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Abstract

Spatial rough set theory is an extension of classical rough set theory that is designed to handle
spatial data. Different from its classical analog, spatial rough set theory approximates nominal
target variables in each local region, thereby enabling the local explanatory power of various fac-
tors on these nominal target variables to be determined. Based on spatial rough set theory, this
paper describes two new uncertainty indices for measuring the spatial heterogeneity of the local
explanatory power on nominal target variables. Moreover, three new spatial rough set-based
geographical detectors are proposed. With the help of the uncertainty indices, these detectors
measure the spatial explanatory power of different factors, compare their importance, and de-
tect feature interactions. Experiments are conducted using two publicly accessible datasets to
demonstrate the effectiveness of the proposed geographical detectors and evaluate their perfor-
mance against that of geographical detectors based on q-statistics. The results show that the
proposed detectors are effective in processing nominal variables and can be used to complement
existing q-statistics-based geographical detectors.

Keywords: Rough set, Uncertainty measure, Spatial heterogeneity, Spatial analysis,
Geographical detector

1. Introduction

In modeling our world, observations of the same condition may lead to different responses;
that is, when the conditions are not sufficient to explain the variable of interest completely,
there may be some inconsistency between the condition features and the resulting decisions. A
typical example encountered when interpreting remotely sensed images is that different objects
may have the same spectrum. Undoubtedly, this introduces uncertainties in explaining the
target objects.

[31] introduced the concept of roughness to explain this type of uncertainty, and proposed
the use of rough sets to handle roughness in data. Rough sets construct knowledge granules
(equivalence classes) using conditional features and explain the target objects using a lower
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approximation, which includes knowledge granules that can completely explain the target ob-
jects, and an upper approximation, which includes knowledge granules that can completely or
partly explain the target objects [28]. The idea of rough sets has been extended to incorporate
the characteristics of different types of data, such as rough fuzzy sets and fuzzy rough sets [30],
variable precision rough sets [45], probability rough sets [48], and composite rough sets [46, 47].

Various applications of rough set theory to spatial data have been described in the litera-
ture. Similar to other types of data, the application of rough sets to spatial data has mainly
focused on three aspects. First, the reduct in rough sets is an effective feature selection tool for
spatial data. For instance, [20] showed that the reduct is superior to principal component anal-
ysis in the classification of remote sensing images, and presented hyperspectral band selection
methods based on the reduct that offer advantages over traditional methods. In addition, [15]
simplified the reduct of fuzzy rough sets in terms of the requirement for quantitative decisions
in cartographic generalization.

Second, rough set theory is an effective tool for extracting decision rules and classification
tasks. For example, [43] used classical rough sets to extract spatiotemporal rules for charac-
terizing river eutrophication, while [42] applied the rules extracted by rough sets to generate
intelligent initial map scales. In addition to classical rough sets, other rough set extensions have
been used for rule extraction and classification, such as tolerance relation-based rough sets [44],
variable precision rough sets [29], and rough fuzzy sets [5]. Moreover, rough sets have been
extended to the classification of spatial data from the perspective of multiple scales [41, 22] and
spatial heterogeneity [6].

Third, rough set theory provides effective tool sets for measuring the roughness uncertainty
in spatial data, that is, quantifying the explanatory power of the conditional features on the
target variable. Many traditional roughness measures, such as the approximation quality [12],
information entropy [12, 23], combination entropy [32], and multi-classification of quality [8],
have been improved by considering the characteristics of spatial data. For example, [2, 3, 1]
proposed a series of uncertainty measures for rough classification and used them to translate
between land cover taxonomies. [17] proposed a rough set-based sample quality measure for
remote sensing images, while [33, 7] used a similarity measure of rough sets to compare the
roughness between areas.

Measuring roughness uncertainty is the foundation of applications of rough set theory to
spatial data. For example, the reduct algorithm mainly depends on the measure selected for
characterizing the roughness uncertainty. However, current roughness measures characterize
the explanatory power of conditional features in the entire study area. They ignore differences
in the explanatory power of conditional features in different local regions, that is, the spatial
heterogeneity of conditional features’ explanatory power.

Spatial heterogeneity refers to the variation of geographical phenomena over space [21].
This is an important topic in the study of geographical phenomena, such as the analysis of
populations, communities, ecosystems, and landscapes [34]. Spatial heterogeneity has differ-
ent manifestations in spatial data. For example, the spatial heterogeneity of point pattern
datasets can be defined as the degree of the aggregation-type deviation from complete spatial
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randomness [35]. The spatial heterogeneity of a surface pattern refers to the variation of a
qualitative or quantitative value over space [13, 18]. The spatial heterogeneity of conditional
features’ explanatory power indicates that the explanatory power of conditional features at one
site/stratum is different from that at other sites/strata [38]; that is, the conditional feature set
explains the target variable to varying degrees at different locations.

Currently, two spatial statistical methods can be used to characterize the spatial heterogene-
ity of the explanatory power of conditional features. One is geographically weighted regression
(GWR) [16, 49], which quantifies the spatial local heterogeneity. GWR uses the local correlation
between the dependent variable and target variable, or local coefficients of different dependent
variables, to inspect the distribution of the local explanatory power of conditional features in
different areas [26]. However, GWR is only suitable for continuous variables and suffers from
collinearity issues when there are many nominal conditional features [40]. Furthermore, GWR
does not provide an overall measure of the spatial heterogeneity of the explanatory power of
conditional features.

The second approach involves the use of q-statistics-based geographical detectors (q-GD) [37,
38], which have been employed in many real-life applications [27, 39, 36]. The q-statistic
calculates whether the target variable differs greatly in each geographical stratum (equivalence
class) formed by the conditional features [37]. A smaller standard deviation of the target
variable in each stratum indicates that the conditional variables provide a better determination
(explanation) of the target variable [38]. [37] showed that q-GD can be used to detect the most
relevant conditional features, compare their importance, and detect the interactions between
them. However, although q-GD provides an overall measure, it is designed for continuous target
variables and is not suitable for nominal target variables. Moreover, q-GD only measures the
explanatory power from the viewpoint of strata, and ignores the variation of the explanatory
power at different locations.

Although GWR and q-GD inspect the spatial explanatory power from different perspectives,
neither is designed for nominal target variables. However, nominal variables or categorical data
are inevitable in representations of geographical data, such as for the distribution of different
types of crime, vegetation, soil type, and human species. Recently, a new spatial extension
of rough set theory, named spatial rough set theory [6], has provided an option for measuring
the spatial heterogeneity of the local explanatory power of conditional features on nominal
target variables. Unlike other extensions of rough set theory, spatial rough set theory does not
approximate the target variable over the entire study area, but instead focuses on each local
region. This enables the local explanatory power of conditional features on nominal target
variables to be quantified and its spatial heterogeneity to be determined.

Using the concept of spatial rough sets, this paper describes two new measures for quantify-
ing the spatial heterogeneity of the local explanatory power of nominal target variables. Three
new spatial rough set-based geographical detectors (SRS-GD) are proposed using these two
measures. SRS-GD and q-GD inspect the explanatory power from two different perspectives.
SRS-GD is designed for nominal target variables, and inspects the spatial heterogeneity of
conditional features’ local explanatory power from the perspective of local roughness, whereas
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q-GD is designed for continuous target variables and inspects the global explanatory power from
the perspective of the overall difference in variance before and after the study area is stratified.
Similar to q-GD, SRS-GD can perform the following tasks for nominal target variables:

(1) Measure the local explanatory power and detect its spatial heterogeneity.
(2) Compare the average local explanatory power of conditional features.
(3) Detect the interactions among conditional features.

The remainder of this paper is organized as follows. First, some basic knowledge about
spatial rough sets is reviewed. The local positive region-based approximation quality is then
used to establish indices for the average local explanatory power and its spatial heterogeneity.
Three new geographical detectors are proposed for the above-mentioned spatial data analysis
tasks. Finally, two publicly accessible datasets are used to further illustrate the performance
of the proposed geographical detectors and compare them with q-GD.

2. Spatial rough set model [6]

Spatial rough set theory uses a spatial information system (SIS) to model spatial data. An
SIS consists of an information table and an adjacency matrix. In the information table, each
row represents a geographical object and each column represents one feature of the geographical
objects. The adjacency matrix is used to model the spatial relations among objects. Formally,
an SIS = {U,A, d,M} consists of the following:

• a universe U , which is the set of all the geographical objects,

• a set V consisting of feature values,

• a set A of named functions from U to V ,

• a function d : U → Vd (the decision feature or target variable, having domain Vd),

• an adjacency functionM : U×U → 0, 1, which records whether two objects are considered
to be neighbors in an SIS.

By a “named function” in A, we mean a pair (a, af ), where a belongs to a set of feature names
and af is a function af : U → V . To avoid complicating the notation, the same symbol is used
for the feature name and for the function itself. That is, A is not a set of functions, but a
multi-set with named elements. Given an ordering of the elements of U , the adjacency can be
represented by a matrix M . Mij denotes the ijth entry in M . If the ith and jth objects are
adjacent, then Mij = 1; otherwise, Mij = 0.

Figure 1 shows an example of an SIS. Figure 1(a) is an example study area from which an
adjacency matrix (see Figure 1(c)) can be established. In the figure, two objects are neighbors
if they are touching. Figure 1(b) is the corresponding information system. Items ‘a1’ to ‘a3’
in the first row represent the conditional feature names; ‘d’ represents the decision feature; ‘a’
to ‘c’ in the remaining rows are the corresponding feature values for different objects. The
information system and adjacency matrix form an SIS of the study area.
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(a) Map of an example study area

ID a1 a2 a3 d
1 a b a a
2 b a a a
3 b a a a
4 b c a b
5 b c a a
6 c b c a
7 c c b b
8 d c b b
9 c b c b
10 a b a b
11 a b a b

(b) Example of an information system

M =



0 1 0 1 1 1 0 1 0 0 0
1 0 1 1 1 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0
1 1 0 0 0 1 0 1 0 0 0
1 1 0 0 0 0 1 1 1 1 1
1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 1 0
1 0 0 0 1 1 0 0 0 0 1
0 0 0 0 1 0 1 0 0 0 1
0 1 1 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 1 1 0 0


(c) Adjacency matrix

Figure 1: Example of an SIS: (a) map of the geographical objects of the study area; (b) information system
corresponding to the geographical objects in (a); (c) adjacency matrix of geographical objects in (a).
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In an SIS, the spatial rough set model uses an indiscernibility relation, which is closely
related to the object locations. For an x-centered region C(x) = {y ∈ U : Mxy = 1} ∪ {x},
two objects y and z are said to be x-local indiscernible if a(y) = a(z)∀a ∈ A and y, z ∈ C(x).
Using the local indiscernibility relation, objects that are spatially distant from each other can
be discerned, regardless of whether they have different feature values. Based on the x-local
indiscernibility relation, an x-local indiscernible set of y using A′ ⊆ A can be defined as

LInd(y, x, A′) =

∅, if y 6∈ C(x)

{z ∈ C(x) : ∀a ∈ A′(a(y) = a(z))} = [y]A′ ∩ C(x), if y ∈ C(x)

where [y]A′ = {z ∈ U : a(y) = a(z),∀a ∈ A′}.
Similar to classical rough sets, spatial rough set theory uses x-local indiscernible sets to

approximate the target concept X ⊆ U in each x-centered region. The lower approximation
contains all of the x-local indiscernible sets that belong to the target concept, whereas the
upper approximation contains all x-local indiscernible sets that have a non-empty intersection
with the target concept in each x-centered region. Formally,

apprx
A′(X) = {y ∈ C(x) : LInd(y, x, A′) ⊆ X}

apprxA′(X) = {y ∈ C(x) : LInd(y, x, A′) ∩X 6= ∅}.

The x-local rough set of target concept X using A′ ⊆ A is a pair

(apprx
A′(X), apprxA′(X)).

Based on the x-local rough set, the x-local positive region using A′ ⊆ A is defined as

POSx
A′(d) =

⋃
di∈Vd

apprx
A′({u ∈ U : d(u) = di}), (1)

where Vd is the domain of d.
Thus, x-local rough sets are local descriptions of the target concept. To obtain an overall

description of the target concept in the entire study area, all x-local rough sets of target concept
X are aggregated to form an overall approximation of target concept X (spatial rough set of
target concept X):

SRSA′(X) = {(apprx
A′(X), apprxA′(X))|x ∈ U}.

3. Spatial rough set-based geographical detectors

To measure the explanatory power of conditional features, a number of uncertainty measures
for rough sets have been developed from various perspectives. However, when applied for spatial
analysis, these indices mainly measure the overall explanatory power in the study area. As they
ignore the existence of spatial heterogeneity, they are insufficient for analyzing geographical
phenomena. Accordingly, it is necessary to migrate existing roughness measures to spatial
rough sets to measure the local explanatory power and its heterogeneity.
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Compared with other roughness measures, the approximation quality is easy to interpret.
Hence, it is one of the most commonly used roughness measures in analyzing spatial data. The
approximation quality uses the proportion of objects in the positive region of the universe to
measure the explanatory power of conditional features. A larger value of the approximation
quality indicates a lower possibility of observing any inconsistency between the condition and
the target variable. In the following, this measure is migrated to x-local rough sets.

Definition 1. For an object x ∈ U , the x-local approximation quality of decision d using feature
set A′ ⊆ A is

γ(x,A′, d) = |POSx
A′(d)|/|C(x)|. (2)

The x-local approximation quality uses the proportion of elements that are uniquely classi-
fied by the target concept, i.e., all elements in the corresponding x-local indiscernible set that
have the same target value, to evaluate the quality with which the target concepts are ap-
proximated. A larger positive region produces a larger value of γ(x,A′, d), indicating that the
conditional features have greater local explanatory power. When γ(x,A′, d) = 1, all elements
in C(x) are uniquely classified to one target concept and d can be precisely approximated using
feature set A′ in C(x). This means that A′ completely explains d in the x-centered region.
When γ(x,A′, d) = 0, there are no elements in the positive region. This means that it is not
possible to determine the target category using only the conditional features in C(x). Similar
to classical rough sets, the x-local approximation quality increases monotonically as features
are added to A′.

Property 3.1. For an SIS = (U,A, d,M), if B′ ⊆ A′ ⊆ A, then γ(x,A′, d) ≥ γ(x,B′, d).

Proof. If B′ ⊆ A′, then [y]A′ ⊆ [y]B′ ⇒ [y]A′ ∩ C(x) ⊆ [y]B′ ∩ C(x) ⇒ LInd(y, x, A′) ⊆
LInd(y, x,B′). Suppose that z ∈ POSx

B′(d) and z ∈ LInd(z, x, B′). If z /∈ POSx
A′(d), then

LInd(z, x, A′) 6⊆ {x ∈ U : d(x) = di} for any di. However, there exists some di such that
LInd(z, x, A′) ⊆ LInd(z, x, B′) ⊆ {x ∈ U : d(x) = di} because z ∈ POSx

B′(d). This leads to
a contradiction. Accordingly, any z ∈ POSx

B′(d) ⇒ z ∈ POSx
A′(d). Therefore, POSx

B′(d) ⊆
POSx

A′(d) and γ(x,A′, d) ≥ γ(x,B′, d).

In addition to a local approximation, it is important to inspect the overall spatial approx-
imations in certain real-life applications. Based on the x-local approximation quality, a new
index is proposed for measuring the overall local explanatory power of the conditional features.

Definition 2. For an SIS = {U,A, d,M}, A′ ⊆ A, the approximation quality-based average
local explanatory power of A′ is

D(A′, d) =
∑
x∈U

γ(x,A′, d)/|U | (3)

and the spatial entropy of the local explanatory power is

SE(A′, d) = −
∑
x∈U

γN(x,A
′, d)log2γN(x,A

′, d), (4)

where γN(x,A′, d) = γ(x,A′, d)/
∑

x∈U γ(x,A
′, d).
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D(A′, d) is the average of all local approximation measure values over the entire study area.
A larger value of D(A′, d) indicates that A′ has a larger average local explanatory power on d.
D(A′, d) is different from the conventional approximation quality in classical rough sets. The
conventional approximation quality is |POSA′(d)|/|U |, which uses the proportion of objects
in the positive region of the entire study area. Clearly, D(A′, d) takes account of the local
approximation quality at every location of the study area, whereas the conventional form only
uses the feature space to approximate the target concepts. Similar to x-local measures, D(A′, d)

increases monotonically as features are added to A′.

Property 3.2. For SIS = (U,A, d,M), given B′ ⊆ A′ ⊆ A, D(A′, d) ≥ D(B′, d).

Different from D(A′, d), SE(A′, d) can be used to measure the degree of spatial heterogeneity
of the approximation of target concepts. A large value of SE(A′, d) indicates a small difference
in the local explanatory power of A′ on the target concepts at different locations. When the
approximation measure is equal at all locations, SE(A′, d) reaches its maximum of−log2(1/|U |).

Based on these indices, three new geographical detectors are proposed to perform three
different tasks on spatial datasets. The spatial rough set-based factor detector is similar to the
factor detector in q-GD and is denoted by SRSF . It can be used to measure the average local
explanatory power and detect the existence of spatial heterogeneity in the local explanatory
power of features. The spatial rough set-based ecological detector is similar to the ecological
detector in q-GD and is denoted by SRSE. This provides an efficient means of comparing the
average local explanatory power of conditional features. The spatial rough set-based interaction
detector is similar to that in q-GD and is denoted by SRSI . It detects the local explanatory
power added by new features.

3.1. SRSF : Measuring the average local explanatory power and detecting its spatial heterogene-
ity

Given a conditional feature set A′, SRSF is {D(A′, d), SE(A′, d)}. D(A′, d) is used to
measure the conditional features’ explanatory power on the target geographical phenomena.
Larger values of D(A′, d) indicate that the conditional features provide a better explanation
of the target nominal variable. The maximum value of D(A′, d) is one, which means that A′

completely explains d. SE(A′, d) is used to measure the spatial heterogeneity of the explanatory
power on the target nominal variable. Smaller values of SE reflect greater spatial heterogeneity
in the spatial dataset. The maximum value of SE is −log2(1/|U |), which is attained when A′

has the same explanatory power at all locations.
When the first component of SRSF (i.e., D(A′, d)) is calculated, it is important to test

whether the average local explanatory power is significantly greater than zero. For this task, a
small fraction of objects U ′ is randomly drawn from U and the value of γ(x,A′, d) is calculated
for each object in U ′. This constitutes a simple random sample of γ(x,A′, d). A Student’s t-test
is then used to test whether the mean of γ(x,A′, d) (D(A′, d)) is significantly greater than zero.
If the result is not statistically significant, then A′ has no explanatory power on d.

Compared with q-GD, the SRSF uses two indices: D and SE. The former denotes the
average local explanatory power and the latter reflects the degree of spatial heterogeneity of
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the local explanatory power. From D , it is difficult to determine whether the local explanatory
power is evenly distributed over space or has large differences between different locations. How-
ever, spatial heterogeneity is an important information source for analyzing spatial data [21].
Accordingly, it is important to calculate SE in addition to D . This is an advantage of SRSF

over q-GD, in which there are no tools for detecting spatial heterogeneity.

3.2. SRSE: Comparing the average local explanatory power of conditional features

Generally, in identifying the cause of the target geographical phenomenon, there are many
candidate features. The question is, does one spatial feature play a more important role than
other features? This issue can be solved by comparing the average local explanatory powers
of different features. Given two feature sets A′ and B′, SRSE is D(A′, d) − D(B′, d). If the
difference is greater than zero, there are more objects in the lower approximation of the x-
local rough sets, and there exist more x-local indiscernible sets that can completely explain the
target variable in the x-local rough sets, when A′ is used. When D({a}, d) = 1, feature a can
completely explain the target variable. To summarize, larger values of D({a}, d) indicate that
feature a has greater importance.

To test whether D(A′, d)−D(B′, d) is statistically significantly different from zero, a fraction
U ′ of U is randomly selected. The local measures for these random samples are calculated using
different features, for example, γ(x,A′, d) and γ(x,B′, d) for x ∈ U ′. There are two sets of local
measures for two features, that is, {γ(x,A′, d)|x ∈ U ′} and {γ(x,B′, d)|x ∈ U ′}. A Student’s
t-test is used to test whether there is a statistically significant difference between the mean
of these two sets. If the difference is statistically significant, then D(A′, d) is statistically
significantly different from D(B′, d).

3.3. SRSI : Detecting the interactions among conditional features

D can be used to measure the increase in explanatory power that comes from additional
features. Suppose that the original model only uses the feature set A1. A new feature set A2

is added to the model to approximate the target geographical phenomenon. SRSI , that is,
D(A1 ∪ A2, d) − D(A1, d), reflects the explanatory power added by A2. The difference from
q-GD is that new features cannot weaken the explanatory power for the target geographical
phenomenon because D is monotonically increasing in terms of Property 3.2. A Student’s t-test
can be used to test whether D(A1 ∪A2, d)−D(A1, d) is statistically significantly greater than
zero using a small random sample from U .

As well as measuring the additional explanatory power, SE can be used to measure whether
the spatial heterogeneity of the local explanatory power is weakened or enhanced by the addition
of new features. SE(A1 ∪ A2, d) > SE(A1, d) indicates that feature set A2 reduces the spatial
heterogeneity of the explanatory power. If SE(A1∪A2, d) < SE(A1, d), feature set A2 increases
the spatial heterogeneity of the explanatory power.

All three geographical detectors depend on two indices, D and SE. These two indices are
easy to compute when |POSx

A′(d)| is calculated. The first step in calculating |POSx
A′(d)| is to

construct C(x) using x and all its neighbors. Second, all the equivalence classes in C(x) are
calculated. Finally, the numbers of elements of the equivalence classes with only one decision
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in C(x) are aggregated among all these equivalence classes to calculate |POSx
A′(d)|. Because

C(x) generally contains a small fraction of U , no heuristic methods are used in calculating
|POSx

A′(d)|.

4. Empirical study

The three proposed detectors were empirically evaluated using two datasets. Moreover, the
factor detector, ecological detector, and interaction detector forms of q-GD were compared with
the SRS-GDs on these two datasets. Finally, all SRS-GDs were tested on a dataset with more
than two decision values to demonstrate their effectiveness when applied to nominal target
variables. Each SRS-GD was implemented using C++, and the experiments were performed
on a computer with an IntelrCoreTM i7-7200U CPU and 16 GB memory. The operating system
was Ubuntu 18.04.

4.1. Experimental data

To validate the proposed method, two publicly accessible datasets were used in the experi-
ments. These two datasets are available from GeoDa [4]. The first dataset consists of Baltimore
house sale prices and hedonics1; this dataset is referred to as Baltimore for simplicity. Balti-
more contains point-pattern spatial data, as shown in Figure 2. There are 211 objects in the
dataset. Four attributes of the houses were selected as the conditional features: ‘whether it
is a detached unit’ (DWELL), ‘whether it has a patio’ (PATIO), ‘whether it has a fireplace’
(FIREPL), and ‘number of stories’ (NSTOR). The decision feature was constructed using the
‘sale price of the house’ (PRICE). If the sale price was more than $40,000, then the decision
value was set to one; otherwise, the decision value was set to zero. In the experiment, points
less than 1.5 km away from the current point were considered as the current point’s neighbors.
For simplicity, this distance is referred to as the neighboring distance.

The second dataset is taken from the “2008 Cincinnati Crime + Socio-Demographics” repos-
itory2, and is referred to as Cincinnati for simplicity. This dataset contains spatial data on an
irregular lattice, as shown in Figure 3. There are 457 objects in the dataset. The ‘male pop-
ulation’ (MALE), ‘female population’ (FEMALE), ‘median age’ (MEDIAN_AGE), ‘average
family size’ (AVG_FAMSIZ), and ‘population density’ (DENSITY) were selected as the con-
ditional features. The occurrences of (THEFT_D) were used as the decision feature. In the
experiment, objects less than 0.5 km away from the current object were considered as the
current object’s neighbors.

4.2. Experimental design

Each experiment consisted of two steps. First, each continuous-valued condition feature
was discretized into five categories using the equal-width discretization method. This step
is necessary for both q-GD and SRS-GD. Equal-width and equal-frequency methods are two
simple and easy-to-interpret methods. The equal-width method generally divides the universe

1https://geodacenter.github.io/data-and-lab/baltim/
2https://geodacenter.github.io/data-and-lab/walnut_hills/
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Figure 2: Map of the Baltimore house price data
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Figure 3: Map of the occurrences of theft in Cincinnati in 2008
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into several subsets of different sizes. This is more similar to the case of categorical features.
Therefore, the equal-width method was used.

However, in real-life applications, it is important to select the appropriate discretization
method in terms of application requirements. For example, the minimum description length
principle [14] is suitable for minimizing the information loss using as few cuts as possible. In
some situations, it is important to discretize the continuous features manually according to
their physical meanings. A simple example is the gross domestic product. A comparison of
different discretization methods for spatial data can be found in [24, 9].

Next, SRS-GD and q-GD were used to analyze the explanatory power of the conditional
feature set for each dataset. In all experiments, the significance levels for the Student’s t-test
and F -test were set to 0.05 (5%).

When SRS-GD was used, all three new factors (SRSF , SRSE, and SRSI) were calcu-
lated. SRSF was applied to each feature in addition to all features, that is, D(A, d), SE(A, d),
D({ai}, d), SE({ai}, d), a ∈ A were calculated to evaluate SRSF . Second, SRSE was used to de-
tect which conditional feature best explains the target nominal variable. Finally, D({a1, ai 6=1}, d)−
D({a1}, d) was calculated to inspect the additional explanatory power produced by adding
feature ai to feature a1, that is, the interaction among features (SRSI). In the Baltimore
dataset, DWELL was selected as a1. In the Cincinnati dataset, MALE was selected as a1.
SE({a1, ai 6=1}, d) was calculated to measure whether the spatial heterogeneity of the local ex-
planatory power was weakened or enhanced. In the experiment, the first conditional feature
was selected as a1 to demonstrate the effectiveness of SRSI . Regardless of which conditional
feature was selected as a1, the influence of adding new conditional features using SRSI could
always be detected.

To compare SRS-GD with q-GD, the binary nominal target variables were used as the
continuous target variables in performing q-GD analysis. The strata formed by all conditional
features, that is, intersections of strata formed by each feature, were used to calculate the q-
statistics for all features, denoted by qA, to measure the associated explanatory power. The
factor detector and ecological detector forms of q-GD were applied to compare the explanatory
power of different conditional features on the target variable. Moreover, the interaction detector
forms of q-GD were calculated to inspect whether the introduction of feature ai enhanced or
weakened the explanatory power of feature a1.

4.3. Results and discussion
4.3.1. Measuring the local explanatory power and its spatial heterogeneity

The second row of Table 1 contains the q-statistics of each individual conditional feature
and all conditional features for the Baltimore dataset. The q-statistics (factor detector in
q-GD) show that each conditional feature and all the conditional features can explain the
target variable to some extent. The F -tests for all q-statistics indicate statistical significance.
This means that the stratified population variance based on the strata formed by features is
statistically significantly different from the population variance. In some cases, the q-statistics
failed to pass the F -test. For example, there are three q-statistics in the second row of Table 2
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(which presents the q-statistics for the Cincinnati dataset) that failed to pass the F -test. Non-
significant q-statistics suggest that the explanatory power of the feature set is so weak that the
stratified population variance is almost the same as the population variance.

A′ DWELL PATIO FIREPL NSTOR ALL FEATURES
q-statistic 0.2693 0.0824 0.1233 0.1043 0.3859
D(A′, d) 0.1861 0.1374 0.1061 0.2764 0.6121
SE(A′, d) 5.996 6.511 5.677 6.939 7.589
q-cont 0.2769 0.2064 0.2760 0.1770 0.6174

Table 1: D , SE, and q-statistics of conditional features in the Baltimore dataset. The fifth row contains the
q-statistics for the original continuous-valued target variable.

A′ MALE FEMALE MEDIAN AVG_ DENSITY ALL
_AGE FAMSIZ FEATURES

q-statistic 0.0370+ 0.0231+ 0.0624 0.0831 0.0114+ 0.1975
D(A′, d) 0.0645 0.0424 0.0402 0.0426 0.0586 0.3781
SE(A′, d) 8.274 8.188 7.298 7.204 7.874 8.735
q-cont 0.01312 0.0696+ 0.0325 0.0365 0.0080+ 0.3470+

+ failed to pass the F -test.

Table 2: D , SE, and q-statistics of conditional features in the Cincinnati dataset. The fifth row contains the
q-statistics for the original continuous-valued target variable.

Additionally, the q-statistics for the original continuous-valued target variable, which is
denoted by q-cont for simplicity, were also calculated. The fifth row of Tables 1 and 2 contains
the q-cont values of the Baltimore and Cincinnati datasets, respectively. Clearly, the q-statistics
and q-cont are not consistent with each other. For example, the q-cont for all features in the
Cincinnati dataset is no longer statistically significant. Simultaneously, some of the original
conditional features with small or insignificant explanatory power have a large significant q-
cont. In fact, the q-statistics measure the explanatory power for the occurrence of target
geographical phenomena, whereas q-cont measures the explanatory power of the degree of the
target geographical phenomena. Therefore, they have different values that cannot be used in
place of one another.

Unlike the factor detector in q-GD, SRSF has two components, D(A′, d) and SE(A′, d).
The SE(A′, d) component reflects the degree of spatial heterogeneity of the local explanatory
power. The fourth row in Tables 1 and 2 contains the SE values for each feature and all
features. Larger values of SE indicate a smaller difference between the local explanatory power
among all x-centered regions.

The other component, D(A′, d), describes the explanatory power using the average propor-
tion of objects in the x-local indiscernible set that can completely explain d using A′ in each
x-centered region, that is, γ(x,A′, d). The third row in Tables 1 and 2 contains D for each
feature and all features for the Baltimore and Cincinnati datasets. The Student’s t-tests for
all D indicate that they are statistically significantly greater than zero. This means that each
individual feature and all the features together can explain the target nominal variable to some
extent.

13

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Because D and the q-statistics measure the explanatory power from two different perspec-
tives, conditional features with no statistically significant q-statistic may have a statistically
significant D . For example, the non-significant q-statistics for MALE, FEMALE, and DEN-
SITY indicate that these three features have no explanatory power for the occurrence of thefts
in the strata. However, as the D values for these three features are statistically significant (ac-
cording to the Student’s t-test), each feature’s average local explanatory power is statistically
significantly greater than zero and can partly explain the target nominal variable.

Although qA gives the explanatory power of A on d, it cannot replace D(A, d). Indeed, qA
mainly takes the strata into account, and ignores the local explanatory power of conditional fea-
tures. In some situations, it is difficult to determine whether there is any spatial heterogeneity
in the local explanatory power of conditional features using only q-GD.

For example, given a spatially randomly distributed conditional feature a, if the q-statistic of
a is 0.9, it is reasonable to conclude that the target variable depends on a to a great extent, but
the distribution of the local explanatory power of a on the target variable might be spatially
randomly distributed. Taking the Baltimore dataset as an example, a spatially reshuffled3

dataset was used to calculate the q-statistics and D(A, d). In this case, qA was unchanged
and passed the F -test. This means that q-GD does not reflect changes in the distribution of
objects. However, D(A, d) decreased to 0.54, which shows that D is sensitive to the objects’
spatial distribution.

Another important reason for using D(A, d) is that conditional features may only be con-
sistent with the target variable in different local regions. For example, assume that the objects
in an equivalence class [x]A are evenly distributed in two local regions, ‘a’ and ‘b’, in the study
area. In region ‘a’, all objects in [x]A have decision ‘1’, whereas all objects in region ‘b’ have
decision ‘0’. Clearly, feature set A can explain the target variable in both local regions, but is
inconsistent with the target variable over the entire study area. When q-statistics are used in
such a situation, it is clear that the stratum corresponding to [x]A cannot explain the target
variable. Despite this, D(A, d) may be significantly greater than zero because it inspects the
local explanatory power in each x-centered region.

4.3.2. Comparison of the explanatory power of different conditional features
Any two features may have a different explanatory power on the target variable. Taking

DWELL and NSTOR in the Baltimore dataset as an example, the q-statistic for DWELL is
greater than that for NSTOR, which indicates that DWELL has greater explanatory power than
NSTOR from the perspective of the spatial strata. Rows 2–4 in Tables 3 and 4 demonstrate
the significance of the difference between conditional features for the Baltimore and Cincinnati
datasets using the ecology detector form of q-GD.

For the Baltimore dataset, the ecological factor form of q-GD shows that the explanatory
power of conditional features runs in the following order: DWELL > FIREPL = NSTORE
> PATIO. Although the q-statistic of FIREPL is greater than that of NSTOR, the ecological
factor indicates that the difference in explanatory power between FIREPL and NSTOR is

3This means that the variables’ values randomly change the polygon or point to which they are attached.
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PATIO FIREPL NSTOR

q-GD
DWELL TRUE TRUE TRUE
PATIO TRUE TRUE
FIREPL FALSE

SRS-GD
DWELL TRUE TRUE TRUE
PATIO FALSE TRUE
FIREPL TRUE

Table 3: Significance of the difference between conditional features for the Baltimore dataset using SRS-GD
and q-GD.

FEMALE MEDIAN_AGE AVG_FAMSIZ DENSITY

q-GD
MALE NA# TRUE TRUE NA#

FEMALE TRUE TRUE NA#

MEDIAN_AGE TRUE TRUE
AVG_FAMSIZ TRUE

SRS-GD
MALE TRUE FALSE TRUE FALSE
FEMALE FALSE FALSE TRUE
MEDIAN_AGE TRUE FALSE
AVG_FAMSIZ TRUE

# Because the q-statistics of MALE, FEMALE, and DENSITY failed to pass the F -test, the explanatory
power of these three features is very weak. It is not necessary to compare their explanatory power any
more.

Table 4: Significance of the difference between conditional features for the Cincinnati dataset using SRS-GD
and q-GD.

not statistically significant. For the Cincinnati dataset, because the q-statistics of MALE,
FEMALE, and DENSITY failed to pass the F -test, the explanatory power of these three
features is very weak. Thus, it is no longer meaningful to compare their explanatory power.
All other feature pairs have significant differences in their explanatory power. The order of the
explanatory power is AVG_FAMSIZE > MEDIAN_AGE > MALE = FEMALE = DENSITY.

Unlike the q-statistics, SRSE compares the explanatory power between features from the
perspective of the local approximation quality. Rows 5–7 in Tables 3 and 4 demonstrate the
significance of the difference between conditional features using SRSE for the two datasets. For
the Baltimore dataset, SRSE gives the following order for the explanatory power of conditional
features: NSTORE > DWELL > PATIO = FIREPL. PATIO = FIREPL because SRSF shows
that the difference in the explanatory power between FIREPL and PATIO is not statistically
significant.

The situation in the Cincinnati dataset is somewhat complicated. According to SRSE, when
MEDIAN_AGE is excluded, it is clear that MALE=DENSITY>AVG_FAMSIZE=FEMALE.
The conditional feature MEDIAN_AGE has no statistically significant difference in explanatory
power compared with all other conditional features, except that FAMSIZE>MEDIAN_AGE
is statistically significant.

Clearly, the relation between features may be different when using the factor detector form
of q-GD and SRSE. For example, the MALE feature in the Cincinnati dataset has the largest
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explanatory power according to SRS-GD, whereas it has no explanatory power in terms of
q-GD. The reason is that q-GD and SRS-GD inspect the explanatory power using the entire
study area and local areas, respectively. Although MALE cannot explain the target nominal
variable because there is no significant difference between the stratified population variance
and the population variance in the entire study area, it may explain the target random variable
to some extent in most x-centered regions. For the same reason, the order of the explanatory
power of different features varies between SRS-GD and q-GD.

Furthermore, SRS-GD can be used as a complement to q-GD. From the local perspective
of the explanatory power, SRS-GD identifies certain relations between features that are missed
by q-GD. For example, the relation between MALE and FEMALE is statistically significant,
although q-GD failed to detect this relation from the spatial strata perspective. Additionally,
SE(A′, d) demonstrates the spatial heterogeneity of the local explanatory power of different
features.

4.3.3. Detecting feature interactions
Tables 5 and 6 summarize D , SE, and the q-statistics for the feature sets {DWELL, PATIO},

{DWELL, FIREPL}, and {DWELL, NSTOR} (Baltimore dataset) and {MALE, FEMALE},
{MALE, MEDIAN_AGE}, {MALE, AVG_FAMSIZ}, and {MALE, DENSITY} (Cincinnati
dataset). Compared with single features, the average local explanatory power increases when
another feature is introduced, as proven by Property 3.2. The Student’s t-test also suggests that
all D({a1, ai 6=1}, d)−D({a1}, d) are statistically significantly greater than zero. This indicates
that adding new features significantly increases the average explanatory power.

DWELL DWELL DWELL
∧ PATIO ∧ FIREPL ∧ NSTOR

D({ai, aj}, d) 0.2705 0.3009 0.4658
SE({ai, aj}, d) 6.997 7.062 7.361
q-statistics 0.3048 0.3271 0.3163

Table 5: D , SE, and q-statistics of the Baltimore dataset for the feature sets {DWELL,PATIO},
{DWELL,FIREPL}, and {DWELL,NSTOR}.

MALE MALE MALE MALE
∧ FEMALE ∧ MEDIAN_AGE ∧ AVG_FAMSIZ ∧ DENSITY

D({ai, aj}, d) 0.0757 0.1087* 0.1084 0.1261
SE({ai, aj}, d) 8.315 8.370 8.188 8.354
q-statistics 0.0468+ 0.0984+ 0.1095 0.0537+

+ failed to pass the F -test.

Table 6: D , SE, and q-statistics of the Cincinnati dataset for the feature sets {MALE,FEMALE},
{MALE,MEDIAN_AGE}, {MALE,AVG_FAMSIZ}, and {MALE,DENSITY}.

In most cases, SE increased when new features were added. This indicates that the in-
troduction of new features weakens the spatial heterogeneity of the local explanatory power.
An exception is that SE({MALE, AVG_FAMSIZ}, d) > SE({MALE}, d). According to SE({
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AVG_FAMSIZ}) < SE({MALE}, d), the degree of spatial heterogeneity of the local explana-
tory power of AVG_FAMSIZ is less than that of MALE. Thus, introducing AVG_FAMSIZ to
{MALE} may increase the spatial heterogeneity of the local explanatory power.

Although the interaction detector form of q-GD detected the interaction between features
in terms of the strata formed by different feature sets, it was consistent with SRSI in both
datasets. The q-statistics also increased when adding new features. However, unlike SRSI ,
which increased monotonously, the q-statistics sometimes decreased when new features were
added. An example is given in [37].

4.4. Neighboring distance and local explanatory power

The neighboring distance is an important factor for SRS-GD. If the neighboring distance
is too small, most objects will not have any neighbors, which results in a meaningless SRS-
GD. However, if the neighboring distance is too large, most objects will be considered as
neighbors of the current object. The local explanatory power will then be concealed by the
global information, preventing SRS-GD from measuring the local explanatory power and its
spatial heterogeneity.

Figure 4 shows the variation of the average local explanatory power of all conditional features
and its spatial heterogeneity. The neighboring distances were varied from 1.5 km to 10.5 km
for the Baltimore dataset and from 0.5 km to 3.5 km for the Cincinnati dataset. Although
SE(A, d) is greater for 0.5 km than for 1.0 km in the Cincinnati dataset, a larger distance
generally produces a larger value of SE(A, d) and lower spatial heterogeneity. The reason is
that, when the neighboring distance is too large, |C(x)| approaches |U |, as shown in Figure 5.
Then, γ(x, a1, d) approaches the approximation quality of the classical rough sets for each
object, and SE(A, d) approaches its maximum as the neighboring distance increases.
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Figure 4: Variation in the average local explanatory power of all conditional features and its spatial heterogeneity
using different neighboring distances.

For D(A, d), the trend is different. This metric decreases as the neighboring distance in-
creases. The reason is that the local indiscernible sets that are originally in local positive regions
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Figure 5: Average number of neighbors for different neighboring distances.

might have more than one decision as the neighboring distance increases. Accordingly, many
objects that are originally in the positive region move to the boundary region. However, as
|C(x)| approaches |U |, γ(x, a1, d) becomes the same as the approximation quality of the classical
rough sets. D(A, d) also approaches the minimum as the neighboring distance increases.

From the rough set theory perspective, an increase in the neighboring distance enhances
the average number of neighbors and eventually causes D and SE to approach their limits.
However, distance (that is, spatial lag) is more commonly used in analyzing spatial hetero-
geneity because this is a natural and essential metric in depicting and explaining geographical
phenomena [11]. Finally, the same geographical phenomena can be approximated using points
or polygons of different densities in different applications, and some geographical phenomena
may be represented using different densities of points or polygons in different areas, which is
also the situation in the two datasets used in this study [10, 19, 25, 18]. Accordingly, if the
number of neighbors is fixed for each object, the proposed SRS-GD may not correctly reflect
the target geographical phenomena.

In fact, D(A, d) and SE(A, d) demonstrate the spatial explanatory power on the target
variable at different spatial scales under different neighboring distances. Thus, they provide
a multi-scale view of the explanatory power of conditional features. The optimal neighboring
distance should be determined by balancing the explanatory power and its spatial heterogeneity
according to the application. We will address this issue in future work.

4.5. Multiple-category experiment

To show the effectiveness of SRS-GD on nominal target variables, an experiment was per-
formed on the Cincinnati dataset. First, the target variable was replaced by the major crime
type. The equation t = argmax{ [NRBURGLARY , NRASSAULT , 0.2 × NRTHEFT ]}4 was used

4Because there are far more thefts than burglaries or assaults in most places on the map, the number of
thefts was assigned a small weight to prevent the other two crimes being concealed.
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to determine the major type of crime, where NR denotes the number of instances and BUR-
GLARY, ASSAULT, and THEFT are the three types of crime: t = 1, 2, 3 indicates that
BURGLARY, ASSAULT, and THEFT are the major type of crime, respectively. NONE indi-
cates that no crimes were reported. Figure 6 shows the distribution of the four categories in
the Cincinnati dataset.

�✁✂✄☎ ✆☎✝✞✟ ✠✡☛✟

☞✌✌☞✍✎✏
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Figure 6: Map of the major crime types in Cincinnati in 2008.

Table 7 shows the SRSF value for each feature and all features. According to the Student’s
t-test, all D are statistically significantly greater than zero. Accordingly, each feature and
all features can explain the major crime type to some extent. Table 8 presents the results
for whether the relation between features is statistically significant (SRSE). Clearly, only
DENSITY and AVG_FAMSIZ have significant differences in explanatory power. This means
that almost all features have similar explanatory power when used individually.

A′ MALE FEMALE MEDIAN AVG_ DENSITY ALL
_AGE FAMSIZ FEATURES

D({ai}, d) 0.0221 0.0301 0.0210 0.0264 0.0276 0.2769
SE({ai}, d) 7.585 7.627 7.242 7.050 7.685 8.7

Table 7: D and SE of each conditional feature for the multiple-category Cincinnati dataset.

Similar to the two-category cases, SRS-GD was also effective in detecting feature interactions
(SRSI). Table 9 presents the D and SE values for the multiple-category Cincinnati dataset us-
ing the feature sets {MALE,FEMALE}, {MALE,MEDIAN_AGE}, {MALE,AVG_FAMSIZ},
and {MALE,DENSITY}. Compared with the single-featureMALE, the average local explana-
tory power and SE both increase when another feature is introduced. Moreover, the Student’s
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FEMALE MEDIAN_AGE AVG_FAMSIZ DENSITY
MALE FALSE FALSE FALSE FALSE

FEMALE FALSE FALSE FALSE
MEDIAN_AGE FALSE FALSE
AVG_FAMSIZ TRUE

Table 8: Significance of the relation between conditional features for the multiple-category Cincinnati dataset
using SRS-GD.

t-test shows a significant increment in the explanatory power when adding another feature. Ac-
cordingly, introducing new features increases the average local explanatory power and decreases
the degree of spatial heterogeneity.

MALE MALE MALE MALE
∧ FEMALE ∧ MEDIAN_AGE ∧ AVG_FAMSIZ ∧ DENSITY

D({ai, aj}, d) 0.0530 0.0653 0.0638 0.0703
SE({ai, aj}, d) 8.109 8.102 7.972 8.181

Table 9: D and SE of the multiple-category Cincinnati dataset for the feature sets {MALE,FEMALE},
{MALE,MEDIAN_AGE}, {MALE,AVG_FAMSIZ}, and {MALE,DENSITY}.

5. Conclusion

The explanatory power or the power of determinant [37] is an effective tool for selecting
important features that most affect the target variable. In the case of q-GD, the difference be-
tween the population variance and strata population variance is used to measure the explanatory
power, whereas classical rough set theory and its non-spatial extensions use roughness measures.
These methods only inspect the explanatory power in the entire study area. Spatial rough sets
take into account spatial heterogeneity, quantifying the roughness at different locations using
neighboring objects. This extension makes it possible to inspect the explanatory power from a
local perspective.

Based on two measures, D and SE, three spatial rough set-based geographical detectors have
been proposed for measuring the average local explanatory power, comparing the explanatory
power between features, and detecting the interactions among conditional features. SRS-GD is
an important complement to the widely used q-GD, as it inspects the explanatory power from a
local perspective. Experiments showed that the three new geographical detectors are effective in
processing datasets that have nominal target variables, and can identify some relations between
features that are ignored by q-GD.

Although the proposed SRS-GD model effectively explores and compares the local explana-
tory power of conditional features, it may require further reinforcement before being applied in
other situations. In particular, future research should focus on the following four aspects:

(1) Using other roughness measures to explore the local explanatory power: The approxi-
mation quality only describes the proportion of objects in the positive region and ignores the
inner structure of the positive region. This is insufficient in some situations [12]. Accordingly,
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roughness measures such as the information entropy or combination entropy could be migrated
to spatial rough sets to measure the local explanatory power in such situations.

(2) Exploring the influence of discretization methods: Different discretization methods con-
vert the continuous conditional features to different categorical features. This in turn influences
the results given by SRS-GD. In future work, it is important to compare different discretization
methods thoroughly, as this will guide users to select appropriate discretization methods in
terms of applications.

(3) Extending SRS-GD for both nominal and continuous-valued target variables: The cur-
rent SRS-GD is only effective for nominal target variables. A possible solution is to extend the
concept of fuzzy rough sets to spatial data, because fuzzy rough sets handle mixed data very
effectively.

(4) Using non-spatial extensions of rough sets to compare the global explanatory power of
conditional features: It is natural to use uncertainty measures in non-spatial rough set exten-
sions to measure the explanatory power of conditional features. These measures inspect the
explanatory power from different perspectives and provide more comprehensive comparisons.
However, these extensions have not provided tools for determining whether the difference be-
tween the explanatory power of different conditional feature sets is statistically significant and
whether the explanatory power of a feature set is significantly greater than zero. Accordingly,
it is important to inspect the statistical characteristics of these measures in future work.
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