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ABSTRACT
Understanding the influence mechanisms of dockless bike-sharing 
usage is essential for land use planning and bike scheduling strat-
egy implementation. Although various studies have been carried 
out to explore the impact of built environment (BE) factors on bike- 
sharing usage, few studies have examined the modifiable areal unit 
problem (MAUP). Moreover, previous studies mainly focused on the 
separate effect of each factor but neglected the interactions 
between these factors. Taking Shenzhen, China as the case, this 
study fills these two gaps by employing the geographical detector 
method to examine the MAUP in dockless bike-sharing usage as 
well as the interactive effects of BE factors. The results revealed that 
the influences of most BE variables are sensitive to the spatial areal 
units, which have informed urban planners what built-environment 
factors should be paid more attention to at certain spatial scales. 
Additionally, through the comparisons between single effect and 
interactive effect, this study revealed some interesting findings that 
can provide scientific basis for temporal rebalance strategy for the 
innovative and high-density metropolis in China.
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1. Introduction

In the past decades, public bike-sharing has grown rapidly and has spread across cities 
worldwide due to its benefits in providing convenient connections to the transit stations, 
alleviating traffic congestion, bringing healthy benefits, etc (Shaheen et al. 2010, Rixey 
2012, Zhang et al. 2014, Fishman 2015, Faghih-Imani and Eluru 2015, 2016, Wang et al. 
2016a, El-Assi et al. 2017, Ma et al. 2018, Chen et al. 2019). With the recent boom of the 
sharing economy, the dockless bike-sharing system, which allows users to rent a bicycle 
through a smart-phone application, has dramatically expanded around the world (Shen 
et al. 2018, Xu et al. 2019). Understanding the impact factors of dockless bike-sharing 
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usages has two important meanings. On the one hand, bike-sharing travel is usually 
encouraged by urban planners dues to the fact that bike-sharing systems have numerous 
benefits, such as promoting public transit use, reducing traffic congestion, and increasing 
physical activity and health (Shaheen et al. 2010, Fishman 2015, Faghih-Imani and Eluru 
2016, El-Assi et al. 2017, Chen et al. 2019). Examining the influencing mechanisms of bike- 
sharing usages is essential because it can provide implication for urban planners who aim 
to promote bike usages, in terms of land use development, road design, and so on 
(Faghih-Imani and Eluru 2015, Wang and Zhou 2016, Wang et al. 2016a, Shen et al. 
2018). On the other hand, unlike public bike-sharing which requires users to rent and 
return bicycles at fixed docking stations, dockless bike-sharing provides stationless rental 
services, making the bicycles more convenient and flexible to use (Si et al. 2019). However, 
without accurate bicycle usage prediction and effective scheduling, the flexibility offered 
by dockless bike-sharing would lead to the mismatch between bicycle supply and 
demand, which may bring about some urban issues (Pan et al. 2019, Si et al. 2019). For 
example, when the supply of bicycles exceeds the demand, the problems such as over-
whelming public space would arise. On the contrary, if the supply is less than demand, it 
will result in service insufficiency. Hence, understanding the influence mechanisms of 
dockless bike usage can provide a scientific basis for bicycle prediction and scheduling, 
which is essential to improve the management and services of dockless bike-sharing.

Examining the relationship between dockless bike-sharing usage and built environ-
ment (BE) factors is of great significance in many aspects including urban planning and 
cycling facilities design, bike scheduling strategy, bike-sharing service promoting and 
bike-sharing usage prediction and simulation (Shen et al. 2018). Though there is a large 
body of previous studies trying to understand the effects of BE factors on bike-sharing 
usage ((Buck and Buehler 2012, Kim et al. 2012, Fishman 2015, Faghih-Imani and Eluru 
2016, Wang et al. 2016a, 2016b, El-Assi et al. 2017, Shen et al. 2018, Wang and Lindsey 
2019), few studies have taken the modifiable areal unit problem (MAUP), a well-known 
problem in geography research (Openshaw 1984), into consideration in the process of 
data aggregating and modeling. However, studies have illustrated that MAUP is an 
essential and fundamental issue in travel behavior analysis (Zhang and Kukadia 2005, 
Mitra and Buliung 2012, Hong et al. 2013; Clark and Scott 2014, Yang et al. 2019, Zhou and 
Yeh 2020). Furthermore, none of the previous studies examined the interactive effects of 
factors, instead, the individual effects of factors on bike usage are quantified via regres-
sion coefficients (Noland et al. 2016, Faghih-Imani and Eluru 2016, Zhang et al. 2017, Shen 
et al. 2018), which is insufficient to understand the dockless bike-sharing usage in such 
a complicated built environment.

The aim of this study is to fill the above two research gaps with the geographical 
detector model which is a spatial statistical method (Wang et al. 2010) by taking 
Shenzhen, China as a case study to address the following research questions:

(1)How does MAUP affect the bike-sharing usage mechanism modeling results? How 
do the BE factors perform at different spatial scale units?

(2)How are the interactive effects of BE factors on dockless bike-sharing usage com-
pared with the separate effect with the ideal spatial unit?

To answer these questions, first, the factor detector of geographical detector model 
was used to analyze the spatial associations between dockless bike-sharing usage and 
BE factors with different spatial areal units, and examine the effect of MAUP. The results 
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can help land-use planners understand what BE factors should be paid more attention 
to at different spatial scales, and help determine the suitable spatial scale to better 
understand the interactive effects of BE factors for dockless bike-sharing usage. 
Second, the interactive detector from the geographical detector model was used to 
explore the interactions between these BE factors with the ideal spatial areal units. The 
interactive effects were further compared with the separated effects, which is mean-
ingful to bike rebalance strategy. The rest of this paper is organized as follows: section 2 
will review the related works; section 3 will present the study data and introduce the 
methodology and datasets; section 4 will present the results and address some mean-
ingful findings; and section 5 will summarize the study and provide suggestions for 
further research.

2. Related works

The factors influencing the usage of bike-sharing are complicated. An increasing 
number of studies have been undertaken to explore this issue from different aspects, 
including the social-demographic (Ogilvie and Goodman 2012, Zhao et al. 2015, 
Wang et al. 2016a), weather and calendar events (Gebhart and Noland 2014, 
Corcoran et al. 2014, Meng et al. 2016), and built environment (BE) (Cervero and 
Kockelman 1997, Buck and Buehler 2012, Kim et al. 2012, Faghih-Imani and Eluru 
2015, 2016, Wang et al. 2016a, 2016b, El-Assi et al. 2017, Shen et al. 2018, Wang and 
Lindsey 2019). Among these, the BE impact on travel behavior has become the most 
heavily researched subject in urban planning and travel behavior research (Buck and 
Buehler 2012, Kim et al. 2012, Faghih-Imani and Eluru 2015, Wang and Zhou 2016, 
Wang et al. 2016a, 2016b, El-Assi et al. 2017, Shen et al. 2018, Xu et al. 2019), and 
many researchers have attempted to provide explanations about why BE factors 
might be expected to impact travel behaviors (Cervero and Kockelman 1997, Wang 
and Zhou 2016, Shen et al. 2018). These studies indicated that BE characteristics are 
strongly associated with bike-sharing usage, and the influence mechanisms are 
complex, which need more attention and research efforts.

The measurement of the usage of bike-sharing and the models applied vary in 
existing studies due to different research purposes. First, in terms of measurement of 
bike usage, bike usage data used for analysis were measured at different geographic 
scales which were usually defined by different ways in different studies without MAUP 
addressed. Studies on the influencing factors of bike-sharing usage fall into two main 
categories: bike-sharing with fixed stations and free-floating dockless bike-sharing. The 
notable difference between them when modelling their relationships with potential 
factors is the definition of the spatial statistical unit of variables. For public bike-sharing 
studies, the dependent variables were counted at docking stations and the independent 
variables were linked to the stations’ service area defined by Thiessen polygon (Noland 
et al. 2016) or buffers (Rixey 2012, Wang and Lindsey 2019). For dockless bike-sharing 
studies, data were usually aggregated to fishnet cell, and the spatial areal units were of 
different sizes among different studies (Shen et al. 2018, Mooney et al. 2018, Xu et al. 
2019, Zhu et al. 2020). However, the MAUP received little attention in existing bike- 
sharing-related research.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 3



Previous studies have shown that different areal units may generate inconsistent 
results in the relationship between BE and travel behavior (Zhang and Kukadia 2005, 
Mitra and Buliung 2012, Hong et al. 2013, Clark and Scott 2014, Yang et al. 2019, Zhou 
and Yeh 2020). For example, Mitra and Buliung (2012) found that both the spatial scale 
and zoning method affect the relationship between BE and active school transporta-
tion by comparing the results of buffers of four distances and two types of census 
boundaries. Clark and Scott (2014) proved that the relationship between active travel 
and the BE is affected by the MAUP by comparing the models results of 14 geogra-
phical scales. Yang et al. (2019) found that the relationship between trip-chaining 
behavior and the BE is different with several different spatial units. For bike-related 
study, with massive and high-precision bike-sharing usage GPS record data, the effects 
of the MAUP are nonnegligible in the results of data aggregating and modeling. It is 
essential to examine the effects of the MAUP in BE-bike-sharing usage relationship 
which can inform urban planners what factors are more important to promote bike- 
sharing usages at certain spatial scales. Moreover, the MAUP should be considered and 
carefully addressed to determine the ideal spatial units for explore the influencing 
mechanisms of bike-sharing usage.

Second, in terms of methods in modeling the relationship between bike usage 
and BE factors, previous studies focused on the individual effect of each factor on 
bike-sharing usage based on the regression coefficients but neglected the interactive 
effect. In these existing studies, non-spatial statistical methods (Buck and Buehler 
2012, Kim et al. 2012, Faghih-Imani and Eluru 2015, Wang et al. 2016b, El-Assi et al. 
2017), and spatial regression models (Noland et al. 2016, Faghih-Imani and Eluru 
2016, Zhang et al. 2017, Shen et al. 2018) were used. The results have enriched the 
understanding of how BE factors affect bike-sharing usage. However, these studies 
mainly discussed the impact of the single BE factor on bike-sharing usage, the 
interactive effect between BE factors have not examined. As the effects of BE on 
dockless bike-sharing usage are complicated and should not be explained by each 
factor separately and simply, examining the interactive effects between BE factors on 
bike usage might help understand that mechanism closer to the actual situation and 
mining the meaningful spatiotemporal characteristics hidden behind.

To better understand the relationship between dockless bike-sharing usage and 
BE factors, this study tried to address the MAUP issue and examine the interactive 
effects by employing the Geographical detector. Geographical detector is a spatial 
statistical method that can effectively explore both the individual influence and 
interactive effect of geographical factors based on spatial variances analysis (Wang 
et al. 2010). This method has been widely used in geographical variation studies, 
such as the health risk assessment (Liao et al. 2010, Wang and Hu 2012, Ding et al. 
2019, He et al. 2019), the risk assessment of the Wenchuan earthquake in China (Hu 
et al. 2011), the influencing mechanism of planting patterns on fluoroquinolone 
residues (Li et al. 2013), as well as the driving forces and their interactions of built- 
up land expansion (Ju et al. 2016) and the relationship between dissection density 
and environmental factors (Luo et al. 2016). However, it has rarely been applied in 
travel behaviors or transportation studies for the exploration of the interactive 
effects of BE factors on travel behaviors.
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3. Data and methodology

3.1. Study area

Shenzhen (Figure 1) is located in southern China with the area of 1997.47 square kilo-
meters. As one of the largest cities in China, this city is a link and bridge connecting 
Hong Kong and the Chinese mainland. As a highly urbanized and modern metropolis, 
Shenzhen’s public transportation system has gradually developed and matured with 8 
metro lines and 854 bus lines operating in 2018. Besides, Shenzhen is one of the earliest 
cities in China to put dockless bike-sharing into operation.

Dockless bike-sharing emerged in Shenzhen in early 2016, and subsequently this 
venture experienced explosive growth. In September 2017, the average daily use of bike- 
sharing in Shenzhen reached 5.173 million. The rapid expansion of dockless bike-sharing 
has changed the daily traveling mode of residents, played a remarkable role in solving the 
‘last kilometer’ travel problem, and has reduced traffic congestion. Simultaneously, dock-
less bike-sharing has also created problems such as congestion caused by random 
parking, spatial and temporal mismatches between supply and demand, and an excessive 
presence of bicycles because of the vicious competition between operators. Thus, 
Shenzhen is a good case study area for investigating the complex influencing mechan-
isms of both the origin and destination involved with dockless bike-sharing usage from 
a spatial perspective. It will provide valuable insight into the planning and strategic 
management of sharing bikes.

3.2. Geographical detector model

The geographical detector is a kind of spatial statistic model proposed by Wang et al., which 
has been widely used to quantify the influencing effects of potential driving factors on 
geographical phenomena based on spatial variance analysis (Wang et al. 2010, 2017, Liao 

Figure 1. Study area.
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et al. 2010, Wang et al. 2016b). The geographical detector model is applied in this study based 
on the assumption that the spatial distribution of the origin or destination of bike-sharing 
resembles their potential driving factors. The geographical detector model consists of four 
detectors (sub models) including factor detector, interactive detector, risk detector, and 
ecological detector. Factor detector mainly addresses the question of ‘What are the determi-
nants of the geographical phenomena?’. Interactive detector addresses the question of ‘Do 
the determinants operate individually or interconnectedly?’. Risk detector addresses the 
question of ‘Are the geographical phenomena of two sub regions significantly different?’. 
Ecological detector addresses the question of ‘What is the difference of the impacts between 
two explanatory variables?’. As the main purpose of the study is to understand the determi-
nants of the dockless bike-sharing usage and the interactive effects as well as the MAUP in it, 
factor detector and interactive detector were employed to examine which factor has a more 
important impact on the use of bike-sharing and how different the pairs of factors interact 
with each other.

3.2.1. The factor detector
The function of factor detector is to calculate the PD (power determinant) value to 
quantitatively assess the impact of potential driving factors on the spatial pattern of the 
origin or destination of dockless bike-sharing. In this study, PD value is defined as the 
difference between one and the ratio of accumulated dispersion variance of the origin 
or destination of bike-sharing over each sub region to that of over the entire study 
region: 

PD ¼ 1 �
PL

h¼1 Nhσ2
h

Nσ2
¼ 1 �

SSW
SST

(1) 

ssw ¼
XL

h¼1

Nhσ2
h (2) 

SST ¼ Nσ2 (3) 

where N refers that a study area consists of N units, which is stratified into h = 1, 2, . . ., 
L stratum; and stratum h consists of Nh units; σ2 and σ2

h denote the global variance of the 
dependent variable of the study area and the variance of the dependent variable in the 
sub-areas; SSW and SST denote within sum of squares and total sum of squares, respec-
tively. The value of PD lies between zero and one. A higher PD value means the driving 
factor has a stronger contribution to the spatial pattern of the origin or destination of 
bike-sharing. In this study, PD values indicate the consistency of the spatial patterns 
between the origin or destination of bike-sharing and its potential driving factors.

3.2.2. The interaction detector
The interaction detector determines whether two individual factors enhance or weaken 
each other by comparing their combined contribution, as well as their independent 
contributions(Wang et al. 2010). The model classifies the interactive relationship between 
two factors into seven types as follows: 
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Nonlinear � enhance : PD A\B� �
> PD Að Þ þ PD Bð Þð Þ

Independent : PD A\B� �
¼ PD Að Þ þ PD Bð Þð Þ

Bi � enhance : Max PD Að Þ; PD Bð Þð Þ< PD A\B� �
< ðPD Að Þ þ PD Bð Þ

Uni � enhance=weaken : Min PD Að Þ; PD Bð Þð Þ< PD A\B� �
<Max PD Að Þ; PD Bð Þð Þ

Nonlinear � weaken : PD A\B� �
<Min PD Að Þ; PD Bð Þð Þ

(4) 

3.2.3. The MAUP test
For dockless bike-sharing without fixed stations, a grid system is suitable for statistics of 
bike-sharing usage. However, as the scale of grid changes, the results of bike-sharing 
usage mechanism modeling differ greatly. This is regarded as the scale effect, one of the 
modifiable areal unit problems (MAUP) that generally exists in geographical studies 
(Jelinski and Wu. 1996, Zhou et al. 2018, Zhou and Yeh 2020). Another MAUP beyond 
that is the zoning effect, in which various conclusions might occur when rearranging the 
zones of the given set of areal units using different methods (Jelinski and Wu. 1996, Ju 
et al. 2016). To understand how do BE factors affect the dockless bike-sharing usage with 
different spatial scale units and zoning methods, both scale effect and zoning effect are 
tested to examine the MAUP before the geographical detector model is applied in this 
work.

First, the scale effect is tested for two main purposes: 1) to examine how do the BE 
factors perform at different spatial scale units, which would inform urban planners what 
BE factors should be paid more attention to at different spatial scales; 2) to determine the 
suitable spatial scale to better understand the influencing mechanisms of dockless bike- 
sharing usage for bike rebalance strategy. The range of PD values and the stability of their 
ranks can reflect the scale effect on the results of the geographical detector model. In 
consideration of the extent of the study area and the spatial resolution of the multi-source 
data, ten grid sizes (from 100 m to 1000 m, with an interval of 100 m) are selected to test 
the scale effect on the PD values and their ranks. Second, the zoning effect of the 
geographical detector is tested to help choose the zoning method for bike-sharing 
usage mechanism modeling. In order to test the zoning effect, these three commonly 
used zoning methods are selected: the natural breaks (NB) method (Brewer and Pickle 
2002), the equal interval (EI) method, and the quantile (QU) method (Cao et al. 2013).

3.3. Datasets and variables

We obtained the real-time GPS data from dockless bike-sharing scheme operators includ-
ing Mobike, Ofo, Bluegogo, Ubike and Xiaoming Bike. All of them were the major bike- 
sharing operators in Shenzhen in 2018. The GPS dataset used in this study ranges from the 
8th of October, 2018 to the 14th of October, 2018 and it consists of five weekdays and 
a two-day weekend. The bikes’ unique ID, time stamps and the GPS location of both the 
origin and destination (OD) of every trip were continually recorded then categorized 
by hour. The raw collection contains over 6 million riding trips, with some redundant 
records however. To sort out the real usage records, some necessary pre-processing steps 
are needed. First, redundant coordinate records of stationary bikes and errors from GPS 
drifting were removed. Next, some unrealistically long or short distance or duration trips 
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were also excluded, which might be from bicycle reallocation and maintenance per-
formed by the operators.

Large amount of literatures explore the association between travel behavior and built 
environment (Ewing and Cervero 2001, 2010). Based on previous studies on bike-sharing 
(Buck and Buehler 2012, Kim et al. 2012, Faghih-Imani and Eluru 2015, Wang and Zhou 
2016, Wang et al. 2016a, El-Assi et al. 2017, Shen et al. 2018, Li et al. 2020a), four categories 
of potential influencing factors were selected to represent the built environment from 
different aspects including accessibility, facilities and land use as well as population 
distribution. These four types of factors contribute to the bike-sharing usage, while 
simultaneously interacting with each other (Figure 2).

According to the Athens Charter, living, work, recreation, and transportation are four 
important functions of a city. In this study, accessibility factors were selected to represent 
the transportation function of city with three potential factors including roads density, 
distance to metro stations and distance to bus stops. Moreover, facilities factors were used 

Figure 2. The selected BE variables of bike-sharing usage.
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to reflect the city functions of living, work and recreation, which are also the urban 
residents’ daily commuting purposes. Facilities factors including WORK, LIVING and REC 
were extracted from POIs datasets, and the definition of them was shown as Table 1 
below. However, land use and activities of a POI can be complicated and mixed. Here, 
from the perspective of travel behavior, POIs were classified as Table 1 shown for the 
reason of visit quantity and purpose. For example, restaurants and retailing stores were 
defined as the category of REC rather than WORK since that firstly these facilities are 
typical work places but in terms of quantity, consumers are the groups with much more 
visits, rather than employees. Besides, land use mixture was also measured through POIs 
data based on POIs types in Table 1. The Shannon entropy index was applied to evaluate 
the degree of land use diversity (Shannon 1948) as 

H ¼ �
X

i
pilognpi (5) 

where H represents the value of entropy; pirepresents the percentage of the ith type of 
POIs; n is the number of types.

Given the literature review and data availability, eight variables were selected as the 
potential BE-related driving factors of bike-sharing usage. Since the cycling path is still 
under construction in Shenzhen until November 2019, the variable of cycling facilities was 
not incorporated in this study.

In 2018, for this study, five types of data were obtained: (1) Road data were originally 
collected from OpenStreetMap (https://www.openstreetmap.org/). After careful examina-
tion, the bike-rideable roads were extracted. (2) Metro stations and bus stops location 
data were obtained using the geocoding interface of Baidu Map API (http://lbsyun.baidu. 
com/). These two distance variables were calculated via Network Analyst of ArcGIS 10.2 
(Esri, Redlands, California, US). (3) The three facilities variables were extracted from a POIs 
dataset in 2018 from Baidu Map (http://lbsyun.baidu.com/). Also, the land use variable 
was also calculated based on POIs dataset. (4) The dynamic population distribution data 
were collected from the Tencent LBS service platform (https://heat.qq.com/document. 
php) which is the largest social media service in China, with a spatial resolution of 25 m 
and a temporal resolution of one hour, ranging from the 8th of October, 2018 to the 14th 
of October, 2018. With its advantages of substantial mass of users records and high spatial 
and temporal resolution, it has been involved in various spatial studies to reflect the 
dynamic population (Chen et al. 2017, 2018, Niu et al. 2017, Yao et al. 2017, Song et al. 
2019, Li et al. 2020b, 2020c). The population distribution data in the same period as the 
dependent variable (dockless bike-sharing usages) was used to represent the POP 
variable.

Table 1. The definition of POIs category and type.
Category Type Examples

WORK Company and office Companies, offices, industrial zone, business center, science park
Government organizations Department offices, post offices, police offices

LIVING Residential Residential quarters, Unit dormitories
Hotels Hotels, lodgings

REC Restaurant Restaurants, Cafes
Retail Shopping malls, supermarkets, book stores, department stores
Recreation Parks, KTVs, movie theaters
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4. Results and discussion

4.1. How does MAUP affect the bike-sharing usage mechanism modeling results?

To examine the effect of the MAUP on the relationship between BE factors and the 
dockless bike-sharing usage, both the most suitable and meaningful scale and the 
information hidden behind the changes of model results with different spatial scales 
and zoning method should be carefully discussed. In the study, the number of classes of 
each factor was set at five for both scale effect and zoning effect. Both scale effect and 
zoning effect were tested with ten candidate grid scales ranging from 100 m to 1000 m 
(Figure 3). Figure 4(a,b) show the PD values of each factor and the rank of them. It can be 
obviously seen from Figure 4(a) that the PD values of all factors tend to increase with 
increasing grid size, which is consistent with the result of Ju et al. (2016)’s study on driving 
force of built-up land expansion with use of geographical detector. However, the relative 
importance of factors should be discussed by the ranks of them, which is nonnegligible 
(Ju et al. 2016).

For scale effect, first, some interesting findings are generated from the ranking results 
of factors with different grid scales (Figure 4(b)), which could provide valuable insights 
into urban planners who aim to promote bicycle usage. These findings can be summar-
ized as follows: 1) The ranks of different factors show different relationships at different 
grid scales, which indicates that different grid scales generate inconsistent results in the 
influence of these BE factors on dockless bike-sharing usage. Among these factors, BUS 

Figure 3. Distribution of bike-sharing and its aggregation with ten candidate grid scales.
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and ROAD are stable factors with least changes in the ranks of PD values. This indicates 
that the influence of these two factors on dockless bike-sharing usage are less sensitive to 
grid size. However, the ranks of other factors’ PD values are more sensitive to the grid 
scales, including METRO, WORK, LIVING, REC, MIX and POP. It is suggested that the 
planners should pay attention to the spatial scale in the planning of these scale- 
sensitive factors. 2) For the variables regarding to facilities, such as LIVING, WORK and 
REC, they are less influential to bike-sharing usages as the scale becomes smaller, 
especially when the grid is smaller than 600 m. This implies that at a small grid scale 
less than 600 m, increasing the density of these facilities does not necessarily lead to 
significant increase in dockless bike-sharing usage. 3) With regard to MIX variable, the 

Figure 4. Scale effect on the results of geographical detector (PD values and the ranks of factors).
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relative importance decreases with the increase of grid scale, when the scale is less than 
600 m. It hints that the land use mixture planning at a smaller spatial unit is more 
meaningful to promote dockless bike-sharing use. 4) For POP and METRO factors, the 
relative importance decreases with increasing grid size, when the scale is more than 
600 m. This suggests urban planners to pay much attention on the planning of these two 
factors at grid size less than 600 m.

Second, the scale effect was also tested to help choose the appropriate spatial scale for 
the influencing mechanisms analysis in the next sections. Taking both PD values and their 
ranks into consideration and comparison, 600 m was determined as the spatial scale to 
analyze the individual and interactive factors of dockless bike-sharing usage which is 
helpful for bike rebalance strategy for three reasons. Firstly, the growth rate of PD values is 
relatively high with grid scale smaller than 600 m, while it begins to slow down with grid 
scale larger than 600 m (Figure 4(a)). Secondly, the ranks of PD values experience great 
changes with grid scale smaller than 600 m, and then tend to be relatively stable when 
scale is smaller than 600 m (Figure 4(b)). Thirdly, as a type of human mobility behaviors, 
bike-sharing usage and its mechanism study should be based on a possibly fine scale level 
to better characterize the built environment accurately, while oversized grid scales might 
hide some realistic spatial heterogeneity of dockless bike-sharing usage.

For zoning effect, the PD values differ as classification method changes. Table 2 shows 
different PD values with various kinds of zoning methods, and the results of zoning effect 
that the natural break method is the optimal zoning method with highest PD values, 
followed by equal break and quantile method. The geographical detector model is based 
on the spatial variance analysis, and the natural break is the method designed to define 
the optimal arrangement of values into different intervals by minimizing each interval’s 
average deviation within class and maximizing it between classes. Arbitrary zoning 
methods might mislead the actual relationship between geographical phenomena and 
its influencing factors (Hu et al. 2011). Previous studies noted that various methods can be 
used to classify numerical variables into type variables in the data processing of the 
geographical detector, and the criteria to select the optimal zoning method are the PD 
values of the results (Wang et al. 2010). Hence, the natural break method was selected as 
the zoning methods in the following analysis.

Table 2. The zoning effect of the geographical detector.
Category Variable Range Cutting values Method PD value

Accessibility Metro [10.19, 43.6] 5.1, 11.3, 19.1, 29.5, 43.6 NB 0.2933
8.9, 17.6, 26.3, 34.9, 43.6 EI 0.2350

1.9, 4.8, 9.2, 16.5, 43.6 QU 0.2445
Facilities Work [0, 768] 33, 101, 198, 383, 768 NB 0.2342

153.6, 307.2, 460.8, 614.4, 768 EI 0.2101
0, 8, 42, 98, 768 QU 0.2270

Land use Mix [0, 1] 0.17, 0.50, 0.68, 0.84, 1 NB 0.1178
0.2, 0.4, 0.6, 0.8, 1 EI 0.1013

0, 0.58, 0.73, 0.84, 1 QU 0.1003
Population Pop [0, 239.3] 14.2, 38.4, 70, 116.1, 239.3 NB 0.3143

47.9, 95.7, 143.6, 191.4, 239.3 EI 0.2151
1.0, 9.9, 27.5, 55.8, 239.3 QU 0.2259
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4.2. How are the interactive effects of BE factors on dockless bike-sharing usage 
compared with the single effect?

The factor detector was conducted to examine the relative importance (single effect) of the 
BE factors to dockless bike-sharing usage. Figure 5 shows and compares the PD values of 
origin and destination of different periods on weekdays and the weekend, from which we 
get some findings as following. First, regarding facility variables, there are significant 
differences in their PD values for different periods. On weekdays, the PD value of LIVING 
on origin is higher than that on destination at morning peak and noon period, while it is 
higher on destination at evening peak and night period. Differently, on weekend, the PD 

Figure 5. The PD values of factors of different period on weekday and weekend.
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value of LIVING is higher on origin for all the periods except night time. This indicates that 
on workdays, the commuting travel time of residents is relatively regular. On weekend, 
residents tend to be more available and flexible to start to use bike-sharing near living 
facilities before night time. These results match human daily activities and travel behaviors, 
which are consistent with our common knowledge. Second, in terms of the three accessi-
bility variables (METRO, BUS, ROAD), METRO shows the strongest impact on the usages of 
dockless bikes including both origin and destination, as expected. It hints that transfer with 
metro is the main transfer mode of dockless bike-sharing usage in Shenzhen, rather than 
transfer with bus. This corresponds well with previous case studies in New York (Faghih- 
Imani and Eluru 2015), Seoul (Kim et al. 2012) and Saint Paul, Minnesota (Wang et al. 2016a), 
which confirms a commonly existing phenomenon in many metropolises that the accessi-
bility of metro stations is positively correlated with bike-sharing usage. However, like the 
previous studies, it is difficult to provide further information about the influence mechan-
isms of dockless bike-sharing usage just through the individual impact of METRO factor. This 
suggests further research on the interactive effects of METRO and other facility variables.

The interaction detector was further applied in the study with a superior advantage of 
quantifying the interactive influence of factors on dockless bike-sharing usage. In this 
study, 28 pairs of interactions were calculated between eight factors, and the top three 
interactions of four periods on weekdays (Table 3) and weekend (Table 4) were presented. 
The strongest three interactions for each period are mainly the METRO interacting with 
facility factors which vary in terms of day of week, time of day and origin or destination. 
However, it should be noted that we will not compare the differences of the interaction 

Table 3. The interactive detector results of factors on weekdays.

Days Time
O/ 
D Ranks Factors

Interactive 
PD

Enhancement with 
METRO compared 

with the single 
effect

Weekdays 8–9am O 1 REC ∩ METRO 0.424 70.93%
2 LIVING ∩ METRO 0.421 36.38%
3 POP ∩ LIVING 0.400 /

D 1 WORK ∩ METRO 0.344 84.48%
2 REC ∩ METRO 0.333 82.51%
3 POP ∩ METRO 0.322 35.13%

12–13pm O 1 REC ∩ METRO 0.469 70.02%
2 WORK ∩ METRO 0.468 77.85%
3 LIVING ∩ METRO 0.450 43.17%

D 1 REC ∩ METRO 0.431 74.30%
2 LIVING ∩ METRO 0.427 41.21%
3 WORK ∩ METRO 0.420 88.74%

18–19pm O 1 WORK ∩ METRO 0.427 72.13%
2 POP ∩ METRO 0.402 28.33%
3 REC ∩ METRO 0.400 78.72%

D 1 LIVING ∩ METRO 0.396 41.86%
2 REC ∩ METRO 0.386 82.10%
3 POP ∩ METRO 0.377 29.56%

21–22pm O 1 REC ∩ METRO 0.485 62.50%
2 LIVING ∩ METRO 0.449 39.42%
3 POP ∩ REC 0.447 /

D 1 LIVING ∩ METRO 0.441 33.44%
2 POP ∩ LIVING 0.427 /
3 REC ∩ METRO 0.420 70.67%
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PD values of the same interactive factors in different periods, as the fact of the usage as 
well as the spatial characteristics of dockless bike-sharing usually vary with time. For 
example, it can be found that the interactive PD value of ‘METRO∩WORK’ is higher for bike 
destination (D) at morning peak time on weekend (0.372, in Table 4) than that on week-
days (0.344, in Table 3). This implies that 37.2% of the spatial distribution of bike destina-
tion at morning peak time on weekend is consistent with that of WORK factor interacting 
with METRO, whilst 34.4% of that at morning peak time on weekend is consistent with 
that of WORK factor interacting with METRO. However, we must realize that the bike 
usage is much lower on weekend than weekdays, and the spatial distribution is also quite 
different between different periods. Hence, we focus on what factors interact better in the 
same period, from which we get some interesting findings as following.

First, regarding morning-peak of weekdays, the largest interaction for bike origin is REC 
interacting with METRO, followed by LIVING interacting with METRO. Although REC has 
relative lower PD value than LIVING and METRO from the single factor detector results, the 
interactive effect of METRO and REC factor get 70.93% enhancement compared with the 
single effect. It was noted that the restaurant POI accounts for over 77% of the REC data we 
used. This may imply that in addition to residential areas, the areas with high dense of 
restaurants around metro stations are usually in high demand at morning peak on week-
days, which should not be neglected when relocating bikes. Additionally, though WORK 
factor does not show very important influence on bike destination from the single factor 
detector results, the strongest interaction for bike destination is WORK interacting with 
METRO, followed by REC interacting with METRO. This indicates that available bikes from 

Table 4. The interactive detector results of factors on weekend.

Days Time O/D Ranks Factors
Interactive 

PD

Enhancement 
with METRO 

compared with 
the single effect

Weekend 8–9am O 1 REC ∩ METRO 0.392 68.19%
2 LIVING ∩ METRO 0.387 34.80%
3 POP ∩ LIVING 0.355 /

D 1 REC ∩ METRO 0.394 75.29%
2 LIVING ∩ METRO 0.379 46.47%
3 WORK ∩ METRO 0.372 103.48%

12–13pm O 1 REC ∩ METRO 0.505 68.38%
2 LIVING ∩ METRO 0.497 38.81%
3 POP ∩ LIVING 0.460 /

D 1 LIVING ∩ METRO 0.448 38.70%
2 REC ∩ METRO 0.446 70.53%
3 POP ∩ LIVING 0.405 /

18–19pm O 1 REC ∩ METRO 0.486 67.29%
2 LIVING ∩ METRO 0.458 42.82%
3 WORK ∩ METRO 0.444 92.36%

D 1 LIVING ∩ METRO 0.419 37.88%
2 REC ∩ METRO 0.415 71.52%
3 POP ∩ LIVING 0.391 /

21–22pm O 1 REC ∩ METRO 0.469 60.72%
2 LIVING ∩ METRO 0.442 37.30%
3 POP ∩ LIVING 0.424 /

D 1 LIVING ∩ METRO 0.446 38.44%
2 REC ∩ METRO 0.422 44.54%
3 POP ∩ LIVING 0.418 /
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other places should be relocated to those metro stations with high dense of companies and 
restaurants around before morning peak.

Second, in terms of the noon period of weekdays, over 40% of the spatial distribution of 
bike usage (origin/destination) is consistent with that of three facility factors intersecting 
with METRO. The interactive effect of REC and METRO as well as that of WORK and METRO 
get greatly improved, although the individual effects of REC and WORK are much lower than 
LIVING. This interactive result indicates that the areas with high dense of these three facilities 
around metro stations should not be ignored for bike relocating at noon of weekdays.

Third, the top three interactions for bike origin (destination) at evening peak time of 
weekdays is similar to those for bike destination (origin) at morning peak time. The bike 
rebalance strategy for evening peak should be the opposite of that for morning peak. It 
should be noted that we could not only focus on the restaurant POI of REC factors for 
evening peak. Other retail, recreational POI also should be paid attention to when 
relocating bikes at evening peak time.

Fourth, regarding the night time for weekdays, though the individual effect of REC is 
lower than LIVING, it shows great interactive enhancement of REC with METRO both for 
bike origin and destination. Additionally, ‘POP ∩ REC’ and ‘POP ∩ LIVING’ are the strong 
interactions for bike origin and destination respectively. This suggests the operators to 
pay more attention on high density areas of recreational facilities around metro stations, 
high density of population and recreational facilities, high density of residential facilities 
and population, as well as the metro station exits with high dense of recreational facilities 
around, as these areas are usually in high demand for bike trips at night time.

Last, for weekend, ‘REC ∩ METRO’ and ‘LIVING ∩ METRO’ are two strongest interactions 
for all the four periods. This indicates that available bikes should be relocated at the high- 
density area of living or recreational facilities around metro for weekend. It can be found 
that the interactive effect of WORK and METRO for bike destination at morning peak of 
weekend enhances by over 100% compared with the single effect of WORK, although this 
interactive PD value ranks third in this period. Similarly, WORK ∩ METRO is the third 
strongest interaction for bike origin at evening peak of weekend, but the interactive PD 
value is 92.36% higher than the individual effect of WORK. These findings imply overtime 
working phenomenon on weekend in Shenzhen. Moreover, the results also imply that the 
people who work overtime on weekend still rely on metro and connecting dockless 
bicycle when there is a metro station near the company. Hence, the need of dockless bike- 
sharing usage for commuting should not be ignored at the peak time on weekend.

5. Conclusions and future work

This study employed the geographical detector model to examine the influencing mechan-
isms of BE factors on the usage of dockless bike-sharing, so as to provide insights into land 
use planning and dockless bike rebalance strategy. The major contributions and findings 
from this study can be summarized as follows: (1) To test the MAUP in BE-related bike- 
sharing studies, the scale effect and zoning effect were conducted to explore the effect of 
MAUP in the influences of built environment factors on dockless bike-sharing usage. (2) This 
study proves that the geographical detector is an effective method for examining the 
interactive effects of built-environment factors on dockless bike-sharing travel. This method 
can be employed to other BE-travel behavior relationship studies with careful consideration.
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Some interesting findings were generated from the present study, which can provide 
decision-support for urban planning and bike rebalance. First, the results of MAUP effect 
revealed that the influence of most BE variables, such as METRO, WORK, LIVING, REC, MIX 
and POP, are sensitive to the spatial areal units. This suggests urban planners who aim to 
promote dockless bike-sharing usages to pay more attentions on the spatial scale in the 
planning of these built-environment factors. The inconsistent results in the relative 
importance of these factors with different grid scales could inform urban planners what 
built-environment factors should be paid more attention to at certain spatial scale. 
Second, the comparisons between individual effect and interactive effect confirm the 
importance of interacting effect for bike rebalance strategy, as the individual effect is not 
sufficient. The results revealed some interesting findings, which have not been explored in 
previous studies and have provided valuable insights into bike rebalance for such an 
innovative and high-density metropolis in China.

The study proves that the MAUP does affect the dockless bike-sharing usage mechan-
ism modeling results. The key to determining the most suitable areal unit for data 
aggregation and modeling with geographical detector model is to understand the 
changes of trend and characteristics of the modeling results (level of PD value and its 
relative stability) with different areal units. This study contributes to the existing literature 
of travel behavior and human mobility analysis by applying the geographical detector 
model in mechanism analysis with careful consideration of MAUP. A suitable and mean-
ingful spatial areal unit for analyzing the effects of built-environment factors on dockless 
bike-sharing usage in Shenzhen might be 600 m scale grid. Though it would vary in 
different case study around the world, the procedure to select the suitable and mean-
ingful spatial areal unit scale in this study could provide scientific basis for related analysis.

Despite the merits of this study, we have to acknowledge some limitations which 
remain to be addressed in future research. First, the BE factors that may affect dockless 
bike usage for physical purposes have not been considered in this work. In the future, this 
work should be extended by obtaining additional variables such as sports facilities, and 
greenways, to reveal their relationships with dockless bike usage. Second, the influence 
mechanisms of dockless bike-sharing have been analyzed from a spatial perspective, and 
bike scheduling suggestions have been put forward in this study. Future studies should 
be further performed to build a direct forecasting model to provide quantitative details 
for the dynamic spatial scheduling of dockless bike-sharing.
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