altitude 
data (30m) was downloaded from Geospatial Data Cloud 
(GDC, http:// www. gsclo ud. cn/), and its resolution was uni-
fied with climate variables through Kriging interpolation 
(2.5 arc minute).

The 1:16 million administrative division map of China 
was downloaded from the website of the Ministry of natural 
resources of the People’s Republic of China (http:// bzdt. ch. 
mnr. gov. cn/ index. html).

Principle and method of Geodetector

Geodetector is a spatial analysis model developed by 
Wang et al. (2010a, b) using Excel 2007 and R, and can 
be download free from the link http:// www. geode tector. 
cn/. Geodetector was employed to detect the main influ-
ence factors and spatial differentiation, including risk 
detector, factor detector, interaction detector, and eco-
logical detector (Wang et al. 2010a, b; Hu et al. 2011). Figure 1  Species occurrence records of FCB

https://www.worldclim.org/
https://www.worldclim.org/
http://www.gscloud.cn/
http://bzdt.ch.mnr.gov.cn/index.html
http://bzdt.ch.mnr.gov.cn/index.html
http://www.geodetector.cn/
http://www.geodetector.cn/
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In this study, factor detectors were used to detect the 
extent to which environmental variables affect the spa-
tial distribution of FCB. The expressions are as follows:

where q is the value to measure the correlation between 
environmental variables and spatial distribution of FCB, N 
is the sample size, and σ2 is the variance. Nh and �2

h
 are the 

sample size and variance of h layer, respectively.
The value range of q generally varied from 0 (lowest) 

to 1 (highest). The higher the q value, the stronger the 
correlation between environmental variables and spatial 
distribution. When q = 1, it indicates that the variable 
completely controls the spatial distribution, while when 
q = 0, it indicates that the variable has nothing to do with 
the spatial distribution.

Selection of environmental variables

The selection procedure of environment variables was 
divided into two steps (Wang et al. 2019, 2010a, b). 
First, all the 22 environmental variables (Table S1) 
and 484 distr ibution points (Fig.  1) of FCB were 
imported into the MaxEnt model, and variables with 
contribution rate of 0 were removed after three opera-
tions. Thereafter, the earth factor detector was used to 
calculate the remaining variables, and only variables 
with q value > 0.2 were retained. After the above 
program, 10 environmental variables were selected to 
build the final model (Table 1).

q = 1

L
∑

h=1

Nh�
2

h

N�2
= 1 −

SSW

SST
SSW =

L
∑

h=1

Nh�
2

h
, SST = N�2

Parameter setting of MaxEnt model

Based on the selected distribution data and environmental 
variables, the model was established and repeated 10 times. 
The proportion of test data was set as “Random seed,” the 
replicated run type was set as “Crossvalidate,” the maximum 
iterations was set to 500, the importance of environmental 
variables was measured by “Jackknife test,” the impact of 
variables on the distribution of FCB was analyzed by cre-
ating response curves, the output format was logistic, and 
other settings were set as the default values of the software 
(Narouei-Khandan et al. 2016; Wang et al. 2010a, b).

Verification of model accuracy

The receiver operating characteristic (ROC) curve output 
by MaxEnt was one of the effective methods to evaluate the 
accuracy of niche model. AUC (areas under ROC curve) ≤ 
0.8 indicated poor performance, 0.8<AUC≤0.9 indicated 
moderate performance, 0.9<AUC≤ 0.95 indicated good 
performance, and 0.95<AUC ≤ 1 indicated excellent per-
formance (Ortega-Huerta and Peterson 2008; López-Collado 
et al. 2013; Liu et al. 2021).

Division of suitable grade

In the output file, the maximum value of 10 repetitions was 
selected as the prediction result of this study. ArcGIS was 
used to convert the ASC file output by MaxEnt into raster 
format file. According to IPCC’s explanation of the prob-
ability (P) of species’ presence and combined with previ-
ous research results, the suitability grades were divided into 
four categories and displayed in different colors on the map, 
which were the following: highly suitable area (P ≥ 0.66, 
red), moderately suitable area (0.33 ≤ P < 0.66, orange), 
lowly suitable area (0.05 ≤ P < 0.33, yellow), and unsuitable 
area (P < 0.05, white) (Remya et al. 2015; Zou et al. 2015; 
Wang et al. 2018).

Results

Model performance

The AUC values of training data and test data were 0.962 
and 0.961 respectively (Fig. 2), and the performance level 
of the model was “excellent.”

Analysis of the importance of environmental 
variables

The results showed that the altitude (52.6%, q = 0.45) and 
the human activity intensity (29.2%, q = 0.39) were the two 

Table 1  Environmental variables used in MaxEnt model

Variable Description

Bio1 Mean annual temperature
Bio6 Min temperature of the coldest month
Bio7 Temperature annual range(Bio5–Bio6)
Bio9 Mean temperature of the driest quarter
Bio10 Mean temperature of the warmest quarter
Bio11 Mean temperature of the coldest quarter
Bio12 Annual precipitation
Bio15 Coefficient of variation of precipitation seasonality
Slope Slope
Altitude Altitude
HAI Human activity intensity

Administrator
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most important variables determining the distribution of 
FCB, which accounted for 90% of the variations (Table 2). 
The annual precipitation (q = 0.37) explained 8.7% of the 
contribution. The min temperature of coldest month was the 
variable with least impacts on FCB distribution (0.1%, q = 
0.20).

The results of Jackknife test (Fig. 3) showed that when 
altitude, human activity intensity (HAI), and annual pre-
cipitation (Bio12) were used to model separately, their regu-
larized training gains were significantly higher than other 
variables, which indicated that they contained unique infor-
mation affecting the distribution of FCB.

Relationship between environmental variables 
and probability of presence

In order to clarify the relationship between key environ-
mental variables and the probability of presence of FCB, 

MaxEnt was used to draw the response curve using only a 
single environmental variable (Fig. 4). The results showed 
that the suitable ranges of altitude, human activity intensity, 
and annual precipitation were 2083.7–4081.9 m, 390.2–3825 
mm, 4.8–20.1 and −7.9–8.0 °C, respectively.

Risk detector was also used to measure the suitable range 
of each variable, and the results showed that the suitable 
ranges of altitude, human activity intensity, annual pre-
cipitation, and mean temperature of coldest quarter were 
2347–3612.7 m, 6.9–16.2, 566.0–912.9 mm, and −4.7–1.8 
°C, respectively.

Simulation of the geographical distribution of FCB 
under current climate condition

Figure 5 showed the geographical distribution of FCB in 
China under current climate condition predicted by Max-
Ent. The results showed that the highly suitable areas were 
mainly located in the east of Qinghai Tibet Plateau, includ-
ing western Sichuan, southeastern Tibet, southern Gansu, 
northwestern Yunnan, and eastern Qinghai, with a total 
area of 31.47×104  km2, accounting for 3.26% of China’s 
land area. Among them, Sichuan had large areas, reaching 
14.23×104  km2. The moderately suitable areas were mainly 
located in eastern Tibet, southern and northwestern Sichuan, 
and northeastern Qinghai and southern Gansu, with a total 
area of 30.38×104  km2, accounting for 3.15% of China’s 
land area. Among them, Tibet and Sichuan had larger areas, 
which were 9.79×104  km2 and 8.51×104  km2, respectively. 
The lowly suitable areas were located in eastern and south-
ern Tibet, eastern and southern Qinghai, central and eastern 
Gansu, northwestern Sichuan, northern Yunnan, and western 
Xinjiang, with a total area of 39.88×104  km2, accounting for 
4.13% of China’s land area. Among them, the area of Tibet 
was the largest, reaching 17.69×104  km2.

Figure 2  ROC curve and AUC values for the model

Table 2  Percent contribution 
and q value of each variable 
to the potential distribution of 
FCB defined by MaxEnt

Index Percent 
contribu-
tion/%

q value

Altitude 52.6 0.45
HAI 29.2 0.39
Bio12 8.7 0.37
Bio11 4.1 0.35
Slope 1.8 0.29
Bio15 1.2 0.27
Bio1 1.1 0.26
Bio9 0.9 0.24
Bio10 0.3 0.20
Bio6 0.1 0.20

Figure 3  Importance of environmental variables to FCB by jackknife 
analysis. Blue bar represents the regularized training gain for mod-
els using a single variable only, while green represents the jackknife 
without that single variable. Red dashed lined represent the total reg-
ularized training gain using all variables
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GAP analysis of FCB

In order to identify the protection gaps of FCB, the highly 
suitable areas and the boundaries of Natural Conservation 

Area in China were overlapped in ArcGIS. The results 
showed that the highly suitable area of the FCB was 
31.47×104  km2, and the area within the nature reserve 
was 7.13×104  km2, accounting for 22% of the highly 
suitable area, indicating that there was a large protection 
gap of FCB, mainly in western Sichuan, eastern Tibet, 
southern Gansu, northwest Yunnan, and eastern Qinghai 
(Fig. 6).

Potential distribution of FCB in China under climate 
change scenarios

Figure 7 showed the changes of the suitable area of FCB 
in the future SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. 
Under the three climate change scenarios, the areas of the 
highly and poorly suitable areas of FCB showed a decreasing 
trend, while the areas of the moderately and total suitable 
areas showed an increasing trend.

By 2050s, the areas of the highly suitable areas would 
be reduced to 31.22×104  km2 (SSP1-2.6), 31.71×104 
 km2 (SSP2-4.5), and 28.88×104  km2 (SSP5-8.5), while 
by 2070s, the areas would be reduced to 31.81×104  km2 
(SSP1-2.6), 30.59×104  km2 (SSP2-4.5), and 20.25×104 
 km2 (SSP5-8.5).

Figure 4  Response curves of presence probability of FCB to altitude, human activity intensity, mean temperature of coldest quarter, and annual 
precipitation

Figure 5  Simulation of the geographic distribution of FCB in China 
under current climate condition
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By 2050s, the areas of the total suitable areas would 
increase to 106.3×104  km2 (SSP1-2.6), 107.75×104  km2 
(SSP2-4.5), and 107.81×104  km2 (SSP5-8.5). Under 
SSP5-8.5 scenario, compared with the current simulation 
results, the increase and decrease areas were the highest, the 
increase areas were mainly located in eastern Tibet, southern 
and eastern Qinghai, and northwestern Xinjiang, and the 
decrease areas were mainly located in southeastern Gansu, 
southern Sichuan, and northern Yunnan (Fig. 8). By 2070s, 
the areas would increase to 106.89×104  km2 (SSP1-2.6), 
106.14×104  km2 (SSP2-4.5), and 108.9×104  km2 (SSP5-
8.5). Under SSP5-8.5 scenario, the areas reduced most 
(10.52×104  km2), mainly distributed in Sichuan, Shandong, 
and Shaanxi. Under SSP5-8.5 scenario, compared with the 
current simulation results, the increase and decrease areas 
were the highest, and the increase areas were mainly located 
in southeastern Gansu, southwestern Sichuan, northern Yun-
nan, and southeastern Tibet (Fig. 8).

Variations of the geometric center of the suitable 
areas under climate change scenarios

Under SSP1-2.6, the geometric center of the total suitable 
areas of FCB would move 96.19 km from Jiangda (Current) 
to northwest to Yushu (2050s), then 7.02 km to northwest to 
Yushu (2070s). By 2070s, the center will generally displaced 
101.51 km to the northwest. Under SSP2-4.5, the geometric 
center of the total suitable areas of the medicine would move 
117.26 km from Jiangda (Current) to northwest to Yushu 
(2050s), then 11.12 km to northwest to Nangqian (2070 s). 
By 2070s, the center will generally displaced 128.04 km to 
the northwest. Under SSP5-8.5, the geometric center of the 
total suitable areas of FCB would move 133.52 km from 
Jiangda (Current) to northwest to Nangqian (2050s), then 

37.28 km to northwest to Nangqian (2070 s). By 2070 s, the 
center will generally displaced 170.72 km to the northwest 
(Fig. 9).

Discussion

Potential distribution of FCB under current climate 
situation

In this study, the simulation results showed that the highly 
suitable areas of FCB in China were mainly located in the 
east of Qinghai Tibet Plateau, including western Sichuan, 
southeastern Tibet, southern Gansu, northwestern Yunnan, 
and eastern Qinghai. According to field investigation and 
literature review, F. cirrhosa is mainly produced in south-
ern and eastern Tibet, western and southern Sichuan, and 
northwestern Yunnan, F. unibracteata is mainly produced 
in northern Sichuan and southern Qinghai, F. przewalski 
is mainly produced in southern Gansu, southern Qinghai 
and western Sichuan, F. delavayi is mainly produced in 
southern Qinghai and western Sichuan, and F. taipaien-
sis is mainly produced in southern Shaanxi and northern 
Chongqing (Jiang et al. 2016; Xiong et al. 2020). All the 
above areas were located in the suitable areas predicted here, 
which showed that the results were reliable. Compared with 
the prediction results of Jiang et al. (2016), the distribution 
of suitable areas in this study was more wider, which may 
be due to the different distribution data and environmental 
variables. The previous studies have suggested that the sam-
pling range and sample size are the key factors to determine 
the reliability of the simulation results of species distribu-
tion model. The larger the sample size and the wider the 
sampling area, the more information about the relationship 
between species and environment will be obtained, and the 
higher the estimation accuracy of the species distribution 
model will be. In this study, we selected 484 distribution 
data through field survey and a large number of data, which 
could not only represent the habitat of its distribution area, 
but also avoided the deviation of simulation results due to 
the sample problem.

GAP analysis and protection measures of FCB

In the past decades, the importance of global climate and 
environmental change research in the field of scientific 
research has received more and more attention (Williams 
and Cary 2002; Carosi et al. 2020; Katragkou et al. 2020). 
For example, in the international well-known journal Sci-
ence, there has been researches on resource reserves in 
recent years (Bruner et al. 2001; Curran et al. 2004; Avasthi 
2005; Gerber et al. 2005). Ecologists have realized the great 
harm caused by the loss of biodiversity, and take ecological 

Figure 6  GAP analysis of FCB in China
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protection as a priority topic in the field of environmental 
research. In this paper, we conducted a GAP analysis of FCB 
nature reserves in China, and the results showed that there 
was a large protection gap in western Sichuan, eastern Tibet, 
southern Gansu, northwest Yunnan, and eastern Qinghai. 
Through years of continuous observation, it was found that 
the distribution area of the resources in China was gener-
ally reduced, the population was isolated, and the population 
quantity was rapidly reduced. In this regard, the ecologi-
cal problems faced by FCB must be solved in the following 
ways: (1) Establishment of wildlife reserves. Wild resources 
protection areas should be set up in the areas where FCB 
are concentrated to prevent human destruction. If necessary, 
artificial auxiliary measures such as wild tending should be 
adopted to restore vegetation and population. (2) Seasonal 
rest grazing. In the area where wild resources of the medi-
cine are concentrated, seasonal rest grazing should be car-
ried out in the growing season, which is conducive to its nor-
mal growth and development, and improve the probability 
of bearing fruit and seed maturity. (3) It should be strictly 
forbidden to plant fast-growing forest in the area where FCB 
wild resources are concentrated, otherwise it will bring dev-
astating damage to its existing ecological environment. (4) 
Establish resource collection garden or resource bank of 
this medicine. As FCB in the field and cultivation environ-
ment also appeared some different characters of plants, it 
is necessary to strengthen the protection and research, the 
plants in desperate need to take timely on-site protection 
and transplanting protection measures. (5) Take productive 
protection measures. The artificial cultivation technology 
of FCB should be vigorously developed to meet the market 
demand as soon as possible, fundamentally solve the situ-
ation of short supply and high market price, and solve the 
ecological problems caused by excessive mining.

Key climatic variables affecting the occurrence 
of FCB

According to specimen records, the original species of FCB 
are almost distributed in alpine or subalpine regions, and 
their growth is greatly restricted by altitude. In low altitude 
areas, they could not grow and reproduce normally. How-
ever, in high altitude area, the biomass of bulb and the total 
biomass of these species decreased with the increase of alti-
tude. Therefore, areas with too high or too low altitude are 
not conducive to their normal growth. The results of this 
study showed that the most important environmental vari-
able affecting the distribution of FCB was altitude, and the 
suitable range was 2347–3612.7 m which was basically con-
sistent with the existing literature. FCB liked the cold and 

humid climate and endures a strong cold, but was intolerant 
of drought and susceptible to disease especially in hot and 
humid conditions. It was mainly distributed in the eastern 
Qinghai Tibet Plateau at an altitude of about 3000 m. Due 
to the control and influence of southwest monsoon, westerly 
circulation, and Qinghai Tibet high, its main climatic char-
acteristics are low heat, large annual rainfall, small annual 
temperature difference, and large daily temperature differ-
ence, which are consistent with its biological characteristics. 
In this study, the average temperature of the coldest quarter 
suitable for the existence of FCB was from −4.7 to 1.8°C, 
which indicated that the safe overwintering can be ensured 
when the temperature is not too low in winter.

Xu et al. (2019) studied the different responses of the 
distribution of widespread plant species and narrow-ranged 
plant species to human activities, and found that the impact 
of human activities on narrow-ranged species was negatively 
correlated. This study showed that the increase of human 
activity intensity reduces the potential probability of the 
species and makes its distribution area fragmented, which 
means that the species is very sensitive to the disturbance of 
human activities. Numerous studies have shown that human 
over harvesting, especially due to commercial interests, was 
one of the main reasons for endanger situation of this medi-
cine (Konchar et al. 2011; Li et al. 2017; Cunningham et al. 
2018; Wu et al. 2020; Niu et al. 2021). It was reported that 
the price of wild harvested FCB increased over nine-fold 
between 2002 and 2017, namely from the equivalent of 
US$60 in 2002 to US$560 per kg (Cunningham et al. 2018). 
Human disturbance not only resulted decreasing of abun-
dance of the medicine and its size (Li et al. 2017), but also 
drove the color evolution of F. delavayi Franch, one of the 
original species of FCB (Niu et al. 2021). Although artificial 
cultivation of the medicine could supply part requirement for 
FCB, wild harvesting is still the most important source in 
the medicinal market (Fig. 10). So human activity, especially 
commercial harvesting, still seriously threatens survival of 
the original species of FCB.

Potential distribution of FCB in China under climate 
change scenarios

In this paper, we quantitatively analyzed and demonstrated 
the area changes of suitable areas of FCB in 2050s and 
2070s under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. 
The results showed that the areas of the highly and the 
total suitable areas would decrease in the future, and the 
decreasing trend would increase with the increase of SSP 
concentration. At the same time, the geometric center of 
the total suitable area of FCB would move to the north-
west. Some studies have shown that under the influence 
of climate change in the future, the suitable areas of some 
traditional Chinese medicine plants will move northward 

Figure 7  Potential distribution of FCB in China under climate change 
scenarios.

◂



 Environmental Science and Pollution Research

1 3



Environmental Science and Pollution Research 

1 3

(Yang et al. 2017a, b; Ji et al. 2020; Tan et al. 2020). Many 
scholars pointed out that most of the changes in the geo-
graphical distribution of plant species caused by climate 
change were related to the increase of temperature and 
the decrease of precipitation in the growing season (Root 
et al. 2003; Guo et al. 2014; Zhu and Xu 2019). In the 
suitable area of FCB, the mean annual temperature (Bio1) 
would generally increase and the mean annual precipita-
tion (Bio12) would decrease in the future. Sillmann et al. 
(2013) and Dyderski et al. (2018) respectively pointed out 
that global climate change was a trend of aridity, which is 
unfavorable to its growth and development in most suit-
able areas of western China. Therefore, it was imperative 
to increase the biomass per unit area of FCB, improve the 
utilization rate, and find reliable and feasible protection 
methods through science and technology under the situ-
ation that the highly suitable area was constantly broken 
and shrinking.

According to the results of this study, under the three 
climate change scenarios in the future, the stable area of 
the total suitable area, that was, the area less affected by 
climate change, accounted for a relatively high proportion 

Figure 8  Changes of the total suitable areas of FCB under different 
climate change scenarios

◂

Figure 9  Variations of the centroids of the total suitable areas of FCB 
under climate change scenarios in the future

Figure 10  Commercial harvesting of FCB from wild habitats: A commercial harvesting of local people; B morphology of Fritillaria cirrhosa D. 
Don., one of the main original species; C fresh bulbus of FCB from wild habitats; D FCB medicine sold in medicinal market
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(84.43–93.36%), which could be used as an ideal candidate 
for large-scale cultivation of FCB. In contrast, the remain-
ing areas significantly affected by climate change should 
be the priority areas for investigation and collection of 
FCB wild planting resources, so as to protect this precious 
medicinal plant resources.
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