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The discovery of cause–effect relationships helps to understand the natural or 

physical mechanism[1]. Causation inference is a key issue in many disciplines and has 

a long study history, especially in statistics, social, and biomedical sciences[2]. In 

Earth System Sciences, the cause–effect relationship also plays a fundamental role 

and has drawn increasing interests. However, for spatially large-scale research, it is 

not feasible to design and conduct controlled experiments to reveal the cause–effect 

relationships. Therefore, causation inference from time series data has been frequently 

employed, under the assumption that the cause precedes the effect [3]. While the 

temporal inference works effectively to identify most causation between variables, 

limitations remain. If the time series is not long enough to catch significant changes of 

causes and effects, some important cause–effect relationships may be neglected. This 

limitation is highlighted in Earth System Sciences, as the evolution of global changes 

may take an extreme long period to present discernible variations. For instance, the 

annually mean temperature in one area demonstrates very limited variations in 

decades, which is already a long period for Earth observation. On one hand, the 

causation between temperature and plant growth in this area can hardly be identified 

using temporal causation models, which mainly detect causation between two 

variables by examining the successive (or simultaneous) variations of one variable 
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induced by the variation of the other. On the other hand, the causal influence of 

temperature on plant growth has been well accepted [4,5] . So clearly, the temporal 

causality models are not a panacea to all causation inference scenarios. 

Given the research objects in Earth System Sciences, characterized with 

large-scale spatial distribution and the usual lack of complete time-series data, 

causation inference may be conducted from an alternative perspective to fully utilize 

the spatial differences. Specifically, while the variation of one variable may not be 

detected temporally, the wide distribution of this variable makes its variations easily 

recognized spatially. The general principle of causation inference from time series 

data is based on temporal change-response mechanisms. Likewise, spatial variations 

(the change of variables across spatial locations) and corresponding responses may 

also be employed for causation inference. In fact, there are some classic examples of 

causation inference according to spatial variations. The variations of animals in 

Galapagos Islands inspired Charles Darwin to develop the theory of evolution[6]. The 

latitudinal zonality reveals that different climate caused the variation of soil on the 

Earth, and longitudinal zonality reflects the influence of water on land cover and 

agriculture. In addition to these well-known cases, there have been massive studies in 

Earth System Sciences to quantify the coupling between two variables according to 

their spatial variations, yet most of them did not name the discovered relationship as 

causation[7, 8]. In summary, as illustrated in Fig. 1, the causation in Earth System 

Sciences could be inferred from the observed data, where the temporal fluctuation is 

one perspective, and the spatial variation is another perspective. If the observed time 

series is not sufficient to possess significant changes, causation inference from spatial 

variations is an alternative solution.

Fig.1 Causation inference in Earth System Sciences form the spatial and temporal 

perspective

To illustrate the prospect of spatial causation inference, we attempt to use the 

NPP (net primary production)-climate relationship, a clearly existing causation [5], as 



an instance to compare the effect of causation inference from a temporal and spatial 

perspective respectively. To reduce influence of different vegetation structures on 

NPP, we solely examined the NPP-climate causation in farmlands. Previous studies 

proved that water and temperature were the essential conditions for plant growth[4,5]. 

Specifically, crops can only grow at above-10 °C condition and the most suitable 

temperature for most crops is above 20 °C[4]. Meanwhile, water is necessary for 

photosynthesis and evapotranspiration, and is one main component for plants[5].

The annually average NPP data from 2000 to 2015, MOD17A3V055, with a 

spatial resolution of 1 km 

(http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/MOD17 A3/) were used as 

the effect variable. Corresponding annually average temperature (TEM) and 

precipitation (PRE) data with a spatial resolution of 1 km were used as the cause 

variables. The land use datasets of China in four periods (2000, 2005, 2010 and 2015) 

with 1 km spatial resolution were downloaded from Resource and Environment Data 

Cloud Platform (http://www.resdc.cn/). To reduce the influence of land use change, 

only those pixels of stable farmlands, which kept unchanged in all four periods, were 

employed as mask files to extract NPP, PRE and TEM in farmland. In addition to 1 

km grids, counties and cities were also used as spatial units to extract the causation 

between NPP and climate factors at larger spatial scales. The average NPP, PRE and 

TEM of each county and city were used as effect variable and cause variables, 

respectively. Meanwhile, the nationally averaged NPP, PRE and TEM were used for 

temporal causation inference. 

Three widely employed temporal causation models, Convergent Cross Mapping 

(CCM), Granger Causality Test (GCT) and Correlation Analysis (CA) with Pearson 

coefficients were used to infer causation of climate variables on NPP from a temporal 

perspective. Meanwhile, four widely employed spatial causation models, Structural 

Equation Modelling (SEM), CA, Partial Correlation Analysis (P-CA) and 

Geographical Detector (GD) were used to infer causation of climate data on NPP 

from a spatial perspective. 

Since the time lag may exert an influence on the extracted causation, we 
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experimented different time lags for these spatial and temporal models to identify the 

potential largest causation. For temporal models, we experimented a series of time 

lags. For spatial models, we also analyzed the lagging effects by setting a time lag 

between the PRE (TEM) and NPP, and thus establishing “lagged” cross sectional 

data. The general principle and algorithms of different models are introduced as 

follows: 

(i) Convergent Cross Mapping. CCM infers reliable causality between two 

variables by effectively removing the influence from other variables [9, 10]. It first 

constructs the shadow manifolds for variable x and y as formula (1) and (2): 

𝑀𝑥,𝑡 = [𝑥𝑡,𝑥𝑡 ― 𝜏,𝑥𝑡 ― 2𝜏,…,𝑥𝑡 ― (𝐸 ― 1)𝜏], (1)

where  is the shadow manifold of x at time t,  is the time lag, E is the number 𝑀𝑥,𝑡 𝜏

of dimensions, and  is the observed value of x at time t. 𝑥𝑡

𝑀𝑦,𝑡 = [𝑦𝑡,𝑦𝑡 ― 𝜏,𝑦𝑡 ― 2𝜏,…,𝑥𝑡 ― (𝐸 ― 1)𝜏], (2)

where  is the shadow manifold of y at time t.𝑀𝑦,𝑡

And then uses the shadow manifolds of x to predict the state of y and vice versa based 

on formula (3):

𝑀𝑦,𝑘0|𝑀𝑥 =
𝐸 + 1

∑
𝑖 = 1

𝑑(𝑀𝑥,𝑘𝑖,𝑀𝑥,𝑘0
)

∑𝐸 + 1
𝑗 = 1 𝑑(𝑀𝑥,𝑘𝑗,𝑀𝑥,𝑘0

)
𝑀𝑦,𝑘𝑖, (3)

where  is the predicted sate of y at time ,  is the distance 𝑀𝑦,𝑘0|𝑀𝑥 𝑘0 𝑑(𝑀𝑥,𝑘𝑖,𝑀𝑥,𝑘0
)

between two shadow manifold of x at time  and  and is calculated in formula 𝑘𝑖 𝑘0

(4):

𝑑(𝑀𝑥,𝑘𝑖,𝑀𝑥,𝑘0
) = exp( ―

‖𝑀𝑥,𝑘𝑖 ― 𝑀𝑥,𝑘0
‖

‖𝑀𝑥,𝑘1 ― 𝑀𝑥,𝑘0
‖), (4)

where  is the exponential function.exp

Finally, the correlation coefficient between the predicted states and the observed 

states after convergence is used to measure the causation effect as formula (5):

𝜌𝑥→𝑦 = lim
𝐿→ + ∞

cor(𝑀𝑦,𝑀𝑦|𝑀𝑥), (5)



where  is the causation effect of y on x,  is correlation function, and L is the 𝜌𝑥→𝑦 cor

size of sample. In this research, the optimal value of E was set as two according to the 

forecast skill. The library set and prediction set were set to be the same as the length 

of the time series. Finally, a leave-one-out strategy was employed for cross-validation. 

(ii) Granger Causality Test. GCT tests the significance of causality between 

variables according to the null hypothesis in formula (6), which reduces the full model 

in formula (7) to formula (8) [11]. If the null hypothesis cannot be denied,  can be 𝑥𝑡

stated as the Granger cause of .𝑦𝑡

𝐻0: 𝜔𝑖 = 𝜔2 = … = 𝜔𝑝 = 0, (6)

where  is the coefficient in the full model used to predict state of y at time t using 𝜔𝑖

the observations of previous y and x.

,𝑦𝑡 = 𝜑0 + ∑𝑝
𝑖 = 1𝜑𝑖𝑦𝑡 ― 𝑖 + ∑𝑝

𝑖 = 1𝜔𝑖𝑥𝑡 ― 𝑖 + 𝜖𝑡 (7)

where p is the number of time lags considered,  and  are coefficients,  is the 𝜑𝑖 𝜔𝑖 𝜖𝑡

error. 

,𝑦𝑡 = 𝜑0 + ∑𝑝
𝑖 = 1𝜑𝑖𝑦𝑡 ― 𝑖 + 𝜖′𝑡 (8)

where  is the new error. Through repeated experiments, the order of lags is set as 𝜖′𝑡

one in this research for the optimal effects.

    (iii) Structural Equation Modelling. SEM can test the causality represented by 

the graphical and mathematical models[12]. The measurement models are formula (9) 

and (10), and structural model is formula (11):  

𝑥 = 𝛬𝜉 + 𝜎, (9)

𝑦 = 𝛫𝜂 + 𝜖, (10)

𝜂 = 𝛣𝜂 + 𝛤𝜉 + 𝜁 , (11)

where x and y are observed exogenous variables and endogenous variables 

respectively.  and  are corresponding latent variables. , ,  and  are their 𝜉 𝜂 𝛬 𝛫 𝛣 𝛤

coefficients, while ,  and  are corresponding errors. In this research, NPP was 𝜎 𝜖 𝜁

treated as the endogenous variable while PRE and TEM were exogenous variables. 

Measurement errors were neglected. 



(iv) Geographical Detector. GD assumes that if the explanatory variable has a 

similar spatial distribution pattern with a target variable, we can suspect there exists 

cause–effect relationship. The q-value of the factor detector in formula (12) measures 

the similarity of spatial distribution pattern and its significance can be tested using the 

non-central F distribution [13]:

𝑞 = 1 ―
∑𝐻

ℎ = 1𝑛ℎ𝛿2
ℎ

𝑁𝛿2 ,  (12)

where  is the number of strata of explanatory variable,  is the size of the strata. 𝐻 𝑛ℎ

 is the variance of target variable within the strata,  is the global variance and 𝛿2
ℎ 𝛿2

 is the total size. In this research, K-Means was adopted to stratify PRE and TEM, 𝑁

and Elbow Method was used to get the optimal number of strata, which was set as 

three. 

Based on different models, the spatial distribution of temporal causation inference 

of NPP-climate is presented in Fig. S1 (online). It is seen that the causation detected 

by CCM, GCT and CA was neither significant nor consistent in most areas of China. 

For CCM, only a very small proportion of sparse spatial units presented significant 

causation between NPP and PRE (TEM). Although GCT and CA detected more 

spatial units with significant causation, the detected NPP-climate causation was 

relatively weak. In addition to causation inference at 1 km grid level, county level and 

city level, the causation of nationally averaged PRE and TEM on NPP was also 

examined using these temporal models (ρ for CCM, correlation coefficients r for CA 

respectively). As shown in Table S1 (online), except for the linear correlation between 

TEM and NPP, the NPP-climate causation inferred by other models was not 

significant. The spatial causation of NPP-climate inferred using different models (q 

value for GD, correlation coefficients r for CA, rp for P-CA, and causation effect e of 

SEM respectively) is presented in Fig. S2 (online) and Table S2 (online). All these 

models detected relatively strong and significant causation between NPP and PRE 

(TEM) from a spatial perspective. Specifically, q and r were notably larger than 

corresponding e and rp. Meanwhile, e and rp were calculated by removing the inner 

interactions between influencing factors and presented a direct causation between 
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NPP and PRE (TEM). Despite the notable differences between these model outputs, it 

is clear that NPP-climate causation, which is difficult to infer from a temporal 

perspective, can be effectively detected from a spatial perspective. 

Since Aristotle built the causality framework in 350 B.C., the disputes on whether 

causality can be comprehended have never stopped[14]. Causation models, which can 

quantify and compare the influence of multiple individual variables on specific 

environmental processes (e.g., atmospheric pollution and crop yields), have been 

increasingly employed in relevant studies. In most implementations, causation 

inference has been interpreted as temporal causation inference using such classic 

temporal models as CCM and GCT, while causation inference from a spatial 

perspective is rarely mentioned. However, the evolution of some subjects in the Earth 

System Sciences has a time span too long to be measured and recorded, or is too 

expensive to conduct continuous observations. For instance, the Earth’s climate has 

experienced long-term and dramatic changes during billions of years, yet climate 

monitoring started until the 18th century[15]. Therefore, notable climate changes in a 

specific area may not be observed in the available time series, and thus cannot present 

a casual influence on specific ecological issues. Thus under certain circumstances, it 

is difficult for causation inference from a temporal perspective. Meanwhile, the large 

area in geographical research possesses a significant variation of environmental 

processes across regions, which provides useful spatial information for potential 

causation inference. 

In the case study, the clearly existing NPP-Climate causation, which cannot be 

inferred by multiple temporal models, was detected effectively by spatial models. In 

other words, if the time series data are not sufficient, it is highly difficult to infer 

causation from a temporal perspective, yet it may be feasible for spatial causation 

inference. In addition to the casual influence of climate change on NPP, it is also 

challenging for establishing complete time series for a diversity of Earth system 

variables such as soil heavy metal pollution, vegetation succession, land deterioration 

and natural resource recovery. In this case, causation inference from a spatial 

perspective can be an important complement to temporal causation inference.



 For both spatial and temporal causation inference, it is crucial to reduce the 

influence of confounding variables. Generally, confounding variables for time series 

data are usually less than those confounding variables in spatial cross-section data. 

Accordingly, spatial causation inference based on cross-section data should be 

conducted with extra cautiousness. Identification and removal of the influence of 

confounding variables can be realized through well-designed analysis approaches, 

including the proper control of suspected confounding variables and the use of models 

that can measure influence of cause variable independently. For this research, 

precipitation and temperature interact with each other, and are thus confounding 

variables when calculating their causal influence on NPP. Among these employed 

models, CCM, GCT, SEM and P-CA are designed specifically to eliminate the 

influence from other variables. GD and CA mainly focus on the overall effects of one 

variable on the others. Despite the model differences, the consistent trend of 

multi-scale outputs from these models provided a robust cross-verification, suggesting 

the inferred strong causation between NPP and climate factors was generally reliable.

Strictly speaking, till now, there are neither temporal nor spatial statistical models 

that can directly infer causation based on the temporal or spatial variations of 

observed data. An alternative way is to firstly assume the causal relationship 

according to our existing scientific knowledge (e.g., biological or chemical 

experiments), and then leverage statistical methods and observed data to verify and 

measure the causal relationship[1]. In this research, although the diversity of temporal 

and spatial models holds different capability of suggesting and quantifying causation, 

the comprehensive outputs of multiple models demonstrated the feasibility and 

prospect of causation inference from a spatial perspective. 

Given the increasing demand of causation inference in Earth System Sciences and 

the limitation of existing spatial models, more emphasis should be placed on the 

development of more theoretically robust causation models. Firstly, not only the 

impact of multiple influencing factors on the target variable, sometimes the impact of 

the target variable in the neighborhood should also be comprehensively considered. In 

this research, NPP in the neighborhood exerted very limited influence on NPP in the 



target locations. However, for some spatial processes, such as the infectious diseases 

and airborne pollutants, their spatial spread can have a strong influence on the 

infectious diseases and airborne pollutants in the neighborhood. For causation 

inference in these complicated systems where strong self-interactions occur, spatial 

spillover effects should be added to existing causation models. Furthermore, extended 

spatiotemporal causation models, which can comprehensively consider the spatial 

distribution and temporal variations of variables, may be explored for better utilizing 

limited data sources in complicated causation inference.
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