
Received: 26 October 2020 Accepted: 23 October 2020 Published online: 6 April 2021

DOI: 10.1002/saj2.20189

N U T R I E N T M A N A G E M E N T & S O I L & P L A N T
A N A LY S I S

Improving the spatial prediction accuracy of soil alkaline
hydrolyzable nitrogen using GWPCA-GWRK

Jian Chen1,2 Mingkai Qu1,2 Jianlin Zhang1 Enze Xie1,2 Yongcun Zhao1,2

Biao Huang1,2

1 Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing

210008, China

2 University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China

Correspondence
Mingkai Qu, Key Laboratory of Soil Envi-

ronment and Pollution Remediation, Institute

of Soil Science, Chinese Academy of Sci-

ences, East Beijing Road 71, Nanjing 210008,

China.

Email: qumingkai@issas.ac.cn

Assigned to Associate Editor Carl Bolster.

Funding information
National Natural Science Foundation of

China, Grant/Award Number: 41771249;

National Key Research and Development

Program of China, Grant/Award Number:

2018YFC1800104; Institute of Soil Science,

Chinese Academy of Sciences, Grant/Award

Number: ISSASIP1623; Youth Innovation

Promotion Association, CAS, Grant/Award

Number: 2018348

Abstract
Principal component analysis-multiple linear regression (PCA-MLR) is usually used

to weaken the multi-collinearity effects among auxiliary variables in a regression pre-

diction. However, both PCA and MLR in this model are only built on variable space

rather than geographical space. When used in the spatial prediction of soil proper-

ties, PCA-MLR usually cannot effectively capture the spatially non-stationary struc-

tures among auxiliary variables and spatially non-stationary relationships between

the target variable and principal component scores. Moreover, PCA-MLR may ignore

the potentially valuable regression residual. To address these limitations, this study

first proposed geographically weighted principal component analysis-geographically

weighted regression kriging (GWPCA-GWRK) for the spatial prediction of soil

alkaline hydrolyzable nitrogen (AN) in Shayang County, China. Then, the spa-

tial prediction accuracy of GWPCA-GWRK was compared with those of the fol-

lowing five models: ordinary kriging (OK), co-kriging (CoK), PCA-MLR, PCA-

graphically weighted regression (PCA-GWR), and GWPCA-GWR. Results showed

that (i) eight variables were determined as auxiliary data by a geodetector; (ii) the spa-

tially non-stationary relationships among the eight auxiliary variables were revealed

by the results of the local correlation analysis, Monte Carlo test, and GWPCA;

(iii) GWPCA-GWRK provided the lowest prediction error (RMSE = 18.80 mg

kg−1, MAE = 12.79 mg kg−1) and highest Lin’s concordance correlation coef-

ficient (LCCC; 0.75); (iv) relative improvement accuracies over the traditionally-

used OK were 19.74% for GWPCA-GWRK, 16.42% for GWPCA-GWR, 8.09% for

Abbreviations: ACu, available copper; AFe, available iron; AMn, available manganese; AN, alkaline hydrolyzable nitrogen; AS, available sulfur; ASi,

available silicon; AZn, available zinc; CEC, cation exchange capacity; CV, coefficient of variation; GWPCA, geographically weighted principal component

analysis; GWR, geographically weighted regression; LCCC, Lin’s concordance correlation coefficient; MAE, mean absolute error; MLR, multiple linear

regression; PCA, principal component analysis; RI, relative improvement accuracy; RMSE, root mean square error; SD, standard deviation; SOM, soil organic

matter; TK, total potassium; TN, total nitrogen; TP, total phosphorus.
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PCA-GWR, −3.67% for PCA-MLR, and 4.70% for CoK. It is concluded that the pro-

posed GWPCA-GWRK model is an effective spatial predictor, which can adequately

extract the main information of the multiple auxiliary variables in a large-scale area.

1 INTRODUCTION

In the agricultural ecosystem, soil alkaline hydrolyzable nitro-

gen (AN) is one of the most important indicators of soil qual-

ity, and its content is the key to precision fertilization (Huang

et al., 2007; Zhu, Wen, & Freney, 1997). Excessive fertiliza-

tion will lead to the accumulation of N in the soil, and surplus

soil N may migrate with surface runoff into the waterbodies,

thereby negatively affecting aquatic ecosystems (Howarth &

Marino, 2006; Wang, Zhang, & Huang, 2009). Therefore, an

accurate spatial distribution pattern of soil AN is important

for implementation of precision fertilization and environmen-

tal protection.

When multiple environmental factors are closely related to

the target variable, these environmental factors usually can

be used as auxiliary information for spatial prediction in the

models, such as multiple linear regression (MLR), regression

kriging (RK) (e.g., Hengl, Heuvelink, & Stein, 2004; Piccini,

Marchetti, & Francaviglia, 2014), CoK (e.g., Knotters, Brus,

& Voshaar, 1995), GWR (e.g., Qu, Wang, Huang, & Zhao,

2018; Song et al., 2016; Wang, Zhang, & Li, 2013), and

GWRK (e.g., Kumar, Lal, & Liu, 2012a; Yang et al., 2019).

For CoK, combining multiple auxiliary variables usually can-

not further improve the spatial prediction accuracy because

of the influence of the redundant information between

auxiliary variables, cumulative fitting errors of variograms,

and so on (Goovaerts, 1997). The regression models are

usually adopted to incorporate multiple auxiliary variables

to enhance the spatial prediction of the target variable. When

there are multi-collinearity effects among the auxiliary

variables, PCA-MLR, also known as principal components

regression, is often used (e.g., Guo et al., 2018; Zhai et al.,

2018). Principle component analysis (PCA) can transform

the raw auxiliary variables into several sets of orthogonal

principal component (PC) scores, thereby weakening the

information redundancy among the raw auxiliary variables

(Philippi, 1993). However, in the actual large-scale field

environment, the relationships among the auxiliary variables

generally vary with spatial location because of the effects

of natural (e.g., terrain, soil types, and parent material) and

human factors (e.g., land management) (Schleus, Wu, &

Blume, 1998; Zhao et al., 2010). Traditionally-used PCA,

only built on variable space, usually cannot effectively extract

the information about spatially non-stationary relationships

among the multiple auxiliary variables, and may further

affect the spatial prediction accuracy of PCA-MLR.

Geographically weighted principal component analysis

(GWPCA) is a spatial form of PCA, where the local variance-

covariance matrix of the auxiliary variables is calculated

based on the multivariate auxiliary dataset in the vicinity of

each calibration location (Fotheringham, Brunsdon, & Charl-

ton, 2002; Harris, Brunsdon, & Charlton, 2011). Therefore,

the geographically-weighted PC (GWPC) scores, as part of

the outputs of GWPCA, contain the structured information

about the local relationships among the raw auxiliary vari-

ables at each location. The GWPCA was first used by Lloyd

(2010) to investigate the spatial structures among the popula-

tion in Northern Ireland. However, to the best of the authors’

knowledge, GWPCA has rarely been used for improving

the spatial prediction accuracy of soil properties. Given the

spatially non-stationary relationships among the multiple

auxiliary variables, GWPCA may be a more effective tool

than PCA for extracting the spatially structured information

among the multiple auxiliary variables prior to the regression

prediction.

Traditionally used MLR, also only built on variable

space, cannot effectively capture the spatially non-stationary

relationships between the target variable and independent

variables in geographical settings. GWR is a spatial local

regression technique, and its local regression coefficients

are calculated based on the multivariate auxiliary dataset in

the vicinity of the calibration locations (Fotheringham et al.,

2002). Therefore, compared with MLR, GWR may be more

effective in revealing the spatially non-stationary relation-

ships. Since it is impossible to incorporate all factors related

to the target variable into the regression prediction, there may

be some valuable information in the regression residual. In

this case, GWRK, which is the sum of the GWR-predicted

value and the kriging-predicted residual, may be a valuable

tool (Kumar et al., 2012a; Yang et al., 2019).

Moreover, the selection of high-quality auxiliary variables

is critical to the spatial prediction. Geodetector, a spatial sta-

tistical model, can test the spatial correlation between the

target variable and potential auxiliary variable without lin-

ear correlation assumption (Wang et al., 2010). The implicit

assumption in geodetector is the following: if the poten-

tial auxiliary variable X is associated with target variable

Y, then Y would show a similar spatial distribution to X.

Moreover, geodetector has no normal distribution require-

ments for data (Wang et al., 2010). Therefore, geodetec-

tor provides an effective tool for the selection of auxiliary

variables.
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In this study, the specific objectives were to (i) reveal

the spatially non-stationary relationships among the auxiliary

variables; (ii) propose GWPCA-GWRK for the spatial pre-

diction of soil AN; and (iii) compare the spatial prediction

accuracy of GWPCA-GWRK with those of the following five

models: OK, CoK, PCA-MLR, PCA-GWR, and GWPCA-

GWR. The goal is to recommend a high-precision spatial pre-

diction model that can effectively incorporate multiple auxil-

iary variables with spatially varying relationships.

2 MATERIALS AND METHODS

2.1 Study area and data sources

The study area is Shayang County (30˚23′–30˚55′N, 112˚02′–

112˚42′E), a typical agricultural region in Central China, with

an area of 2044 km2 (Figure 1). The terrain of this county is

mainly dominated by plains, and only parts of the north are

low hills. Due to long-term paddy cultivation, the dominant

soil type in Shayang County is Hydragric Anthrosols (World

Reference Base Soil Taxonomy) (IUSS Working Group WRB,

2014), mainly located in the central and western part of this

county.

Six hundred and fifty-eight topsoil samples (0–20 cm)

were collected in this county in October and November 2007

(Figure 1). Each sample was comprised of five subsamples

within an area of approximately 0.1 ha surrounding a spe-

cific sampling location, and the diameter of each soil core

was about 10 cm. All sampling sites were geo-located using a

hand-held global position system receiver. Soil samples were

air-dried, ground, and sieved for chemical analysis.

Soil AN was determined by the method of Lu (2000).

Briefly, 1.0 mol L−1 NaOH was used to hydrolyze the soil,

and H3BO3 was used to absorb the distilled NH3. The AN

Core Ideas
∙ Spatially varying relationships among the auxiliary

data were revealed by GWPCA.

∙ GWPCA-GWRK was proposed to utilize auxiliary

data fully in the spatial prediction.

∙ GWPCA-GWRK obtained higher prediction accu-

racy than OK, CoK, PCA-MLR, PCA-GWR, and

GWPCA-GWR.

concentration was determined by back titration of H3BO3

with dilute H2SO4. In addition to soil AN, twelve other soil

properties that may be potentially related to soil AN are also

analyzed. Soil organic matter (SOM) was measured using the

Walkley-Black method (Lu, 2000). Soil total nitrogen (TN)

was determined using the Kjeldahl method (Lu, 2000). Soil

pH was determined in a ratio of 1:2.5 soil/water suspension

with a pH meter (pHs-3C). Cation exchangeable capacity

(CEC) was measured by titrating distilled ammonium in soils

in which cations were exchanged with ammonium acetate

(Lu, 2000). For soil total potassium (TK) and phosphorus

(TP), the soil samples were digested using an acid mixture

of HF-HClO4-HCl, then TK and TP in solution were deter-

mined using the flame photometry and colorimetric method,

respectively (Lu, 2000). Soil available copper, zinc, iron, and

manganese (ACu, AZn, AFe, and AMn) were first extracted

with diethylenetriaminepentaacetic acid (DTPA) (Lindsay &

Norvell, 1978), and then their concentrations were determined

with flame atomic absorption spectrometry. Soil available sil-

icon (ASi) was extracted with acid sodium acetate (Lu, 2000).

Soil available sulfur (AS) was extracted with phosphate (Lu,

2000).

F I G U R E 1 Study area and sample sites in Shayang County, Hubei Province, China

Note. Soil alkaline hydrolyzable nitrogen (AN) in the Sample Set I was used for model calibration; soil AN in the Sample Set II was used for model

validation
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2.2 Modeling process and data utilization

Firstly, geodetector was used to determine the auxiliary vari-

ables for spatial prediction of soil AN. Secondly, GWPCA was

applied on the total sample points (n = 658) to obtain the cor-

responding GWPC scores, then the scores on the soil sample

points were interpolated into the surfaces of GWPC scores.

Thirdly, GWPCA-GWRK was constructed to predict the spa-

tial distribution of soil AN based on soil AN in the Sample

Set I (n = 250) and the surfaces of GWPC scores. Lastly,

the spatial prediction accuracy of GWPCA-GWRK was com-

pared with those of OK, CoK, PCA-MLR, PCA-GWR, and

GWPCA-GWR based on 408 pairs of the predicted and mea-

sured soil AN concentration in the sample set II.

2.3 Geodetector

Geodetector, a spatial variance analysis method, has been

widely applied to test the spatial correlation between target

variable (i.e., soil AN) and potential auxiliary variables (i.e.,

12 other soil properties in this study) (Wang, Zhang, & Fu,

2016). The degree of spatial correlation can be measured by

the q-statistic, which is related to the ratio of the weighted sum

of local variance (weighted by the number of samples in each

strata) to the global variance (Wang et al., 2010):

𝑞𝑥 = 1 −
∑𝐿

ℎ=1𝑁ℎσ2ℎ
𝑁σ2

, (1)

where 𝐿 is the number of strata of a potential auxiliary vari-

able 𝑥; 𝑁 is the number of soil samples in the entire study

area; 𝑁ℎ is the number of soil samples in strata ℎ; σ2 is the

variance of soil AN in the entire region; σ2
ℎ

is the variance of

soil AN in strata ℎ. If the spatial distribution of the potential

auxiliary variable 𝑥 is completely consistent with that of soil

AN, local variance is 0 and 𝑞𝑥 = 1; If the spatial distribution

of a potential auxiliary variable 𝑥 is completely irrelevant to

that of soil AN, local variance is 1 and 𝑞𝑥 = 0. In general, the

larger the q value, the more similar the spatial distribution of

soil AN and that of the impact factors is.

2.4 Geographically weighted principal
component analysis-geographically weighted
regression kriging (GWPCA-GWRK)

GWPCA-GWRK is the hybrid model of GWPCA and

GWRK. First, GWPCA was conducted to explore the spa-

tially varying structures among the multiple auxiliary vari-

ables through the percentage of total variation (PTV) and win-

ning variables, and further transform the multiple auxiliary

variables into the orthogonal GWPC scores. Then, the GWPC

scores were interpolated into auxiliary surfaces for spatial pre-

diction. This model mainly involves the following steps:

(i) to calculate the geographically weighted (GW) variance-

covariance matrix. GWPCA involves regarding a vec-

tor of auxiliary variables 𝑥𝑖 as conditional on its posi-

tion (𝑢𝑖, 𝑣𝑖) and conceptualizing the mean vector and

variance-covariance matrix as position functions. That is,

𝛍(𝑢𝑖, 𝑣𝑖) and 𝚺(𝑢𝑖, 𝑣𝑖) are the GW mean vector and the

GW variance-covariance matrix, respectively. Geographi-

cally weighted variance-covariance matrix is expressed as

(Fotheringham et al., 2002):

𝚺
(
𝑢𝑖, 𝑣𝑖

)
= 𝐗T𝐖

(
𝑢𝑖, 𝑣𝑖

)
𝐗, (2)

where 𝐗 is the 𝑛 × 𝑚 matrix of auxiliary variables, with n
the number of sampling sites within the bandwidth and m
the number of the auxiliary variables; 𝐖(𝑢𝑖, 𝑣𝑖) is the diag-

onal matrix of the spatial weighted matrix generated by the

bi-square weight function with the adaptive bandwidth.

(ii) to obtain the GW scores matrix. The variance-covariance

matrix was decomposed to obtain GW eigenvalues and

GW eigenvectors. The GWPC can be written as (Fother-

ingham et al., 2002):

𝐋
(
𝑢𝑖, 𝑣𝑖

)
𝐕
(
𝑢𝑖, 𝑣𝑖

)
𝐋
(
𝑢𝑖, 𝑣𝑖

)T = 𝚺
(
𝑢𝑖, 𝑣𝑖

)
, (3)

where 𝐋(𝑢𝑖, 𝑣𝑖) and 𝐕(𝑢𝑖, 𝑣𝑖) represent the local eigenvectors

and the diagonal matrix of local eigenvalues, respectively.

Then, the GWPC scores matrix 𝐒(𝑢𝑖, 𝑣𝑖) can be calculated

based on the local eigenvector matrix as follows:

𝐒
(
𝑢𝑖, 𝑣𝑖

)
= 𝐗𝐋

(
𝑢𝑖, 𝑣𝑖

)
, (4)

where the ith row of GWPC scores were obtained by the prod-

uct of the ith row of the auxiliary variable’s matrix with the

local eigenvectors for the ith location. At each target location

for GWPCA with m variables, there are m components, m
eigenvalues, m sets of loadings (each of size 𝑚 × 𝑚), and m
sets of GWPC scores (each of size 658 × 𝑚 in this study). For

the m sets of GWPC scores, the scores fully corresponding to

their location were extracted as the independent variables in

GWPCA-GWR and GWPCA-GWRK.

(iii) to run GWR with soil AN as the dependent variable

and the GWPC scores as the independent variables.

GWPCA-GWR is expressed as:

𝑦GWPCA−GWR

(
𝑢𝑖, 𝑣𝑖

)
= β0

(
𝑢𝑖, 𝑣𝑖

)
+

𝑝∑
𝑘=1[

β𝑘
(
𝑢𝑖, 𝑣𝑖

)
× GWPCS𝑘

(
𝑢𝑖, 𝑣𝑖

)]
, (5)
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where 𝑦GWPCA−GWR(𝑢𝑖, 𝑣𝑖) and GWPCS𝑘(𝑢𝑖, 𝑣𝑖) are the

dependent variable and the kth independent variable, respec-

tively, at the location (𝑢𝑖, 𝑣𝑖); β0(𝑢𝑖, 𝑣𝑖) and β𝑘(𝑢𝑖, 𝑣𝑖) are the

local intercept and the kth regression coefficient, respectively.

In matrix form, the local regression coefficients of GWPCA-

GWR are estimated using the weighted least squares model

(Fotheringham et al., 2002):

�̂�
(
𝑢𝑖, 𝑣𝑖

)
=
[
(𝐆𝐖𝐏𝐂𝐒)T𝐖

(
𝑢𝑖, 𝑣𝑖

)
(𝐆𝐖𝐏𝐂𝐒)

]−1
(𝐆𝐖𝐏𝐂𝐒)T𝐖

(
𝑢𝑖, 𝑣𝑖

)
𝐘, (6)

where𝐆𝐖𝐏𝐂𝐒 and𝐘 represent𝑚 × (𝑝 + 1) the design matrix

of the independent variables (i.e., GWPC scores) and the

(𝑛 × 1) design vector of the dependent variable (i.e., soil AN),

respectively. The kernel functionW(𝑢𝑖, 𝑣𝑖) used in GWR is the

same as that used in GWPCA.

(iv) to combine the OK-interpolated regression residual. The

GWPCA-GWRK model is as follows:

𝑦∗
GWPCA−GWRK

(
𝑢𝑖, 𝑣𝑖

)
= 𝑦∗

GWPCA−GWR

(
𝑢𝑖, 𝑣𝑖

)
+ 𝑟∗OK

(
𝑢𝑖, 𝑣𝑖

)
, (7)

where 𝑦∗
GWPCA−GWRK

(𝑢𝑖, 𝑣𝑖) and 𝑦∗
GWPCA−GWR

(𝑢𝑖, 𝑣𝑖)
are the soil AN data predicted by GWPCA-GWRK and

GWPCA-GWR, respectively, at (𝑢𝑖, 𝑣𝑖); 𝑟∗OK(𝑢𝑖, 𝑣𝑖) is the

regression residual predicted by OK.

For GWPCA-GWRK, GWPCA can be replaced by basic

PCA, and GWRK can be replaced by basic GWR or MLR.

Details about GWPCA, GWRK, and GWR were described in

Harris et al. (2011), Kumar et al. (2012a), and Fotheringham

et al. (2002), respectively.

2.5 Classic geostatistics

As a classic geostatistical model, OK has been widely adopted

in the spatial prediction of soil properties, and it was used as

a reference model in this study. When the auxiliary variable

with a higher sample density is significantly correlated with

the target variable, the prediction accuracy of CoK is usually

higher than that of OK (Knotters et al., 1995). Therefore, CoK

was also adopted to predict the spatial distribution of soil AN

in this county. A detailed description of OK and CoK can be

found in Goovaerts (1997).

2.6 Evaluation criteria

To evaluate the spatial prediction accuracies of the six models

(i.e., OK, CoK, PCA-MLR, PCA-GWR, GWPCA-GWR, and

GWPCA-GWRK), this study calculated LCCC (Lin, 1989),

mean absolute error (MAE), and root mean square error

(RMSE) based on 408 pairs of the measured and predicted

AN concentration (i.e., the sample set II) (Figure 1). The cal-

culation equations above three indices were as follows:

MAE = 1
408

408∑
𝑖=1

|||𝑧
(
𝑢𝑖, 𝑣𝑖

)
− 𝑧∗

(
𝑢𝑖, 𝑣𝑖

)|||, (8)

RMSE =

√√√√ 1
408

408∑
𝑖=1

(
𝑧
(
𝑢𝑖, 𝑣𝑖

)
− 𝑧∗

(
𝑢𝑖, 𝑣𝑖

))2
, (9)

LCCC =
2𝑟σobsσpred(

𝑧 − 𝑧∗
)2

+ σ2obs + σ2pred

, (10)

where 𝑧(𝑢𝑖, 𝑣𝑖) and 𝑧∗(𝑢𝑖, 𝑣𝑖) are the measured and predicted

concentration of soil AN, respectively, at validation location

(𝑢𝑖, 𝑣𝑖); 𝑧 and 𝑧∗ are the mean of 𝑧(𝑢𝑖, 𝑣𝑖) and 𝑧∗(𝑢𝑖, 𝑣𝑖), respec-

tively; 𝑟 is the Pearson correlation coefficient between the

measured and predicted concentration of soil AN; σobs and

σpred are the variances of measured and predicted concentra-

tion of soil AN, respectively. Greater LCCC and lower MAE

and RMSE mean higher spatial prediction accuracy for the

model. The relative improvement (RI) accuracy of a model

over OK is calculated using the following equation (Mishra,

Lal, Liu, & Van Meirvenne, 2010):

RI =
RMSEOK − RMSEEM

RMSEOK
, (11)

where RMSEOK and RMSEEM are the RMSE for OK and

the evaluated models (i.e., CoK, PCA-MLR, PCA-GWR,

GWPCA-GWR, or GWPCA-GWRK), respectively.

In this study, all spatial geocomputations were performed

on a regular grid with the cell size of 200 m × 200 m. The

“geodetector” package in R 3.3.3 software was used for geode-

tector analysis (Wang et al., 2010); the “GWmodel” pack-

age for GW correlation analysis, Monte Carlo randomization

test, GWPCA, and GWR (Gollini, Lu, Charlton, Brunsdon, &

Harris, 2015; Lu, Harris, Charlton, & Brunsdon, 2014); the

“gstat” package for the fitting of variograms (Pebesma, 2004);

ArcGIS (version 10.3) for mapping.

3 RESULTS AND DISCUSSION

3.1 Descriptive statistics and auxiliary
variables selection

The descriptive statistics of soil AN and the potentially related

soil properties are summarized in Table 1. The average soil
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T A B L E 1 Descriptive statistics of soil alkaline hydrolyzable nitrogen (AN) and potential auxiliary variables in Shayang County, China

(n = 658)

Soil properties n Minimum Maximum Mean SDa CVb (%)
TN (g kg−1) 658 0.13 2.35 1.45 0.32 22.07

SOM (g kg−1) 658 4.89 40.54 23.18 5.35 23.08

pH 658 5.10 8.10 6.62 0.66 9.97

CEC (cmol kg−1) 658 1.08 31.50 12.79 4.18 32.68

TK (g kg−1) 658 7.33 35.69 19.93 3.38 16.96

TP (g kg−1) 658 0.03 15.80 0.73 0.66 90.41

ACu (mg kg−1) 658 0.61 5.89 2.71 0.89 32.84

AFe (mg kg−1) 658 6.03 355.77 120.25 89.21 74.19

AZn (mg kg−1) 658 0.12 8.51 1.40 0.74 52.86

AMn (mg kg−1) 658 5.79 551.20 33.12 25.48 76.93

ASi (mg kg−1) 658 0.00 542.30 121.72 81.26 66.76

AS (mg kg−1) 658 5.79 551.20 33.10 25.53 77.13

AN (mg kg−1) 658 13.00 273.00 135.40 29.66 21.90

AN for validation 408 13.00 272.00 134.81 29.44 21.84

AN for calibration 250 45.00 273.00 136.35 29.98 21.99

aSD, standard deviation.
bCV, coefficient of variation.

pH was 6.62, indicating topsoil was slightly acidic in this

county. The coefficients of variation (CVs) for soil TP, AMn,

and AS were about 90%, 76%, and 77%, respectively, all of

which showed relatively high variability. The mean of soil AN

concentration was 135.40 mg kg−1, significantly higher than

that obtained by the second national soil survey in Shayang

County in 1984 (i.e., 84.33 mg kg−1) (Jingmen Municipal

Office of Soil Survey, 1984). Such results showed that the AN

concentration in the topsoil had significantly increased in the

past few decades. Meanwhile, there was no obvious difference

between the validation set and calibration set in terms of sta-

tistical indices (e.g., mean, standard deviation, and CV) for

soil AN (Table 1).

The results of geodetector analysis showed that the spa-

tial distribution of SOM (q = 0.64) and TN (q = 0.62) has

the best consistency with that of soil AN. Moreover, soil pH

(q = 0.41), ASi (q = 0.34), AFe (q = 0.24), CEC (q = 0.23),

ACu (q = 0.22), and TK (q = 0.21) were also significantly

related to soil AN. However, the q-statistic of AZn, AS,

TP, and AMn were very close to 0, indicating the minimal

explanatory power of these four variables for soil AN. Thus,

eight auxiliary variables, namely SOM, TN, pH, ASi, AFe,

CEC, ACu, and TK, were retained as auxiliary variables for

the spatial prediction. Here, SOM was used as the secondary

variable in CoK due to the best consistency with the spatial

distribution of soil AN.

3.2 Local correlation analysis and
randomization test

The results of the global correlation analysis showed that most

of the eight auxiliary variables were highly correlated with

each other (Figure 2). However, in geographical settings, the

strength of the correlation among the auxiliary variables may

vary spatially. In this study, the GW Pearson correlation coef-

ficients (GW r), which is a local form of r (Harris & Bruns-

don, 2010), were used to illustrate such non-stationary rela-

tionships. For example, the local correlation between soil pH

and SOM was strong in the northeast and relatively weak in

the southwest of the study area (Figure 2b); the local corre-

lation between soil TN and AFe was strong in the north and

weak in the south (Figure 2c); the local correlation between

CEC and ASi was stronger in the east of the study area (Fig-

ure 2d).

Monte Carlo randomization test was used to evaluate

whether the eigenvalues generated by GWPCA varied sig-

nificantly throughout the study area (Harris, Clarke, Juggins,

Brunsdon, & Charlton, 2015). The results showed that the

p value of the SD of the local eigenvalues for GWPC1 to

GWPC4 were all below 0.05 (Figure 3). Therefore, the null

hypothesis of the Monte Carlo test was rejected, which means

that the spatial non-stationarity of the relationships among the

eight auxiliary variables is statistically significant.
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F I G U R E 2 Maps of global correlation coefficient matrix (a) and geographically weighted Pearson correlation coefficients (GW r) (b, c, and d)

among the auxiliary variables

F I G U R E 3 Randomization tests (99 times) for local eigenvalue non-stationarity for (a) GWPC1, (b) GWPC2, (c) GWPC3, and (d) GWPC4,

respectively. GWPC, geographically weighted principal component

Note. The bandwidth used in the randomization test was the same as that in the GWPCA. The null hypothesis of the randomization test is that the

local eigenvalues are stationary, and the alternative hypothesis is that the local eigenvalues are non-stationary
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T A B L E 2 Principal component analysis for the eight auxiliary

variables in Shayang County, China (n = 658)

PC1 PC2 PC3 PC4
Eigenvalue 1.91 1.73 1.60 1.14

PTVa (%) 23.90 21.64 20.03 18.43

CPTVb (%) 23.90 45.54 65.57 84.00

Loadings

pH -0.48 -0.21 -0.24 0.58
SOM 0.84 0.32 0.28 -0.19

TN 0.88 0.29 0.24 -0.14

TK -0.07 -0.15 -0.10 0.83
ACu 0.25 0.83 0.12 -0.19

AFe 0.23 0.88 0.03 -0.11

CEC 0.25 0.03 0.79 -0.12

ASi 0.16 0.11 0.87 -0.04

Note. The principal components (PC) with the eigenvalue > 1 were retained, and

the absolute loading values > 0.5 were presented in bold type.
aPTV, percentage of the total variation.
bCPTV, cumulative PTV.

3.3 Principal component analysis and
geographically weighted principal component
analysis

The results of PCA showed that the percentages of total vari-

ation (PTV) were 23.90% for PC1, 21.64% for PC2, 20.03%

for PC3, and 18.43% for PC4 (Table 2). For the PCA loadings,

PC1 mainly represented SOM and TN; PC2 mainly repre-

sented ACu and AFe; PC3 mainly represented CEC and ASi;

PC4 mainly represented pH and TK. Although the traditional

PCA decomposed multiple auxiliary variables into four sets of

orthogonal PCs, this non-spatial dimension reduction technol-

ogy might not adequately extract the main information of the

auxiliary variables with the spatially varying relationships.

The results of GWPCA showed that the cumulative PTV

(CPTV) for the first four GWPCs (i.e., GWPC1–GWPC4)

ranged from 78.17% to 88.89%, with high values in the east

and low values in the west of the study area (Figure 4). The

variables with the highest loadings (i.e., winning variable) for

the first four GWPCs were visually displayed in Figure 5. It

could be seen that the winning variables varied with the spa-

tial location and presented certain clustering characteristics.

For example, TN and SOM, which had the highest loadings

in GWPC1, were mainly distributed in the southeast of the

study area, and did not dominate the entire research area as

global PCA showed (Figure 5a and Table 2). In addition, soil

AFe and ACu appear to play an important part in defining the

local structures among eight auxiliary variables in the mid-

west of the study area (Figure 5). The reason may be that the

land-use types in the midwest of the study area are mainly

dominated by paddy fields with relatively strong acidity and

submerged condition, and the availability of soil copper and

iron is relatively high. Hence, the relationships between soil

AFe (or ACu) and other soil properties in this subarea were

different from those in other subareas in Shayang County. Fur-

thermore, the soil samples with pH as the winning variable in

GWPC1 were mainly distributed in the northeast of the study

area. The reason may be that soil parent materials in this sub-

area are mainly carbonate-rich river alluvial deposits due to

the influence of Han River. Therefore, the soil in this subarea

was alkaline, which is significantly different from other areas

in this county.

The map of winning variables for GWPC2 (Figure 5b),

GWPC3 (Figure 5c), and GWPC4 (Figure 5d) also showed the

spatial change in the complex interrelationships of the eight

auxiliary variables. It was worth noting that the relationships

among the auxiliary variables are more likely to be spatially

non-stationary in this county. The possible reasons are as fol-

lows: (i) soil properties usually have strong spatial variability

in large-scale areas (Granger et al., 2017); (ii) soil properties

are affected by multiple endogenous factors such as soil parent

material and pedogenic processes, and the above endogenous

factors are usually spatially non-stationary in large-scale areas

(Qu, Chen, Huang, & Zhao, 2020; Zhao et al., 2010); (iii) soil

properties in Shayang County are also strongly affected by

exogenous factors such as land-use patterns and fertilization,

and the effects of the above exogenous factors on different soil

properties also vary from place to place (Schleus et al., 1998;

Xie et al., 2019). Therefore, the relationships among the soil

properties were not constant in space, and PCA built on vari-

able space could not effectively capture such non-stationary

relationships.

3.4 Geographically weighted regression
and residual analysis

The local regression coefficients between soil AN and the

first four GWPC scores generated by GWPCA-GWR and

GWPCA-GWRK were displayed in Figure 6, suggesting that

the relationships between soil AN and GWPC scores were

spatially non-stationary. This may be because the GWPC

scores were a linear combination of the original auxiliary

variables, and the relationships between the original auxiliary

variables and soil AN were also spatially non-stationary.

The global Moran’s I was further computed to explore

the spatial dependence of the residuals generated by PCA-

MLR, PCA-GWR, and GWPCA-GWR. The residuals gener-

ated by GWPCA-GWR had less spatial dependency (Moran’s

I = −0.12, p < 0.001) than that generated by PCA-MLR

(Moran’s I = 0.38, p < 0.001) and PCA-GWR (Moran’s

I = 0.31, p < 0.001). Such a result indicated that PCA-MLR

and PCA-GWR may ignore the crucial information about

the relationships among the auxiliary variables. It is worth

noting that Moran’s I of the regression residual generated by
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F I G U R E 4 Maps of the percentage of the total variance (PTV) for (a) GWPC1, (b) GWPC2, (c) GWPC3, and (d) cumulative PTV (CPTV) for

the first four geographically weighted principal component (GWPC)

F I G U R E 5 Maps of the winning variables (i.e., the variables with the highest loadings) for (a) GWPC1, (b) GWPC2, (c) GWPC3, and (d)

GWPC4. GWPC, geographically weighted principal component
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F I G U R E 6 Local regression coefficient maps generated by geographically weighted principal component analysis-geographically weighted

regression (GWPCA-GWR): (a) the local regression coefficient for the first geographically weighted principal component (GWPC1); (b) the local

regression coefficient for GWPC2; (c) the local regression coefficient for GWPC3; (d) the local regression coefficient for GWPC4; and (e) the local

intercept

T A B L E 3 Parameters of variograms for soil alkaline hydrolyzable nitrogen (AN) and regression residual

Variograms Model Nugget Sill Nugget/Sill Range (km)
Auto-variogram

ANa Spherical 510.86 998.69 0.51 14.17

SOMb Gaussian 8.74 29.33 0.30 18.47

Residualsc Spherical 77.88 89.52 0.87 4.47

Cross-variogram

(AN × SOM)d Spherical 403.51 876.99 0.46 15.96

aAN, auto-variogram fitted by 250 soil AN data;
bSOM, auto-variogram fitted by 658 SOM data;
cResiduals, auto-variogram fitted by 250 regression residual data generated by GWPCA-GWR;
d(AN × SOM), cross-variogram fitted by 250 soil AN data and 658 SOM data.

GWPCA-GWR was small, but still statistically significant.

Therefore, it is necessary to combine the residual information

using GWPCA-GWRK for the spatial prediction of soil AN

in this county.

3.5 Spatial distribution of soil alkaline
hydrolyzable nitrogen

Parameters of variograms of soil AN and the regression

residual generated by GWPCA-GWR were well fitted by

the Spherical model (Table 3). The spatial distribution maps

of soil AN concentration predicted by the six models are

displayed in Figure 7. In general, the six models produced

similar spatial distribution patterns for soil AN, with high con-

centration mainly in the north of the county. Therefore, in

these subareas, some measures, such as reducing the input of

N fertilizer and establishing ecological interception ditches,

could be implemented to reduce the eutrophication risk in

the surrounding water bodies caused by the loss of soil AN

(Zhang et al., 2020). Besides, these maps all showed that the

soil AN concentration in the east was significantly lower than

its average level in the entire county. The reason may be that

soil in this subarea has been affected by the side seepage water

of Han River, and soil AN in the topsoil has been leached and

lost.

However, there were some differences for the spatial pre-

diction maps. For example, the maps predicted by CoK, PCA-

MLR, PCA-GWR, GWPCA-GWR, and GWPCA-GWRK

were rougher than that predicted by OK (Figure 7). The main

reason may be that more auxiliary information was incorpo-

rated in the above five models than in OK.

3.6 Comparison of spatial prediction
accuracy

The results of the model comparison are shown in Table 4.

GWPCA-GWRK had the highest LCCC (0.75), followed
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F I G U R E 7 Spatial distribution patterns of soil alkaline hydrolyzable nitrogen (AN) generated by different models: (a) ordinary kriging (OK);

(b) co-kriging (CoK); (c) principal component analysis-multiple linear regression (PCA-MLR); (d) principal component analysis-geographically

weighted regression (PCA-GWR); (e) geographically weighted principal component analysis- geographically weighted regression (GWPCA-GWR);

and (f) geographically weighted principal component analysis-geographically weighted regression kriging (GWPCA-GWRK)

T A B L E 4 Comparison of the spatial prediction accuracies of six models for soil alkaline hydrolyzable (AN) concentration (mg kg−1) in

Shayang County, China (n = 408)

Indicesa

Models LCCC MAE (mg kg−1) RMSE (mg kg−1) RI (%)
OK 0.59 17.64 23.43 —

CoK 0.63 16.53 22.33 4.70

PCA-MLR 0.48 18.46 24.29 -3.67

PCA-GWR 0.63 15.86 21.53 8.09

GWPCA-GWR 0.72 12.80 19.58 16.42

GWPCA-GWRK 0.75 12.79 18.80 19.74

aLCCC, Lin’s concordance correlation coefficient; MAE, mean absolute error; RMSE, root mean square error; RI, relative improvement accuracy with OK as a reference.

by the GWPCA-GWR model (0.72); CoK and PCA-GWR

had approximately equal LCCC (0.63); PCA-MLR had the

lowest LCCC (0.48), even lower than that of OK (0.59).

According to MAE (mg kg−1) and RMSE (mg kg−1), the

spatial prediction performance of the six models followed the

order of PCA-MLR (MAE = 18.46, RMSE = 24.29) < OK

(MAE = 17.64, RMSE = 23.43) < CoK (MAE = 16.53,

RMSE = 22.33) < PCA-GWR (MAE = 15.86,

RMSE = 21.53) < GWPCA-GWR (MAE = 12.80,

RMSE = 19.58) < GWPCA-GWRK (MAE = 12.79,

RMSE = 18.80). Taking OK as the reference, the relative

improvement accuracies were 19.74% for GWPCA-GWRK,

16.42% for GWPCA-GWR, 8.09% for PCA-GWR, −3.67%

for PCA-MLR, and 4.70% for CoK. Therefore, GWPCA-

GWRK had the highest prediction accuracy, followed by

GWPCA-GWR.

Compared with the other five models, PCA-MLR per-

formed worst in terms of LCCC (0.48), MAE (18.46 mg

kg−1), and RMSE (24.29 mg kg−1). The reason may be that

(i) PCA cannot capture the spatially non-stationary structures

among the auxiliary variables; (ii) MLR cannot capture the

spatially non-stationary relationships between the target

variable and PC scores; and (iii) PCA-MLR ignored the

valuable residual information. Therefore, even if PCA-MLR

combined multiple auxiliary variables, it did not obtain

higher spatial prediction accuracy. Compared with PCA-

MLR, PCA-GWR also combined the auxiliary information

of the PC scores, and the spatial prediction accuracy had

been improved (RI = 8.09%). The main reason is that GWR

can reveal the spatially non-stationary relationships between

the target variable and explanatory variables (Qu, Li, Zhang,

Huang, & Zhao, 2014; Yang et al., 2019).
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Different from the traditional PCA-GWR, the GWPCA-

GWR model used GWPCA to extract the local information of

auxiliary variables. Previous studies suggested that GWPCA

is more effective than PCA in geographic data processing

(Fernández, Cotos-Yáñez, Roca-Pardiñas, & Ordóñez, 2018;
Granger et al., 2017; Kumar, Lal, & Lloyd, 2012b). In this

study, in the northeast of Shayang County (close to Han

River), soil pH and CEC had higher loadings, while in the west

of Shayang County (the paddy field area), AFe had higher

loadings (Figure 5). These spatially non-stationary structures

were effectively captured by GWPCA but ignored by PCA.

Moreover, this model incorporated GWR to ensure that spa-

tially non-stationary relationships between the target variable

and GWPC scores were used for spatial prediction. Comber,

Harris, and Tsutsumida (2016) showed that using GW logistic

regression with GWPC scores as explanatory variables greatly

improved the accuracy of land cover classification, which was

similar to the results of this study.

Compared with GWPCA-GWR, GWPCA-GWRK made

slight improvements in the spatial prediction accuracy

(RI = 16.42% for GWPCA-GWR, RI = 19.74% for GWPCA-

GWRK). Kumar et al. (2012a) illustrated that when the regres-

sion residual has spatial autocorrelation, it is worthwhile

to combine the kriging-interpolated residuals to construct

GWRK. In this study, the residuals generated by GWPCA-

GWR had significant spatial dependence (Moran’s I = −0.12,

p< 0.001). This part of the residual information made the spa-

tial prediction accuracy of GWPCA-GWRK higher than that

of GWPCA-GWR.

3.7 The application prospect of
GWPCA-GWRK

GWPCA-GWRK also provides an optional tool for spatial

prediction of other soil properties. For the spatial prediction

of soil properties in low-relief areas, the relevant soil proper-

ties in the historical database may be valuable auxiliary vari-

ables for GWPCA-GWRK. For the spatial prediction of soil

properties in large-scale areas with complex landscapes, envi-

ronmental factors that are easily accessible (e.g., slope, eleva-

tion, and vegetation) may be valuable auxiliary variables for

GWPCA-GWRK. It is worth noting that the auxiliary vari-

ables should have significantly spatial correlation with the tar-

get variables. Moreover, if the auxiliary information is raster

data, it should have a higher spatial resolution; if the auxil-

iary information is soil sample data, its sample density should

be much higher than that of the target variable. Finally, the

fine calculation grid may bring some computational burden

in the calculation and decomposition of the spatially varying

covariance for GWPCA-GWRK.

4 CONCLUSIONS

In this study, eight soil properties (i.e., SOM, TN, pH, ASi,

AFe, CEC, ACu, and TK) were first determined by geode-

tector as the auxiliary variables. Then, GWPCA-GWRK

was proposed for the spatial prediction of soil AN. Results

showed that (i) the relationships among the eight auxiliary

variables were spatially non-stationary; (ii) GWPCA-GWRK

provided the lowest prediction error (RMSE = 18.80 mg

kg−1, MAE = 12.79 mg kg−1) and highest LCCC (0.75);

(iii) relative improvement accuracies of GWPCA-GWRK,

GWPCA-GWR, PCA-GWR, PCA-MLR, and CoK over OK

were 19.74%, 16.42%, 8.09%, −3.67%, and 4.70%, respec-

tively. Compared with the traditional spatial prediction model,

GWPCA-GWRK has the following advantages: (i) GWPCA

can adequately extract the information about the spatially

non-stationary structures among the auxiliary variables;

(ii) besides combing the valuable information in the residual,

GWRK can effectively capture the spatially non-stationary

relationships between the target variable and the independent

variable. It is concluded that GWPCA-GWRK is an effective

tool for spatial prediction of regional soil properties, which

can effectively incorporate multiple auxiliary variables with

spatially varying relationships.
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