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Explainable artificial intelligence 
(XAI) for exploring spatial 
variability of lung and bronchus 
cancer (LBC) mortality rates 
in the contiguous USA
Zia U. Ahmed1*, Kang Sun2, Michael Shelly1 & Lina Mu3

Machine learning (ML) has demonstrated promise in predicting mortality; however, understanding 
spatial variation in risk factor contributions to mortality rate requires explainability. We applied 
explainable artificial intelligence (XAI) on a stack-ensemble machine learning model framework 
to explore and visualize the spatial distribution of the contributions of known risk factors to lung 
and bronchus cancer (LBC) mortality rates in the conterminous United States. We used five base-
learners—generalized linear model (GLM), random forest (RF), Gradient boosting machine (GBM), 
extreme Gradient boosting machine (XGBoost), and Deep Neural Network (DNN) for developing 
stack-ensemble models. Then we applied several model-agnostic approaches to interpret and 
visualize the stack ensemble model’s output in global and local scales (at the county level). The 
stack ensemble generally performs better than all the base learners and three spatial regression 
models. A permutation-based feature importance technique ranked smoking prevalence as the most 
important predictor, followed by poverty and elevation. However, the impact of these risk factors 
on LBC mortality rates varies spatially. This is the first study to use ensemble machine learning with 
explainable algorithms to explore and visualize the spatial heterogeneity of the relationships between 
LBC mortality and risk factors in the contiguous USA.

Lung and bronchus cancer (LBC) is one of the most common causes of cancer death globally, accounting for 
11.6% of all cancer deaths in  20181. It contributes substantially to healthcare costs and the health burden  globally2 
and is an insistent public health concern due to its low survival  rate3. In the USA, the LBC mortality rate declined 
by 48% from 1989 to  20163, but it remains the top cause of cancer-related  death4. An estimated 142,670 Ameri-
cans were expected to die from lung cancer in 2019, approximately 23 percent of all cancer  deaths3. LBC mortality 
rates vary substantially between and within states in the  US3,5. This variation has been mainly linked to variation 
in smoking  prevalence6. Yet, causes of lung cancer mortality are more  complex7 and are also linked with air 
 pollution8, and socioeconomic  conditions3,9. Some of these risk factors have not been previously included in the 
modeling of predicting the LBC mortality  rate7,8,10–13.

Several statistical methods and tools have been developed to analyze and report cancer incidence and mortal-
ity statistics in the USA, including the Poisson-gamma model, the multivariate conditional autoregressive model, 
and Bayesian  inference14. The state‐space method (SSM)15 and autoregressive quadratic time trend  model16 are 
primarily used to estimate the total number of cancer deaths expected to occur in a given period. Numerous 
studies have applied Geographically weighted (GW) models to explore the geographic relationship between 
risk factors and the LBC mortality  rate7,8,17–19. However, a traditional linear model may fail to capture complex 
interactions and non-linear relationships between LBC mortality and risk factors. The increasing availability of 
data and machine learning (ML) models present an opportunity to predict and identify the factors contributing 
to the LBC mortality rate and help develop a strategy for targeting areas for the management of treatment. The 
machine learning approach has been recently applied to other health problems such as arrhythmia  detection20, 
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disease  incidence21, the mortality  rate22,23, and cancer survival  prediction24. Recently, stacked generalization 
or stacking, or super learning, which introduces a meta-learner concept that combines multiple classifiers or 
regression models, has been used to improve predictive  accuracy25–27. Some ML models are intrinsically capable 
of explaining knowledge about domain relationships in data, known as the interpretability of the ML  models28. 
However, many ML models are "Black boxes," "meaning their internal logic and inner workings are hidden to the 
user and even experts cannot fully understand the rationale behind their predictions" (Carvalho et al., 2019). The 
lack of "transparency and accountability" of ML models can have some drawbacks when applied to healthcare, 
criminal justice, and other regulated domains for high-stakes decision-making29. Higher interpretable models 
are easier to understand and explain the contribution of features in  predictions30.

Although interpretability and explainability are often used interchangeably in ML, "explainable AI (XAI)" 
typically refers to post hoc analyses and techniques used to understand a previously trained "black-box models" 
or its  predictions31,32. In particular, the Locally Interpretable Model-agnostic Explanations (LIME) technique 
is model agnostic proposed by Ribeiro et al. (2016), which can be used to interpret nearly any kind of machine 
learning models and their  predictions31. The model-agnostic involves learning an interpretable model on the 
black box model’s predictions, perturbing features, and seeing how the black box model  reacts33 or  both34. The 
LIME techniques have recently been used for explaining "black-box" predictions for a single observation or group 
of  observations35,36. The "model agnostic greedy explanations of model predictions" or "break-down plot"37 can 
be used as an alternative to the well-known geographical weighted  models7,8,17–19 to explore the spatial variability 
of local contribution of risk factors to the prediction. However, applying the model agnostic greedy explana-
tions technique in the "black box" stack-ensemble model for explaining spatial heterogeneity in the relationship 
between county-level LBC mortality rate and risk factors has not been attempted.

First, we evaluated the performance of multiple machine learning (base learners) and spatial regression mod-
els for county-level LBC mortality rates prediction using many risk factors. Then we developed stacked ensem-
ble models with these base learners to predict LBC mortality rates. Finally, we applied several model-agnostic 
interpretation methods to investigate the effects of several well-known risk factors on LBC mortality rates in 
the US, including permutation-based feature importance, partial dependence (PD), local-dependence (LD), and 
accumulated-local (AL) profiles. We also applied "model greedy agnostic explanations of model predictions" 
or "break-down plot" to explore and visualize the spatial distribution of the contributions of known risk factors 
to LBC mortality rates in the conterminous US. Several risk factors were used to train all models: county-level 
long-term average total cigarette smoking prevalence, poverty, health insurance, demography, biophysical fac-
tors (elevation, radon-zone, and urban–rural environment), and the satellite-derived annual average ambient 
atmospheric concentrations of particulate matter with a diameter of 2.5 microns or less  (PM2.5), nitrogen dioxide 
 (NO2), sulfur dioxide  (SO2), and ozone.

Material and methods
Data. Lung and bronchus cancer (LBC) mortality rates by county. The county-level age-adjusted annual LBC 
mortality rates from 2013 to 2017 were obtained from the National Vital Statistics System at the National Center 
for Health Statistics of the Centers for Disease Control and  Prevention16,38,39. The detailed extraction and age 
adjustment methods of mortality data are described  elsewhere40. Due to data suppression for reliability and con-
fidentiality, missing LBC mortality rate data in 348 counties in the contiguous USA counties were imputed with 
missForest  package41 in R. The out-of-bag (OOB) imputation error (MSE) estimate was 35 per 100,000. Finally, 
we created  a data-frame of 3107 counties in the conterminous US. We did not include Shannon county in South 
Dakota due to a miss-match between the new and old FIPS codes, unique county identification numbers (Fig. 2).

Risk‑factors. We assembled a comprehensive set of county-level risk factors (Table S2) to develop models to 
predict county-level LBC mortality rate in the contiguous USA. These data include variables relating to lifestyles, 
socio-economy, demography, air pollution, and physical environments.

Cigarette smoking prevalence. Data on age-adjusted cigarette smoking prevalence by county from 2008 to 
2012 was obtained from the Institute for Health Metrics and  Evaluation42, which derived the data from the 
results of the Behavioral Risk Factor Surveillance System (BRFSS) by using a logistic, hierarchical, mixed-effects 
regression model with spatial and temporal  smoothing43. The BRFSS is a state-based random digit dial (RDD) 
telephone survey conducted annually in all states, the District of Columbia, and US territories. For the year 2008 
to 2012 estimation, the root means squared error for male and female cigarette smoking was 1.9 for 100 sample 
 size43. Data from 2013 to 2017 were obtained from County Health  Ranking44, who also used BRFSS survey data 
to estimate county averages of age-adjusted cigarette smoking (%) prevalence. Before 2016, up to seven survey 
years of BRFSS data were aggregated to produce county estimates. The 2016 and 2017 data were obtained from 
single-year 2014 and 2015 BRFSS survey data, respectively. The average (2008–2017) smoking prevalence by 
county is shown in Fig. S1a.

Poverty rate. The data on the average (2012–2016) annual age-adjusted poverty data (% population below 
poverty level) by county are shown in Fig. S1b. The data were obtained from the US Census Bureau’s Small Area 
Income and Poverty Estimates (SAIPE) program (US  Cenus45. The county level observations from the American 
Community Survey (ACS) and census data were used to predict the number of people in  poverty46. The ACS is 
an ongoing survey program conducted by the Census Bureau to provide vital population and housing informa-
tion across the  country47.
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Uninsured percentage. Data on the portion of the population under age 65 without health insurance coverage 
from 2013 to 2017 (Fig. S1c) was obtained from Small Area Health Insurance Estimates (SAHIE)  program45. 
The SAHIE program produces model-based health insurance coverage estimates for demographic groups within 
counties and  states48.

Demography. County-level demography data such as white, non-Hispanic population (%,), black or African 
American, non-Hispanic population (%), Hispanic/Latino population (%), and population aged 65 and older 
(%) were obtained from the US  Census49. We used the 5-year means (2013–2017) of these data in our study 
(Fig. S2a–d).

Air pollution. Particulate matter  (PM2.5). The county-level annual  PM2.5 data were derived from the daily 
 PM2.5 data set downloaded from the CDC data  portal50. This county-level of 24-h average  PM2.5 concentrations 
was generated by the US Environmental Protection Agency (EPA) using a Bayesian spatial downscaling fusion 
 model51. For each county, annual  PM2.5 from 2006 to 2016 was averaged to yield long-term yearly averages, 
which are mapped in Fig. S3a.

Nitrogen dioxide  (NO2). Population-weighted  NO2 concentrations at 0.1° × 0.1° resolution were estimated 
using imagery from three satellite instruments, including the Global Ozone Monitoring Experiment (GOME), 
Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2 
satellite in combination with the GEOS-Chem chemical transport  model52. We resampled all raster data at a 
2.5 km × 2.5 km grid size using Empirical Bayesian Kriging. We then averaged the results within each county for 
each year to yield a long-term annual average of  NO2 that was mapped from 2003 to 2012 (Fig. S3b).

Sulfur dioxide  (SO2). Gridded (1-degree spatial resolution) annual, mean  SO2 vertical column densities were 
obtained from time-series, multi-source  SO2 emission retrievals, and satellite  SO2 measurements from the Ozone 
Monitoring Instrument (OMI) on NASA’s Aura  satellite53. We resampled all raster data at a 2.5 km × 2.5 km grid 
size using Empirical Bayesian Kriging and then averaged the results within each county for the period from 2005 
to 2015 (Fig. S3c).

Ozone. Annual county-level ozone data were derived from the Daily County-Level Ozone Concentrations 
downloaded from the CDC’s data portal  (CDC54, 2020). The daily data provide modeled predictions of ozone 
levels from the EPA’s Downscaler model. The long-term average ozone concentration was generated from annual 
ozone data from 2006 to 2016 and mapped from 2007 to 2016 (Fig. S3d).

Biophysical factors. Radon zone. County-level radon zone data were downloaded from the EPA Radon zone 
interactive information  site55. The radon zoning was done using indoor radon measurements, geology, aerial 
radioactivity, soil parameters, and foundation types. There are three radon zones differentiated by their predicted 
average indoor radon levels: Zone-1(> 4 pCi  L−1), Zone-2 (2–4 pCi  L−1), and Zone-3 (< 2 pCi  L−1) (Fig. S4a).

Urban–rural counties. The data on the division of counties into urban or rural was drawn from the National 
Center of Health Statistics (NCHS) data system’s Urban–Rural Classification Scheme for  Counties56. All coun-
ties were classified into six classes based on the metropolitan statistical areas (MSA)57. We then reclassified the 
counties into four major classes: large central metro, large fringe metro, medium/small metro, and nonmetro 
(Fig. S4b).

Coal counties. We classified the counties into two classes (yes = coal produced, no = no coal production) 
according to the average coal production from 2006 to 2016 (Fig. S4c). We used data from the US Energy Infor-
mation Administration and the US Mine Safety and Health Administration’s annual survey of coal production 
by US coal mining  companies58. Data includes coal production, company and mine information, operation type, 
union status, labor hours, and employee numbers.

Elevation. We used elevation data from  USGS59. Median elevation (m) for each county (Fig. S4d) was calcu-
lated.

Analytical methods. We developed stacked ensemble models from the output of five ML models to predict 
and explain the county-level LBC mortality using many risk factors (Fig. 1). We applied a series of model-agnos-
tic interpretation methods to investigate the effects of several well-known risk factors on LBC mortality rates 
in the US. Three spatial regression models were used to evaluate the performance of the stack-ensemble model.

Exploratory data analysis. Before developing the machine learning model, we explored spatial autocorrela-
tion and stratified spatial heterogeneity (SSH) of LBC mortality rates. Spatial autocorrelation assessment com-
prises statistics describing how a variable is autocorrelated through geographical  space60. We used Getis-Ord 
Gi  statistics61 to quantify spatial autocorrelation of LBC mortality rates by estimating the z-scores and p-values 
in each county. Larger statistically significant positive and negative z-scores indicate more intense clustering of 
high low values, respectively. We used ArcGIS Spatial Statistics  Tools62 to estimate Getis-Ord Gi statistics for 
spatial autocorrelation. We also estimated bivariate Local Moran I (LMI) statistics to explore the degree of linear 
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association between LBC mortality rates and risk factors at a given location and the average of another variable 
at neighboring areas (spatial lag).

Since our study area is vast, there is a possibility of high stratified spatial heterogeneity (SSH) which refers 
to a partition of a study area, where variables are homogeneous within each stratum but not between  strata63. 
The q-statistic proposed by Wang et al.63 measures the degree of SSH in geographical space related to the ratio 
between the variance of a variable within the strata and the pooled variance of an entire study area. The value of 
the q-statistic range from 0 to 1, and it increases as the strength of the SSH increases. The calculated q-statistics 
for all risk factors used the "factor_detector" function of "geodetector"  package63 in the R statistical computing 
 environment64.

Training. Before training, the data set (n = 3,107 counties) was randomly split using stratified random 
 sampling65 into sub-sets of training (70%), validation (15%), and test data (15%). We used seven Gi-bins or clus-
ters derived from Getis-Ord Gi* statistic of LBC mortality rates (Fig. 2a) as strata. The validation data was used 
to optimize the ML model parameters during the tuning and training processes. The test data set was used as the 
hold-out data to evaluate the model performance. The summary statistics and distribution of LBC mortality rate 
and risk factors in the training, validation, and test data sets are similar to those in the entire data set (Fig. S5a, 
b and Table S2).

Spatial regression models. The performance machine learning models were compared with three spatial 
regression models: spatial error, spatial Lag, and geographically weighted OLS (GW-OLS). A brief description of 
these models is given in supplementary information. For spatial regression analyses, "GWModel"66 and "spatial-
reg"67 packages in the R statistical computing environment were  used64.

Figure 1.  Steps used in meta-ensemble machine learning regression models for LBC morality rates prediction. 
GLM = generalized linear model, RF = random forest, GBM = Gradient boosting machine, XGBoost = extreme 
gradient boosting machine, DNN = Deep Neural Network; GW-OLS = Geographically Weighted OLS Regression 
(GW-OLS).

Figure 2.  (a) County-level 5 years (2013–2017) average annual Lung and Bronchus Cancer (LBC) Mortality 
Rates, (b) The geographical clusters of counties with significant-high (hot spot—statistically significant positive 
z-scores, red color) or low (cold spot—statistically significant negative z-scores, sky blue colors) values of the 
Getis-Ord Gi* statistics for the LBC rate. LBC mortality rates and Getis-Ord Gi* Hot Spot maps were created in 
ArcGIS Desktop version 10.6.162.

Administrator
高亮



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24090  | https://doi.org/10.1038/s41598-021-03198-8

www.nature.com/scientificreports/

Machine learning base models. We trained the data with a generalized linear model (GLM), random for-
est (RF), Gradient boosting machine (GBM), extreme Gradient boosting machine (XGBoost), and Deep Neu-
ral Network (DNN) with several combinations of hyper-parameters. A brief description of all base learners is 
given in Supplementary information. During training, we used a Random Grid Search (RGS) to find the opti-
mal parameter values for the base-learners to reduce over-fitting and enhance the prediction performance of the 
 models68. The optimal hyperparameters were selected by conducting a grid-search using tenfold cross-validation 
(Supplementary Information Table S3). We used 0.001 and 2 for "stopping tolerance" and "stopping rounds" as 
early stopping parameters in the parameter tuning process. The best-performing model from each algorithm 
was selected according to their performance during tenfold cross-validation with different-parameters combina-
tions. The root mean squared error (RMSE) was used as a performance matrix.

Stack-ensemble models. Ensemble machine learning with stack-generalization uses a higher-level model 
(meta–learner) to combine several lower-level models model as base-learners for better predict performance. 
Unlike the "bagging" in the random forest or "boosting" in Gradient boosting approaches that can only combine 
the same type of algorithm, stacked generalization can combine different algorithms to maximize the generali-
zation accuracy. It uses the following three steps: (1) set up a list of base-learners (level-0 space) and a meta-
learner (level-1 space), (2) train each of the base-learners and perform K-fold cross-validation predictions for 
each base-learner, and (3) use these predicted values to train the meta-learner and make new predictions. The 
base-level models often consist of different learning algorithms, and therefore stacking ensembles often combine 
heterogeneous algorithms. The K-fold cross-validation outputs of all base learners were then trained with two 
stacked ensemble models at the end. One ensemble contains all the sub-models of five learners (n = 147), and 
the other includes just the best-performing model from each learner. The GLM regression model was used as a 
meta-learner at level 1-space.

We used the "h2o"  package69 in the R statistical computing  environment64 to train, validate, and predict the 
GLM, RF, GBM, XGBoost, DNN, and stack-ensemble models.

Model performance. The performance of all base-learners and stack-ensemble models were evaluated with a 
hold-out-test data set. The diagnostic measures of prediction performance used here were the mean absolute 
error (MAE) (1), and the root mean square error (RMSE) (2). Also, we used observe versus predicted plots to 
visualize model performance and used simple linear regression between observed and predicted LBC-rates to 
judge model performance.

where n is the number of counties, and y and ŷ are observed and predicted LBC rates in county i.
We also calculated bias and variance of all spatial regression and ML models by resampling the training data 

set, repeating the model-building process, and deriving the average prediction error from the test data set. Bias 
represents how far away an average model prediction f̂ (x) is far from the true f (x) , so, bias can be expressed as:

The variance represents how much a model prediction changes with different training data, i.e., variation in 
prediction due to random sampling:

So total expected error of a model prediction is composed of bias and variance:

Explainable AI. The Permutation Feature Importance (PFI)  approach70 and Partial dependence plots (PDP)71 
are primarily used to explain and visualize the output from simple machine learning models. Unlike traditional 
statistical methods, the output of the stacked ensemble model is difficult to interpret since it combines differ-
ent ML  algorithms72. Therefore, we created several agnostic "model explainers " to interpret the stack ensemble 
model’s output at local and global scales. The "explainers" make a unified representation of a model for further 
 analysis37.

Permutation-based feature importance. We adopted the "model agnostic" Permutation Feature Importance 
(PFI)  approach70, which measures the increase in the prediction error (drop-out loss or RMSE) of the model 
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after the feature values are permuted by breaking down the relationship between the feature and the true out-
come. This probabilistic method automatically considers interaction effects for importance  calculation73.

Partial dependence (PD), local-dependence (LD) and accumulated-local (AL) profiles. It is not easy to inter-
pret complex machine learning algorithms by examining their coefficients. However, a partial dependence (PD) 
profile can interpret a machine learning model’s output and visualize how the model’s predictions are influenced 
by each predictor when all other predictors are being controlled. In these plots, the Y-axis value ( ̂y  ) is deter-
mined by the average of all possible model prediction values when the value of the objective predictor is at the 
value indicated on the X-axis.

Partial dependence plots can produce inaccurate interpretations if the predictors are strongly  correlated37. As 
an alternative to partial dependence profiles, a new visualization approach, "accumulated local effects plots," has 
been proposed, which is unbiased and does not require this unreliable extrapolation with correlated  predictors74. 
As accumulated-local (AL) profiles are related to local-dependence profiles (LD)37, both were applied to sum-
marize the influence of an explanatory variable on the stack-ensemble model’s predictions in this study.

Model agnostic greedy explanations of model predictions (breakDown). We applied the break-down variable’s 
contribution to visualize and describe how risk factors contribute to LBC mortality rates prediction locally (at 
the county level). The objective of this approach is to decompose model predictions into parts that can be attrib-
uted to particular  variables75. The "Break-down Plots" proposed by Biecek and  Burzykowski37 presents "variable 
attributions," i.e., "the decomposition of the model’s prediction into contributions that can be attributed to dif-
ferent explanatory variables."

We used the "DALEX"  package76 in R Statistical Computing  Environment64 to create "explainers" for PFI, PD 
-, LD- and AL-profiles, and local variables’ contribution in the best performing stack-ensemble model prediction.

Results
Exploratory data analysis. Figure  2a shows the spatial distribution of county-level, age-adjusted LBC 
rates, averaged over 5 years (2013–2017). There was a total of 146,193 LBC -related deaths in the US during this 
period. The South and Appalachian regions had mean LBC rates during the period 1998–2012 that were much 
higher than the national average of 65 death per 100,000. The highest mean mortality rates were observed in 
Union County in Florida, followed by several counties in the Appalachian region covering Kentucky, Tennessee, 
and West Virginia, respectively. Counties with the lowest LBC mortality rates were observed in Summit County, 
Utah.

The Getis-Ord Gi* hotspot analysis identifies statistically significant clusters of counties with a high mortality 
rate ("hot" clusters) in the South, mainly in the Mississippi basin and the southern Appalachian region (Fig. 2b). 
The "cold" clusters (or areas where the mortality rate was relatively low) occurred predominantly in the Midwest 
and the western part of the country. There were some other small cold clusters of counties in the northeastern 
coastal region.

The correlations between LBC mortality rate and risk factors are weak to moderate (Fig. S6). The correlations 
were positive for LBC mortality rate and smoking (r = 0.623, p < 0.001),  PM2.5 (r = 0.425, p < 0.001),  SO2 (r = 0.293, 
p < 0.001) and poverty (r = 0.394, p < 0.001), and negative for LBC mortality rate and percent Hispanic population 
(r =  − 0.364, p < 0.001) and median elevation (r =  − 0.443, p < 0.001). The mean LBC mortality was significantly 
lower in the large metro area than in other areas (Fig. S7a). For radon zones groups, mean LBC mortality rates 
were lower in radon zones-1 (Fig. S7b). For the last 10 years, counties producing coal showed significantly higher 
LBC mortality rates than other counties (Fig. S7c).

The bivariate global Moran’s I show a positive association between LBC mortality rates and smoking,  PM25, 
 SO2, and poverty activity and a negative association between the Hispanic population and median elevation 
(Fig. S8). The bivariate LMI cluster of LBC mortality rates and twelve risk factors are presented in maps in 
Fig. S9. The red color (High-High) in maps corresponds to significant clusters of high LBC mortality rates and 
high prevalence of risk factors. The light red color (High-Low) in maps resembles clusters of high LBC mortality 
rates and low prevalence of risk factors.

To see how the risk factors explained the spatial distribution LBC mortality rate in the conterminous 
USA, we calculated q-statistic (strength of SSH) of 15 risk factors which were sorted in the order: Smok-
ing >  SO2 >  PM25 > Elevation > Ozone > Poverty > Hispanic population >  NO2 > Population-65 yr > Black popu-
lation > White population > Uninsured > Radon zone > Coal (yes/no) > Urban–Rural (Table 1). The q-value of 
smoking prevalence indicates a moderate stratified heterogeneity effect on LBC mortality rates distribution. 
Fourteen out of 15 variables exhibit low SSH.

Base learners turning parameters. The optimum RF model had ntrees, max_depth, and sample_rate 
of 576, 30, and 06, respectively. The best GBM had ntrees = 500, col_sample_rate = 0.5, max_depth = 20, min_
rows = 1.0. The best XGBoost model was found to have hyper-parameters of ntree = 350, max depth = 3, min_
row = 50, col sample rate = 75%. The DNN model had three hidden layers. Each layer had 100 neurons with a 
"Tanh", activation function, with very low L1 regularization and L2 regularization values to add stability and 
reduce the risk of over-fitting. The optimum GLM model had alpha = 0 and lambda = 1.

Performance of base learners and stack ensemble model. The MAE values varied from 6.06 to 7.00 
per 100,000, which is lower than the minimum value of the observed LBC rate, 10.1 per 100,000. All five base-
learners displayed only slight differences in their RMSE statistics. Among the base-learners, the RF and GBM 
models performed better than all the other learners during the training stage (Table 2). They had lower MAE and 
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RMSE statistics and explained more than 95% of the variability in LBC mortality rates for the training data set. 
However, when the models were applied to the validation data set, they had relatively high MAE and RMSE sta-
tistics, indicating problems in generalizing their results beyond the training data set (i.e., generalization error).

The performance of three spatial regression models, five base-learners and two stack-ensemble models, was 
further evaluated using a hold-out test data set (Table 2 and Fig. S9). The stack-ensemble model with all base 
learners (N = 147) improved prediction over the five base models (level-0 space) and three traditional spatial 
regression models. The improvement in the RMSE ranged between 2 and 32%. The  R2 for the predicted versus 
the observed values for the test data set was 0.61 (Table 2). None of the base-learners successfully predicted the 
lowest and highest LBC rates for the hold-out test data, and they over-estimated low-values and under-estimated 
higher values (Fig. S10a–j).

When all models were rerun with ten randomly sampled trained data sets and validated with a test data set, 
we found the  bias2 of RF, GBM, and the stack-estimable with all base-learners were significantly lower than 
other models (Fig. S11a). However, the prediction variance of these models with different training data sets was 
high (Fig. S11b). The highest  bias2 and the lowest variance were obtained with the spatial lag, GLM, and spatial 
error models.

Permutation-based variable importance. The Feature Importance (the factor by which the RMSE is 
increased compared to the original model if a particular feature is permuted) of the best stack-ensemble model 
is shown in Fig. 3. Among the 15 risk factors, total smoking prevalence was identified as the most important 
variable, followed by poverty rate, elevation, percent white population, and  PM2.5 in the contiguous US.

Partial dependence (PD), local-dependence (LD), and accumulated-local (AL) profiles. Fig-
ure 4 shows partial-dependence, local-dependence, and accumulated-local profile plots of six important risk 
factors. Partial dependence plots help us understand the marginal effect of a feature (or subset thereof) on the 
predicted outcome. PD profiles offer a simple way to summarize a particular risk factor’s effect on the LBC 
mortality rate. When other predictors were controlled for, the effects of smoking prevalence (Fig. 4a), poverty 
(Fig. 4b), percentage white population (Fig. 4d), and  PM2.5 (Fig. 4f) showed a positive effect (blue lines) on 
predicted LBC mortality rates. However, elevation (Fig. 4c) and percentage Hispanic population (Fig. 4e) have a 
strong negative effect on expected LBC mortality rates.

Accumulated-local profiles are helpful in summarize an explanatory variable’s influence on the model’s pre-
dictions when explanatory variables are correlated. When the model is additive but, explanatory variables are 
correlated, neither PD nor LD profiles will adequately capture the explanatory variable’s effect on the model’s 
 predictions37. However, the AL profile will provide a correct summary of the impact of variables on prediction. 
The AL and PD profiles (blue-lines Fig. 5) parallel each other for all six risk factors, suggesting that the stack-
ensemble model is additive for these six explanatory variables.

The contour plot in Fig. 5 shows the dependence of the LBC mortality rate on the joint values of two risk 
factors when the effects of other risk factors are being controlled. When the average smoking prevalence is 
lower than ~ 30%, LBC rates are nearly independent of poverty, whereas, for smoking prevalence rates greater 
than ~ 30%, a strong dependence on poverty was observed (Fig. 5a). Similar positive interactions between smok-
ing and the percent white population (Fig. 5b) and smoking and  PM2.5 (Fig. 5d) were observed; since increases 
in these risk factors are associated with an increase in the LBC mortality rate. However, smoking prevalence and 
percent Hispanic population (Fig. 5c) and  PM2.5 and Elevation (Fig. 5e) interacted in opposite ways in prediction.

Table 1.  Association of each feature (risk factors) with LBC mortality rates (q-values). Q-statistics measures 
the strength of the stratified spatial heterogeneity (SSH).

Features q-statistic p-value

Smoking 0.3916 0.000

SO2 0.2240 0.000

PM25 0.2183 0.000

Elevation 0.2111 0.000

Ozone 0.2103 0.000

Poverty 0.1818 0.000

Hispanic population 0.1711 0.000

NO2 0.1524 0.000

Population > 65 yr 0.0889 0.000

Black population 0.0494 0.000

White population 0.0483 0.000

Uninsured 0.0424 0.000

Radon zone 0.0360 0.000

Coal (yes/no) 0.0223 0.000

Urban–Rural 0.0179 0.000
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Break-down plots for additive attributions. Break-down (BD) plots for a single observation are easy 
to understand, and several risk factors’ contributions can be presented in a limited space. The BD. plots can be 
used to show "variable attributions," i.e., the decomposition of the model’s prediction into contributions that can 
be attributed to different explanatory  variables37. We selected two counties, Summit, Utah, and Union County, 
Florida, to explore the contribution of risk factors in two contrasting environments because the lowest and high-
est LBC mortality rates were observed in these counties. The median elevation in Summit and Union Counties 
are 2,587 and 47 m, respectively, and the prevalence of smoking and poverty in Summit County is lower than in 
Union county. The red and green bars in Fig. 6 indicate negative and positive changes in the mean predictions 
attributed to the risk factors. The most considerable negative contributions to predicting the LBC mortality 
rate for Summit County, Utah, come from elevation, smoking, and poverty (Fig. 6a). The contributions of the 
remaining other risk factors are smaller (in absolute values). For Union County, Florida, the predicted LBC 
mortality rate is attributed to the positive contribution of smoking, poverty,  PM2.5, and radon-zone (Fig. 6b).

Figure 7 shows the spatial variability of the contribution of six risk factors for predicting LBC mortality rates 
in 3107 counties. A high positive contribution of smoking was observed in many counties in the Appalachians 
and the Mississippi Valley in the South and in the states of Missouri and Oklahoma (Fig. 7a). Poverty is identi-
fied as an important contributor in a large number of counties (Fig. 7b). The counties with high contributions 
from poverty on the LBC mortality rate are concentrated in the Appalachians and the Mississippi Valley in the 
South (Fig. 7b). Elevation, which is ranked the third most important risk factor overall, contributed negatively 
in many counties in the mountain area in the West, and Appalachian regions in the South, and the North East 
(Fig. 7c). In large numbers of counties in the Mid-West, North-East, and the Appalachian region in the South, 
percent white pollution showed a positive contribution to the predicted LBC mortality rate (Fig. 7d). A relatively 

Table 2.  Mean absolute error (MAE), root mean squared error (RMSE) and the goodness of fit  (R2) during 
the training, validation, and testing stages. GLM generalized linear model, RF random forest, GBM graditent 
boosting machine, XGBoost eXtreme Gradient Boosting (XGBoost), DNN deep neural networks, GW‑OLS 
geographically weighted OLS regression.

Models Model types Training Validation Test

MAE

Spatial lag model Spatial regression 6.57 9.24 9.02

Spatial error model Spatial regression 6.65 6.73 6.53

GW-OLS Spatial regression 5.67 6.30 6.20

GLM Base-learners 6.64 6.77 6.49

RF Base-learners 1.90 6.45 6.16

GBM Base-learners 1.21 6.54 6.20

XGBoost Base-learners 2.21 6.53 6.41

DNN Base-learners 6.01 7.47 7.00

The best of the family of the base learners Stack-ensemble 2.23 6.43 6.08

All base learners Stack-ensemble 3.95 6.39 6.06

RMSE

Spatial lag model Spatial regression 8.69 12.17 11.46

Spatial error model Spatial regression 8.82 9.12 8.35

GW-OLS Spatial regression 7.56 8.65 8.09

GLM Base-learners 8.80 9.17 8.31

RF Base-learners 2.51 8.66 8.03

GBM Base-learners 1.58 8.84 8.06

XGBoost Base-learners 3.24 8.87 8.35

DNN Base-learners 7.93 9.69 9.03

The best of the family of the base learners Stack-ensemble 3.03 8.58 7.95

All base learners Stack-ensemble 5.21 8.42 7.74

The goodness of fit (R2)

Spatial lag model Spatial regression 0.59 0.33 0.33

Spatial error model Spatial regression 0.58 0.54 0.55

GW-OLS Spatial regression 0.69 0.59 0.58

GLM Base-learners 0.58 0.54 0.56

RF Base-learners 0.98 0.59 0.58

GBM Base-learners 0.99 0.57 0.58

XGBoost Base-learners 0.97 0.57 0.57

DNN Base-learners 0.70 0.50 0.48

The best of the family of the base learners Stack-ensemble 0.96 0.60 0.59

All base learners Stack-ensemble 0.89 0.62 0.61
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higher Hispanic population negatively contributed to LBC mortality rate prediction in several counties in Texas, 
California, and New Mexico (Fig. 7e). Counties with a relatively low but positive contribution from  PM2.5 are 
mostly located in the "Rust Belt" region in the Northeastern and Midwestern of the US and Appalachian areas 
in the South (Fig. 7f).

Discussion
We demonstrated the potential use of stack-ensemble ML models and XAI to quantify and visualize the spatial 
variability of several risk factors’ contributions to the LBC mortality rate across the conterminous USA. Geo-
graphically weighted (GW) models have widely been used to explore this relationship between risk factors and 
the LBC mortality  rate7,8,17–19. However, GW models have limitations in exploring the spatial relationship since 
local regression coefficients are derived in locations (e.g., counties) based on the proximate area of interest and 
number of  neighbors77. To overcome this limitation, XAI with local model-agnostic interpretability and break-
down  plots37 shows promise to explore risk factors’ contribution to spatial variability LBC mortality rates.

In general, interpretable MI falls into two broad categories: personalized or prediction-level interpretation 
and dataset- or population-level interpretation, known as local and global interpretations,  respectively28. The 
permutation-based feature importance, a global level-interpretation, identified smoking prevalence as the most 
important risk factor for LBC mortality. However, break-down plots of local model-agnostic showed a spatial 
variation in smoking’s contributions to LBC mortality rate across the conterminous USA. In general, counties in 
the southern states, particularly in the Appalachian region and Mississippi Valley, have high smoking prevalence 
and LBC mortality  rates3,78–80. The probability of smoking was strongly associated with compositional covariates: 
poverty, education, occupation, age, sex, race/ethnicity, nativity, employment, marital status, and household 
 size81. Although cigarette smoking prevalence declined from 20.9% in 2005 to 14.0% in 2017, smoking is still a 
major cause of disease and death in the USA, accounting for more than 480,000 deaths every year, or about 1 
in 5  deaths4. The high LBC mortality rates in the Appalachian region and Mississippi Valley can also be partly 
explained by high poverty rates, limited healthcare access, low educational attainment, and coal  mining82,83. 
We identified county-level poverty rate as the second most important risk factor for LBC mortality across the 
contiguous US. Multivariate PD profile plots reveal a positive interaction between smoking and poverty rates 
since increasing both features leads to increased LBC mortality rates. The relationship between socioeconomic 
status and LBC mortality rates in the US is well  established13,82,84,85. Access to health care is an economic issue, 
particularly in the  US7. The socioeconomic status, such as poverty, determines early diagnosis and treatment 
and reduces the risk of death from  LBC86. Percent population access to health insurance which is linked with 
poverty contributed strongly in predicting a high LBC mortality rate in Union County, Florida, which has the 
highest national LBC mortality rate.

Lung cancer incidence and mortality across the US were associated with the demographic  composition87. In 
this study, we found that the percentage of the white or Hispanic population contributed positively and nega-
tively, respectively, to the LBC mortality rate. Counties with a high proportion of white people in the Mid-West, 
North-East, and the Appalachian region in the South had higher LBC mortality rates than counties in the West 

Figure 3.  Permutation based feature ranking in stack-ensemble model.
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with a relatively high proportion of Hispanics. Hispanics in the US have about a 50% lower incidence rate for 
lung cancer than the non-Hispanic white  population88. Their presence contributed to lower LBC mortality rates 
in the western US  generally7. The lower LBC incidence and mortality rates in this region are probably due to 
lower smoking rates in the Hispanic  population88. We found a negative association between county-level smok-
ing prevalence and the Hispanic population (r =  − 0.315, p < 0.001).

After smoking and poverty, median elevation ranked third in predicting LBC mortality nationally. In many 
mountainous counties in the West and North-East, elevation showed a negative contribution in prediction, which 
is consistent with the conceptual model of the impact of elevation on LBC mortality  rates89 and the study of Kerry 
et al.7. Low atmospheric oxygen in higher elevation areas acts as an inhibitor of free radical damage and tumori-
genesis, which may be responsible for low incidence respiratory cancers across the US’s mountainous  counties89.

The overall association between the LBC mortality rate and  PM2.5 and  SO2 was positive among the four air 
pollutants. The shared geographic area of high LBC mortality rate, smoking, poverty, and air pollution  (PM2.5 
and  SO2) in the southeast and the Appalachian region indicate the association of these risk factors with higher 
LBC mortality rates. Other factors, such as poor diet, genetic susceptibility, and occupational exposures, may act 
independently or in concert with smoking or air pollution in determining LBC incidence and  mortality90. Inferior 
air quality in these regions may synergistically contribute to a higher risk of lung cancer or respiratory  illness91,92.

This study has some limitations. The county-level data inherent limitations since data are model-based esti-
mates from the BRFSS telephone  survey93. Furthermore, the LBC rate data used in this study contain errors due to 
the under-recording of lung cancer deaths, errors in population count, and covariates used in modeling. Besides 
the limitation of the data, the "post-doc explainable ML" model has some  limitations29. The XAI is usually not 
suggested for high-stack discussion making due to its unreliable and unrealistic explanation of what the original 
model computes. However, it is recently being used in health  sectors36,94,95. Very recently stack-ensemble model 
with model agnostic methods has been applied to identify factors influencing childhood blood lead  levels72.

Figure 4.  Partial-dependence, local-dependence, and accumulated-local profiles for the stack-ensemble model 
for the (a) smoking prevalence; (b) poverty rate; (c) elevation; (d) percentage white population; (e) percentage 
Hispanic population and (f)  PM2.5.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24090  | https://doi.org/10.1038/s41598-021-03198-8

www.nature.com/scientificreports/

Conclusions
To our knowledge, this study is the first one to apply XAI as "model greedy agnostic explanations of model predic-
tions" or "break-down plot"37 in a stack-ensemble framework to explore the spatial variability of the contribution 
of several risk factors to LBC mortality rates. Application of XAI for understanding the spatial variability of the 
associations between LBC mortality rates and the risk factors may allow advanced research and policy develop-
ment to understand underlying, spatially varying contributors to LBC mortality across US counties. This study 
shows strong potential for implementing XAI as a complement to or substitute for the traditional spatial regres-
sion models. This study’s findings may lead to more tailored and effective prevention strategies from a policy 
perspective, which is critical, given the projected prevalence growth of LBC mortality rates in the coming decades.

Figure 5.  Two-variable partial dependence plots for the stack-ensemble modes for predicting LBC mortality 
rates. (a) Smoking versus poverty; (b) smoking versus white population; (c) smoking versus Hispanic 
population; (d) smoking vs. PM2.5; and (e)  PM2.5 versus elevation.

Figure 6.  Break-down plots for the stack-ensemble model for the (a) Summit County, Utah, and Union County, 
Florida.
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