Ecological Indicators 117 (2020) 106545

journal homepage: www.elsevier.com/locate/ecolind

Contents lists available at ScienceDirect

Ecological Indicators

~ | ECOLOGICAL

INDICATORS

Applying Geodetector to disentangle the contributions of natural and R

Check for

anthropogenic factors to NDVI variations in the middle reaches of the Heihe | %2

River Basin

Lijun Zhu", Jijun Meng™", Likai Zhu""

#Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Y Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi,

Shandong 276000, China

ARTICLE INFO ABSTRACT

The detection and attribution of vegetation changes is a prerequisite for vegetation restoration and management.
In arid and semi-arid areas, natural and anthropogenic factors interact to influence vegetation change, making it
challenging to disentangle the contributions of driving forces. Here we used NDVI as an indicator of vegetation
condition and analyzed its spatial and temporal changes in the middle reaches of the Heihe River Basin from
2000 to 2015. Then we applied the Geodetector method, a robust spatial statistics approach, to quantify the
effects of natural and anthropogenic factors on NDVI changes. NDVI across the study area showed a significant
increasing trend from 2000 to 2015. Both natural and anthropogenic factors were identified as significant
driving forces of NDVI change, and the factors, land use conversion type, mean annual precipitation and soil
type, caused the greatest influence. The explanatory power of a single factor was often enhanced when it in-
teracted with other factors. We also found that influencing factors often correlated with NDVI changes in a non-
linear way. Our research highlights that the Geodetector method is an effective way to disentangle the com-
plicated driving factors of vegetation change, and our results is useful for projecting vegetation change under
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future environmental change and taking measures to prevent and mitigate land degradation in drylands.

1. Introduction

Drylands cover about 41% of the Earth's land surface and sup-
port > 38% of the global population (Reynolds et al., 2007). Climate
change and human activities have caused serious land degradation
(e.g., desertification) in these areas (Reynolds et al., 2007), which in
turn impedes social and economic development and threatens ecolo-
gical environment. Monitoring land degradation and figuring out its
potential causes is particularly important for sustainable land use. Ve-
getation is an important component of terrestrial ecosystems which
links among the atmosphere, soil, water and other elements, and in
drylands, it plays a particularly crucial role in providing ecosystem
goods and services such as soil and water conservation, climate reg-
ulation, carbon and nitrogen cycling (Piao et al., 2011). Therefore,
vegetation change can be a sensitive indicator of land degradation and
ecosystem health (Casermeiro et al., 2004), and understanding its un-
derlying driving mechanisms is prerequisite to develop effective stra-
tegies of vegetation restoration and desertification prevention.
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The influencing mechanisms of vegetation change has been at-
tracted much attention. Vegetation change has been found to be in-
fluenced by intertwined natural and anthropogenic factors. Natural
factors mainly include atmospheric CO, concentrations, climate change
(temperature, precipitation and radiation), and nitrogen deposition rate
(Donohue et al., 2013; Los, 2013; Mao et al., 2013; Piao et al., 2015;
Zhu et al., 2016b). Anthropogenic factors mainly include urbanization,
agricultural fertilization and irrigation, grazing, deforestation, ecolo-
gical restoration, and so forth (Mueller et al., 2014; Hua et al., 2017;
Zhang et al., 2018). Given that the influences of these factors on ve-
getation changes are nonlinear and interacted, quantifying their con-
tributions is challenging. Traditional statistical methods such as corre-
lation and regression is effective only when the relationships between
vegetation change and its driving forces are linear (Gu et al., 2018), and
dependent and independent variables follow normal distributions. But
in reality, these conditions are rarely satisfied. For example, the re-
sponses of vegetation NPP to precipitation vary with amount, season-
ality and frequency (Gerten et al., 2008; Peng et al., 2013), and the
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Fig. 1. The location of the study area.

relationship between vegetation photosynthesis and temperature has
been proved to be non-linear (Yamori et al., 2014). The nonlinearity is
often influenced by the changes in other factors as indicated by the
weakening relationship between temperature and vegetation activity
over time, due to more severe drought in the temperate ecosystems,
increase in extremely hot days and shrub expansion over grass-domi-
nated tundra in the arctic ecosystems (Piao et al., 2014). Dynamic
ecosystem models allow the response of environmental variables to key
processes (such as photosynthesis, respiration, evapotranspiration,
phenology, and carbon allocation) to be analyzed in a nonlinear and
dynamic way (Oleson et al., 2010; Piao et al., 2015), overcoming the
limitations of traditional statistical method (Peng et al., 2013; Piao
et al., 2014). However, ecosystem models usually require to set a large
number of model parameters, which potentially causes much more
uncertainties (Sitch et al., 2008). In contrast, Geodetector is a robust
and straightforward method to quantify the influences of driving factors
and their interactions (Wang and Xu, 2017), which does not have to
follow restrictedly the assumptions of traditional statistical methods,
and involve complex processes of parameter settings. Thus, this method
has been successfully used to quantify the effects of driving factors on
the vegetation change (Liang and Yang, 2016; Pan et al., 2019; Peng
et al., 2019; Zhang and Zang, 2019), and will potentially be an effective
tool to disentangle the causes of vegetation change in dryland ecosys-
tems.

The influence of anthropogenic factors on vegetation growth is
much more difficult to quantify than natural drivers. Human-induced
land degradation has been detected by analyzing the trend of residues
which are calculated as the differences between the actual NDVI value
and the estimated NDVI value fitted with only natural factors as in-
dependent variables (A et al., 2016). However, this method has a lim-
ited range conditions within which they are reliable indicators of land
degradation (Wessels et al., 2012). For example, land degradation can
only be effectively detected when there is a 30-40% reduction in the
sum of NDVI (3, NDVI), given the underlying positive trend in ), NDVI
caused by increased rainfall. Land use involves the management and
modification of natural environment or wilderness into built environ-
ment such as settlements and semi-natural habitats such as arable
fields, pastures, and managed woods, thus land use change is con-
sidered to be the most direct and comprehensive indicator of human

activities (Zhang and Zang, 2019). Land use change has been proved to
be the main driving factor of long-term changes in vegetation in China
(Hua et al., 2017; Piao et al., 2019). Urbanization, characterized by the
occupation of croplands, forests and grasslands by impervious surface,
has removed vegetation or change vegetation structure in urban areas
(Qu et al., 2020). Irrigation and fertilization promote crop growth in
agricultural areas (You et al., 2019). Afforestation, benefited from
ecological protection policies, for example, the Grain for Green Project,
has contributed a lot to vegetation improvement (Qu et al., 2020).
Therefore, exploring the relationship between land use change and
vegetation change can effectively reveal the influence of human activ-
ities on vegetation growth.

China is one of the countries severely affected by desertification,
especially in the agro-pastoral transitional zone in northern China and
the oases along inland rivers in the arid areas of northwestern China
(Wu and Ci, 2002). The Heihe River is the second largest inland river in
China, located in the typical arid and semi-arid regions in northwestern
China. Its eco-environment is extremely fragile and sensitive (Wang and
Pan, 2019). The middle reaches of the Heihe River Basin are char-
acterized by the most intensive human activities, the most densely
distributed oases, and the most developed economy across the whole
Heihe River Basin. Vegetation is an essential element for sustainable
development and ecological security. Therefore, the middle reach of the
Heihe River Basin is an ideal place to study the vegetation variations
and their responses to natural factors and human activities in the arid
and semi-arid areas. Studies have found that precipitation has the
greatest impact on vegetation change in the middle reaches of the Heihe
River among natural factors, and then was followed by soil type (Fu
et al,, 2018; Yuan et al.,, 2019). Human activities were rarely con-
sidered, and the interactions between factors and the non-linearity of
the influence of factors are often not addressed effectively. Therefore,
our archiving goal is to disentangle the contributions of natural and
anthropogenic factors to vegetation changes in the middle reaches of
the Heihe River Basin from 2000 to 2015. To achieve this goal, we first
analyzed the temporal and spatial variations in NDVI, and then quan-
tified how natural and anthropogenic factors interact to influence these
changes using the robust Geodetector method.
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Table 1
Classes of annual maximum NDVI change.
Significance level Slope Classes
p < 0.05 slope = 0.01 Significant improvement

0 < slope < 0.01
—0.01 < slope =0

Slight improvement
Slight degradation

slope < -0.01 Significant degradation
p = 0.05 slope > 0 Insignificant improvement
slope < 0 Insignificant degradation

2. Materials and methods
2.1. Study area

The Heihe River originates from the Qilian Mountains in Qinghai,
flows through Gansu and disappears in oases in Inner Mongolia, and its
basin is located in the transition zone between the Qinghai-Tibet
Plateau and Inner Mongolia Plateau. The middle reaches of the Heihe
River Basin (97°20’-102°12’E and 37°28’-39°57’N) (Fig. 1) is between
Yingluo Gorge and Zhengyi Gorge, covering an area of 1.96 x 10* km?.
It is adjacent to Qilian Mountains in the south and to Longshou
Mountains and Heli Mountains in the north, while plains are distributed
in the middle. Across the study area, oases, deserts and Gobi are in-
termittently distributed. The altitude is high in the south and low in the
north, ranging from 1266-4965 m. The study area belongs to a tem-
perate continental arid climate with an annual precipitation of
100-676 mm decreasing from south to north and from east to west, and
annual temperatures of —7-10 °C increasing from south to north and
from east to west. Unused land accounts for approximately 50% of the
total area, mainly distributed in the northwest; cultivated land accounts
for about 20%, mainly in the central corridor plains; and forests and
grasslands are mainly in the south. The administrative units of our
study area include Ganzhou, Linze, Minle, Shandan, Gaotai and Min-
ghua in Zhangye City, Gansu Province.

2.2. Data sources

We collected data for vegetation conditions and their driving factors
from multiple sources. We used the annual maximum NDVI as a de-
pendent variable to analyze vegetation change and determine its un-
derlying mechanisms. This dataset was derived from the continuous
time series of SPOT VEGETATION NDVI through maximum value
composite method, and was free downloaded from the Resource and
Environment Data Cloud Platform, Chinese Academy of Sciences
(http://www.resdc.cn) at a 1-km resolution from 2000 to 2015 (Xu,
2018). It has been widely used, and proven to be effective in reflecting
vegetation coverage and change in China (Chen et al., 2020). Gridded
climate data used in our research included annual precipitation and
temperature data with a 1 km resolution from 2000 to 2015. They were
generated through spatial interpolation based on daily data of national
meteorological stations, and could be downloaded from the Resource
and Environment Data Cloud Platform, Chinese Academy of Sciences
(http://www.resdc.cn). We used DEM data with a 1 km resolution to
extract elevation, slope and aspect across our study area. We use land
cover maps in 2000 and 2015 to generate the independent variable of
land use conversion. The data set was interpreted visually based on
Landsat TM/ETM + images of various periods, and available from the
multi-temporal land use database of China. We reclassified land cover
types into 6 types: cropland, forest, grassland, water area, construction
land and unused land, and generated a map of land use conversion
between 2000 and 2015. Spatial distribution of landform type with a
1 km resolution was collected from the Cold and Arid Regions Science
Data Center (http://westdc.westgis.ac.cn/). The data of basic geo-
graphic information data, including cities, roads, rivers, and so forth,
were collected from the National Geomatics Center of China (http://
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www.ngcc.cn/ngec/).

2.3. Methods

2.3.1. Trend analysis of NDVI

Annual maximum NDVI can effectively reflect annual vegetation
growth conditions, and is widely used to analyze vegetation dynamics
(Peng et al., 2019). We used the linear regression method to detect the
trend of annual maximum NDVI of the study area as a whole and by
pixel from 2000 to 2015. The slope of linear regression can reflect the
change rate of annual maximum NDVI which can be estimated as:

nx Y5, (G x NDVL) — ¥ j ¥ NDV,
n . n .
nXZj:]JZ _(Zj=1f)2 (1)
where n is the number of years, and NDVI; is annual maximum NDVT of

year j. We classified NDVI changes into 6 classes according to the slope
and the significance level (Table 1) (Liu et al., 2016).

slope =

2.3.2. Factors selection

Complex and diverse environmental variables and human activities
influence the change of NDVI (Piao et al., 2015; Ma et al., 2019). We
chose NDVI change value between 2000 and 2015 as the dependent
variable which was defined as the NDVI value in 2015 minus the NDVI
value in 2000 and selected 10 natural and anthropogenic factors from
the respects of climate, topography, geomorphology, soil, river and
human activity, which were representative and easy to quantify, and
whose data are readily available (Table 2). Precipitation and tem-
perature are two of the most important influencing factors of vegetation
changes (Gu et al., 2018; Yuan et al., 2019). Although some environ-
mental elements such as elevation, slope, aspect, landform type and soil
type change slightly in a short period, they provide very important
environmental context for vegetation changes (Zhang et al., 2018; Peng
et al., 2019). Beyond precipitation, rivers are the main water sources to
support vegetation growth in the arid areas, so we included the distance
to the rivers as one independent variable (Liang and Yang, 2016).
Studies have proven that the distance to the urban centers and land use
conversion types can effectively reflect the magnitude of human influ-
ences, so we have included these two factors as independent variables
(Liu and Li, 2017).

Given that the Geodetector method was only able to deal with
discrete variables (Wang and Xu, 2017), we converted the 10 con-
tinuous variables into discrete ones (Table 3). The natural breaks
method built in ArcGIS determines the clustering according to the in-
herent attribute of data in order to reduce the variance within the group
and increase the variance between the groups, which has been widely
used in data classification when applying the Geodetector method (Liu
and Li, 2017; Peng et al, 2019). It was used to divide mean annual
precipitation, mean annual temperature and elevation into 6 discrete
grades and divide slope into 10 grades. Aspect was classified into 9
types according to relevant studies (Zhang et al., 2017; Peng et al.,
2019). Landform had 6 types: plains, platforms, hills, small undulating

Table 2
Potential natural and anthropogenic factors of vegetation change.
Respects Variables Code Unit
Climate Mean annual precipitation X1 mm
Mean annual temperature X2 °C
Topography Elevation X3 m
Slope X4 °
Aspect Xs
Geomorphology Landform type Xe categorical
Soil Soil type X7 categorical
River Distance to the rivers Xg km
Human activity Distance to the urban centers Xo km
Land use conversion type X10 categorical
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Table 3

Factors grading standards.

Distance to the urban

centers (km)

Distance to the
rivers (km)

Soil type

Landform type

Aspect (°)

Elevation (m) Slope (°)

Mean annual

Mean annual precipitation

(mm)

Categories
\Factors

temperature (°C)

0-3
3-10

Semi-leached soils

Calcic soils

Plains

Gentle slope (—1°)

0-0.74

1256-1571

—6.85 to —0.25
—0.25-2.83

100.46-173.54
173.54-242.84

3-8

Platforms

North slope (0-22.5°,

337.5-360")

0.74-1.55

1571-1905

8-15

Arid soils 10-20

Hills

Northeast slope
(22.5-67.5%)

1.55-2.59

2.83-5.14 1905-2320

242.84-320.71

Desert soils 20-30 15-25

Small undulating

East slope (67.5-112.5%)
mountains

2.59-3.98

2320-2791

5.14-7.04

320.71-406.42

Primary soils 30-50 25-35

Medium undulating

mountains

Southeast slope
(112.5-157.5%)

3.98-5.84

7.04-8.48 2791-3393

406.42-509.96

35-56

50-91

Semi-hydromorphic

soils

Large undulating
mountains

South slope (157.5-202.5°)

5.84-8.13

3393-4685

8.48-9.61

509.96-675.40

Hydromorphic soils

Southwest slope
(202.5-247.5°)
10.88-14.10 West slope (247.5-292.5°)

14.10-18.24 Northwest slope

8.13-10.88

Saline-alkali soils

Anthropogenic soils

(292.5-337.5%)
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mountains, medium undulating mountains and large undulating
mountains. Soil included 13 categories based on soil order: semi-lea-
ched soil, calcic soil, arid soil, desert soil, primary soil, semi-hydro-
morphic soil, hydromorphic soil, saline-alkali soil, anthropogenic soil,
alpine soil, lakes and reservoirs, rivers, and glaciers. Distances to the
rivers and to the urban centers were divided into 6 grades by the nat-
ural breaks method. There were 28 types of land use conversion as
shown in Fig. 2(j). We showed the spatial distribution of grades for all
factors (Fig. 2), and summarized the average NDVI within each grade of
a specific factor to initially illustrate their relationships (Fig. 3).

2.3.3. Geodetector

We used the Excel Geodetector software which was developed by
Wang et al. (2010) to implement the Geodetector method. The software
can be downloaded free of charge from the website (http://www.
geodetector.cn/). The Geodetector method was used to detect the in-
fluence of our selected 10 factors on vegetation changes. It is a spatial
statistics method to detect spatial heterogeneity and quantify the in-
fluence of driving factors. Geodetector is not based on linear assump-
tions, but compares the spatial consistency of independent variable
distribution versus the geographical strata in which potential factors
exist. The basic principle is to divide the total sample into several
subsamples and judge the spatial heterogeneity and variable relation-
ships by variance. If the sum of the variances of subsamples is less than
the total variance of all samples, spatial differences exist. If the spatial
distributions of two variables tend to be consistent, there is a statistical
correlation between these two variables (Wang and Xu, 2017). Geo-
detector includes 4 aspects of detection (Wang et al., 2010).

(1) Factor detector. Factor detector identifies factors that are re-
sponsible for the independent variable. The explanatory power of
each factor is measured by q value:

=1 — Zi:l NhUhZ
a No? @

where q is the explanatory power of one factor on vegetation NDVI
change; h is the number of classifications or partitions of Y or factor X;
Nj, and N are the number of units in class h and the whole region, re-
spectively; oy, 2 and o 2 are the variance of Y for the units in class h and
the whole region, respectively. The q value ranges from 0 to 1, and the
larger the g value is, the stronger the spatial heterogeneity of Y is. If h is
generated by factor X , the g value indicates that X explains 100 X q%
of Y. The larger the g value is, the stronger the explanatory power of
factor X to Y is, and vice versa. The q value followed the Noncentral F-
test (Wang et al., 2016) which was used to determine the significance
level.

(2) Ecological detector. Ecological detector determines whether there is
a significant difference between two factors (X; and X5) in terms of
their influence on the spatial pattern of NDVI change, which is
examined by F statistic:

_ Ny (Nx-1) SSWy

F
Ny, (Nx-1) SSWx, 3)
I 2 Ly 2
I\ X Ny,
SSWy, = Zyms b , SSWy, = Zym ha®
No? No? 4)

where Ny and Ny, represent the sample number of two factors (X; and
X,), respectively. SSWy, and SSWyx, represent the sum of variance of
each class formed by two factors (X; and X>), respectively. L; and L,
represent the number of classes for variable X; and X,, respectively. F-
test was used to determine the significance level of F statistic.

(3) Risk detector. Risk detector judges whether there is a significant
difference between mean values of Y in two subzones of a factor,
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Fig. 2. The spatial distributions of all factors in study area.

which is examined by t statistic:

_ Vi1 — Yo
[ Var(Yh=1) , Var(Th=2) ]1/2
h=1 nh=2 %)

where Y, represents the mean value of attributes in the sub-region h, n;,
is the number of samples in the sub-region h, and Var represents the
variance. The t value follows the Student’s t test, which can test whether
the influence of natural or anthropogenic factor is statistically

significant or not at specific significance level.

(4) Interaction detector. Interaction detector assesses whether the ex-
planatory powers of two factors are enhanced, weakened, or in-
dependent of each other. First, the q values of two factors X; and X5
for Y were calculated (gq(X;) and q(X,)). Then, the g value of in-
teraction, which is a new layer formed by tangent of overlay vari-
ables X; and X,, was calculated (q (X; n X5)) and compared with q
(X;) and q(X,) to indicate the interaction type between two
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Fig. 2(j).
variables.
3. Results

3.1. Spatial and temporal pattern of NDVI change

Annual maximum NDVI of the whole study area showed an in-
creasing trend at a rate of 0.0052/year (Fig. 4). The areas where NDVI
changed significantly from 2000 to 2015 was 9757 km?, accounting for
48.9% of the total area. The areas showing an increasing trend ac-
counted for 48.4% of the total area, among which 15.7% increased
significantly. In contrast only 0.46% of the total area showed a de-
creasing trend.

We used the NDVI data products generated by Xu et al. (2018), of
which the NDVI values were normalized between 0 and 1. The dis-
tribution of mean annual maximum NDVI showed a clear spatial pat-
tern. Vegetation NDVI was at a low level with mean annual maximum
NDVI < 0.6 in most areas. The lowest NDVI values were mainly dis-
tributed in the northwest with average values < 0.10, where deserts
and Gobi were mainly distributed (Fig. 5a). The highest NDVI values
were mainly distributed in the oases along the Heihe River and
southern Qilian mountains. The areas with significantly increased NDVI
were mainly distributed along the Heihe River, and in the central and

04

NDVI

2010 2015

Year

Fig. 4. Trend of annual maximum NDVI in the middle reaches of the Heihe
River.

southern areas of our study area (Fig. 5b), which was consistent with
findings of previous research (Wang et al., 2019; You et al., 2019). The
oases along the rivers and in the central plains have witnessed flour-
ished crops due to developed irrigation system and abundant water
supply. The southern areas were mainly covered by forests and
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Fig. 5. Spatial pattern of mean annual maximum NDVI (a) and change classes (b) in the middle reaches of the Heihe River Basin.

grasslands whose conditions had been recovered due to increased pre-
cipitation and intensive management. The areas with significantly de-
creased NDVI were distributed sparsely around administrative centers,
and areas with decreased NDVI but not significantly were distributed in
upstream mountain areas and downstream plain areas. Urban expan-
sion has occupied a large amount of farmlands and ecological lands,
causing a decrease in NDVI. Research has found that climate change,
especially temperature change, has the profound impacts on vegetation
dynamics (Li et al., 2020). Warming climate might amplify climate
variability, make extreme climate events occur more frequently (Liu
et al, 2013), which leads to a decrease in vegetation productivity in
upstream mountain areas. In contrast, anthropogenic factors (e.g., land
use changes) are the dominant driving forces of vegetation dynamics in
the downstream plain areas (Li et al., 2020). Although agriculture ex-
pansion and intensification leads to an increase in vegetation pro-
ductivity, the problems of salinization and desertification are severe in
these areas, which results in vegetation degradation.

3.2. Influence of natural and anthropogenic factors

All 10 factors exerted significant effect on NDVI changes
(p < 0.05). The factor, land use conversion type, had the largest in-
fluence which explained 23.9% of NDVI changes. The following factors
were mean annual precipitation and soil type, whose contributions
were 15.8% and 11.6%, respectively. The factors, elevation, mean an-
nual temperature, distance to the urban centers, distance to the rivers,
aspect and landform type explained only 9.5%, 7.4%, 6.2%, 3.2%,
2.5%, and 1.6% respectively. The contribution of slope degree was the
lowest (0.2%). Therefore, both natural and anthropogenic factors had
been identified as important influencing factors of NDVI changes in our
study area.

3.3. Significant differences between factors

Most pairs of factors showed a significant difference regarding their
influences on NDVI changes except the pairs of mean annual tem-
perature and distance to the urban centers, landform type and slope,
landform type and aspect, landform type and distance to the rivers, and
aspect and distance to the rivers (Table 4). We found that the factors,
land use conversion type, mean annual precipitation and soil type,
which had greater contributions, all had statistically significant differ-
ences with other factors. Therefore, the factors, land use conversion
type, mean annual precipitation and soil type are key factors which
influenced vegetation changes in their own ways in the middle reaches

Table 4

Ecological detector results showing whether the effects of the two factors on
vegetation NDVI changes have a significant difference at a confidence level of
0.95.

Factors X

H
x
3
x
B
x
ks
x
&
x
&
x
~N
x
©
&
><
R
(=}

Y
Y Y
Y Y Y

x
I I
K2
R
<o 2
<<z Z
<oz

Note: Y indicates that there is a significant difference in the effects of the two
factors on vegetation NDVI changes, and N means no significant difference.

of Heihe River Basin.

3.4. Interaction between factors

If the q statistics for factor interactions is greater than the maximum
of both x; and x5, but less than the sum of them (Max(A,
B) < C < A + B), it indicates that the two factors are mutually en-
hanced. If the g statistics for factor interactions is even greater than the
sum of x; and x, (C > A + B), it indicates that the two factors are non-
linearly enhanced. The q statistics for factor interactions were higher
than the g statistics for a single factor, indicating that the explanatory
power of a single factor could be enhanced when interacting with
others (Table 5). For 67% of cases, the g statistics for interaction be-
tween two factors were higher than the sum of the g statistics of two
single factors, which suggested a non-linear enhancement effect.

3.5. Non-linear effects of factors

The risk detector results could reflect how NDVI change responded
to changes in the level of a specific factor in a non-linear way. The
results showed that NDVI varied non-linearly with the levels of all
factors (Fig. 6a-i). For example, the influence of precipitation varied
with the levels of precipitation, although NDVI increased consistently
with precipitation (Fig. 6a). With an increase in precipitation, the
magnitude of NDVI increase rose and reached the peak of 0.13 atlevel 5
(406-509 mm), and then decreased to the second minimum increasing
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Fig. 6. Variations in the influence of factors with their levels.

magnitude of 0.025 at level 6 (509-675 mm). Temperature showed
similar characteristics as precipitation (Fig. 6b). As elevation increased,
the rate of NDVI increase first kept rising and reached the peak when
the elevation is below 2791 m, and then decreased (Fig. 6¢). A certain
degree of elevation increase will not have negative influences on ve-
getation growth, but if the increase exceeds a critical value, the areas
with extremely high elevation were often characterized by low tem-
perature stress, large terrain fluctuations, poor soil quality and other
harsh conditions which are not suitable for vegetation growth any
more. The negative influence of high elevation on vegetation growth is
particularly evident in Southwest China (Xiong et al., 2019). Compared
to precipitation whose influence fluctuated largely, the impact of slope
fluctuated slightly, which indicated that slope influenced NDVI in a
nearly linear way (Fig. 6d). NDVI increasing rate at the first 6 levels
(0-8.13°) is slightly larger than that at the last 4 levels (8.13°-27.58°),
indicating that even terrains are more favorable for vegetation growth.
Overall, NDVI increase on the shady and semi-shady slopes (North
Slope) were greater than that on the sunny and semi-sunny slopes
(South Slope) (Fig. 6e). The shady and semi-shady slopes with weaker
evaporation and greater water retention capacity is better for vegeta-
tion growth than sunny and semi-sunny slopes (Zhu et al., 2016a),
especially in arid areas. As the distance to the rivers increased, the
magnitude of NDVI increase descended to the bottom of 0.02 at level 5
(30-50 km), and then increased a little to 0.06 when the distance to the
rivers increased more. The distance of < 3 km to the urban centers led a
decrease of 0.04 in NDVI, and NDVI started to increase with the in-
crease of distance and reached the peak of 0.10 at level 3 (8-15 km),
after which the magnitude of NDVI increase began to decrease.
Different types of land use conversion had different influence on
NDVI variations (Table 6). From 2000 to 2015, most types of land use
conversions had led to an increase in NDVI. Land use conversions, such
as from unused lands to croplands, from grasslands to croplands and
from forests to croplands, had caused the largest increasing magnitude

of NDVI. There were only 7 types of land use conversion leading to a
decrease in NDVI, of which the most prominent type was the conversion
from cropland to construction land decreased by 0.075 with the largest
area of 0.12%. We found that the g statistics for land use conversion
from forests to unused lands are counter-intuitively positive, which
indicated that such a type of conversion could cause an increase in
NDVI. The reason for the unexpected results was that the area of this
kind of conversion was only 1 km? (0.01% of the study area), and also
had high error in detecting such conversion from forests to unused
lands. The reason was the same for conversions from croplands to
forests (0.01%), forests to grasslands (0.01%), forests to water areas
(0.01%), water areas to grasslands (0.02%) and construction lands to
unused lands (0.01%).

4. Discussion
4.1. Key natural drivers of NDVI change

Annual precipitation has the greatest influence on vegetation
changes among natural drivers. This is consistent with the findings of
previous studies that vegetation is more sensitive to precipitation than
other natural factors in arid and semi-arid areas where water is a key
limiting factor of vegetation growth (Chen and Ren, 2013; Liu et al.,
2020). We found an interesting pattern that precipitation gradients
dictate the relative importance of environmental and anthropogenic
factors on vegetation in our study area. When precipitation is less (e.g.,
at level 1), the q statistics of land use conversion type and distance to
the urban centers are much higher than other factors, indicating that
NDVI change was mainly affected by human activities (Fig. 7). This is
because precipitation is insufficient to meet water requirements of ve-
getation growth in these areas, while human activities could alleviate
the limitations of precipitation by providing more water supply or
transforming land use. When precipitation increased to level 2 and level
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Table 6
Influences of land use conversion types on the magnitude of NDVI change.
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2000\2015 Croplands Forests Grasslands Water areas Construction lands Unused lands
Croplands 0.134 (18.68) 0.040 (0.01) 0.191 (0.15) 0.085 (0.02) —0.075 (0.12) —0.120 (0.07)
Forests 0.209 (0.07) 0.093 (6.34) 0.132 (0.01) 0.044 (0.01) 0.172 (0.01)
Grasslands 0.224 (0.68) 0.083 (22.50) —0.006 (0.04) 0.021 (0.03) 0.044 (0.06)
Water areas 0.130 (0.03) —0.003 (0.02) 0.079 (2.61) —0.012 (0.01) 0.065 (0.02)
Construction lands 0.093 (1.65) —0.416 (0.01)
Unused lands 0.259 (1.64) 0.107 (0.18) —0.012 (0.10) 0.027 (0.22) 0.018 (44.74)

Note: The numbers in parentheses indicate the percentage of specific land use conversion to the total area (%). Blank cells indicate that this type did not occur in study

area in study period.

3, the g statistics of natural factors such as temperature and slope in-
creased significantly. This suggested that vegetation changes were
mainly affected by both natural factors and human activities. When
precipitation continued to increase to level 4 and level 5, the q statistics
of mean annual temperature, elevation, landform type and soil type
were significantly larger than other driving factors while the q statistic
of land use conversion type was small, indicating that vegetation
changes were mainly affected by natural factors. When precipitation
reached level 6, land use conversion type became the key factor again.
This indicated that environmental elements could not support vegeta-
tion growth much in the areas with harsh conditions such as extremely
low temperatures, poor soil quality and steep slopes.

We found significant increase in NDVI in areas with hydromorphic
soil, semi-leached soil and calcic soil. Hydromorphic soil is an im-
portant natural resource with high soil moisture and organic matter
content. Semi-leached soil has a humus layer on the surface with rich
calcium and magnesium, which has a strong fertilizer retention capa-
city. The semi-leached soil is important agricultural and forestry soil
resources in semi-arid regions in China. Calcic soil has obvious humus
accumulation in the surface layer and is rich in calcium (magnesium)
carbonate. It is an important animal husbandry soil resource in China.
The soil properties of hydromorphic soil, semi-leached soil and calcic
soil were more favorable for vegetation growth than other soils, while
glaciers and lakes and reservoirs had negative influences on vegetation
changes.

4.2. Effects of human activities

Human activities indicated by land use change played an important
role in vegetation change. Results from ecosystem models also support
the key role of land use change in explaining vegetation change (Zhu
et al., 2016b). We found most types of land use conversion occurred
between 2000 and 2015 had positive influences on vegetation growth.
The conversions from unused lands to croplands, unused lands to
grasslands and grasslands to croplands increased NDVI by 0.259, 0.107,

and 0.224, respectively, indicating that reasonable reclamation and
regreening of unused lands and low-coverage grasslands had a positive
effect on vegetation recovery during the study period. More intensive
management of agriculture in our study area have resulted in an in-
crease in NDVI of 0.134 in unchanged croplands. The direct evidence is
the rapid increase in biomass and grain output from 886.45 million
kilograms in 2000 to 1355 million kilograms in 2015 in Zhangye City
which covers the main part of our study area. The measures to protect
and manage forest resources, such as the construction of Qilian
Mountain National Nature Reserve, has resulted in an increase in NDVI
of 0.093 in unchanged forests. The implementation of several ecological
protection projects such as the Grain for Green Project, Natural Forest
Protection Project, and Three-north Forest Protection Project, caused
the widespread land use conversions from croplands to grasslands and
further led to an increase in NDVI of 0.191. Previous studies also sup-
port the effective role of ecological restoration project (e.g., afforesta-
tion, the grain for green policy) in promoting vegetation recovery (Piao
et al.,, 2015; You et al., 2019). In contrast, some types of land use
conversion had negative effects on vegetation growth. Farmland
abandonment occurs when deteriorating environmental conditions are
not suitable for cultivating, which results in the conversion from
croplands to unused lands and the decrease in NDVI (—0.120). Rapid
urbanization led to a large-scale shift from croplands to impervious
surfaces. As can be seen from our research, the conversion from crop-
lands to construction lands caused a decrease in NDVI (—0.075).

4.3. Non-linear effects and interactions of factors

Our research found that NDVI varied non-linearly with the levels of
all influencing factors. With the increase in precipitation, the increase
in NDVI driven by precipitation will decelerate. This is also supported
by pervious study that there is a threshold for the response of vegeta-
tion changes to precipitation (Ukkola et al., 2016). The increase in
NDVI driven by temperature reached the peak of 0.13 at level 3
(2.83-5.14 °C) and then began to decelerate, although NDVI increased
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Fig. 7. q statistics of influencing factors of NDVI change along the gradient of mean annual precipitation.
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consistently with temperature. When the temperature is at a much
lower level, the physiological activities of vegetation is inhibited, and
an appropriate temperature increase can promote photosynthesis, ac-
celerate the release of soil nutrients and facilitate vegetation growth at
this time (Zhou et al., 2001; Piao et al., 2006). Once beyond the tol-
erance range, extremely high temperature will increase transpiration
and respiration, accelerate dry matter consumption and soil water loss,
and weaken photosynthesis and nutrient transport, which is detri-
mental to vegetation growth (Zhang et al., 2015; Jiao et al., 2018).
Distance to the rivers and to the urban centers were both related to
NDVI change in a non-linear way. The river could support vegetation
growth more at a closer distance within the 50 km limit, while once
exceeded the role of the rivers weakened. Similarly, the distance to the
urban centers also worked effectively in a certain range (15 km), a
closer distance than the limit of distance to the rivers, beyond which the
negative impact of urban construction on NDVI appeared to weaken.

The interactions between influencing factors often enhanced their
effects on vegetation growth. Although elevation, temperature, distance
to the urban centers, distance to the rivers, aspect, landforms and slope
did not contribute ideally to NDVI change, their explanatory powers
could be enhanced when interacting with others, especially mean an-
nual precipitation and soil type. For example, the synergic effect of
temperature and precipitation was stronger than the effect of each of a
single factor (x, N x; = 0.221 > x3). We can also see that human
activities interacts with the natural conditions to influence vegetation
changes. Natural factors, such as precipitation
(*x10 N x; = 0.360 > X9 ), soil type (x10 N x; = 0.327 > xj0) and
elevation (x10 N x3 = 0.311 > x;0) often amplify the effect of human
activities.

4.4. Effectiveness, limitations and future directions

Our research illustrated the effectiveness of the Geodetector method
in identifying driving factors of vegetation in arid areas. Compared with
traditional statistical methods and simulation models, it quantifies the
non-linear responses of independent variables and their interactions to
vegetation change, while avoiding the complexity of parameter set-
tings. Vegetation will keep improving in most oasis areas of the middle
reaches of the Heihe River Basin due to increasing precipitation and
more developed irrigation system. However, the rapid urban expansion
will lead to the loss of more lands with high vegetation productivity,
causing a decrease in NDVI values in the future. This is implied by our
findings that vegetation tends to significantly deteriorate in the areas
close to the urban centers especially within 3 km. Our research has
great implications for formulating land use policies and implementing
measures to promote vegetation growth. More attention should be paid
to green infrastructure construction such as parks during urban ex-
pansion. In the downstream areas measures should be taken to avoid
salinization when improving irrigation facilities in agricultural areas
and using water resources such as groundwater more effectively. Strict
restrictions should be put to high-quality croplands, forests and grass-
lands so as to avoid losing high-quality land resources. There are still
some shortcomings in our study. First, the influencing factors are not
comprehensive. There is more and more evidence showing that the
increase in CO, concentrations and the fertilization effect of nitrogen
deposition are the possible driving factors for vegetation greening (Piao
et al., 2015; Zhu et al., 2016b). Second, our research did not consider
the spatial differentiation of the relationships between vegetation
change and influencing factors. For example, precipitation has a sig-
nificant and positive correlation with NDVI in areas of low-covered
grassland, Gobi and deserts, while there is no or weak correlation be-
tween NDVI and precipitation in the oases because of abundant water
resources from groundwater and irrigation (You et al., 2019). Further
research should consider spatial and temporal heterogeneity of the re-
lationships between vegetation change and its driving forces using
pertinent methods of spatial statistics such as geographically weighted
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regression (GWR) and spatial panel data models.
5. Conclusions

We successfully derived the spatial and temporal patterns of vege-
tation changes in the middle reaches of the Heihe River Basin from
2000 to 2015, effectively quantified the effects of natural and anthro-
pogenic factors on vegetation NDVI change using the Geodetector
method. The vegetation conditions in the oases along the Heihe River
and southern Qilian mountains were better than that in the northwest.
Vegetation growth conditions across the study area improved from
2000 to 2015. The areas with significant improvement were mainly
distributed along the Heihe River, and in the central and southern areas
of our study area, while the areas with significant degradation were
distributed sparsely around administrative centers. Both natural and
anthropogenic factors influenced NDVI change, and the factors, land
use conversion type, mean annual precipitation and soil type, caused
the greatest influence. The influence of a single factor was often en-
hanced when it interacted with other factors. NDVI change often re-
sponded to the influencing factors in a non-linear way. Our research
highlights that the Geodetector method is an effective way to disen-
tangle the complicated driving factors of vegetation change, and our
results is useful for projecting vegetation change under future en-
vironmental change.
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