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Increased association between climate change and vegetation index 

variation promotes the coupling of dominant factors and vegetation growth 

Abstract 

Vegetation productivity dynamics are closely related to climate change, and water 

availability determines vegetation growth in water-limited ecosystems. Nevertheless, 

how changes in the interactions between climatic factors and vegetation activity 

variation regulate the relationship between their trends remains unclear. The 

Normalized Difference Vegetation Index (NDVI) is an effective proxy of vegetation 

growth. First, we investigated the NDVI trends, and the results revealed a vegetation 

activity with weaker greening and greater spatial heterogeneity after an obvious 

land-cover breakpoint in 1999 compared with that before 1999 in northwest China. 

Notably, the Loess Plateau greatly led the greenness trends, but the Tibet Plateau 

showed mean browning after 1999, which implied that the coupling of climate change 

and vegetation trends varied with spatio-temporal changes. Subsequently, using the 

Geographical Detector Method (GDM), we quantified and compared the association 

between climate change and the interannual variability of NDVI in the two stages. 

Vegetation productivity variation is more closely related to changes in climatic factors 

after 1999 compared with that before 1999. Precipitation (PPT) and vapor pressure 

deficit (VPD) are the primary constraints to vegetation growth in both stages. Patterns 

in NDVI trend increases are consistent with those of increased PPT and decreased 

VPD and vice versa after 1999. However, the same patterns were not observed before 

1999 because of the weak association between climate change and NDVI variation. 
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This implicated a great significance of the association between climate change and 

changes in vegetation activity for the prediction of potential carbon sequestration due 

to the shift of dominant factors and their trends under future climate change.  

Keywords: 

NDVI interannual variability; land-surface cover breakpoint; quantified 

association; explanatory power; dominant climatic factors; northwest China 

 

1 Introduction 

Climate change, including interannual variation and trends (Ryo et al., 2019), is 

regarded as one of the drivers of vegetation activity (Schimel et al., 2000; Zhou et al., 

2001; Nemani et al., 2003) and is affected by land surface cover changes and vice versa. 

Generally, increasing precipitation would enhance vegetation growth in water-limited 

ecosystems; in turn, surface greening would create biophysical feedback to the climate 

that would increase evapotranspiration, and subsequently, surface cooling and 

precipitation (Davin et al., 2010; Yu et al., 2020). Trends in the dominant climatic 

factors are expected to play critical roles in the spatial and temporal patterns of 

vegetation growth, but how the interplay between climate change and changes in 

vegetation activities regulate the relationship between climatic factors and vegetation 

growth trends remains unclear.  

Greening (Piao et al., 2015; Zhu et al., 2016; Chen et al., 2019) and deforestation 

(Davin et al., 2010; Strassburg et al., 2012; Seymour et al., 2019) has occurred globally 
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over the past several decades. The dominant climatic driver of vegetation dynamics and 

its feedback to the climate were investigated. Rapid warming has resulted in a 16.4% 

decline in the vegetation land area limited by temperature in cold and high-latitude 

ecosystems (Keenan & Riley, 2018). The precipitation threshold for water limitation of 

vegetation cover significantly declined from 1982 to 2010 in Australia as the vegetation 

subsequently adapted (Ukkola et al., 2015). Surface warming and cooling effects were 

observed due to deforestation and surface greening, respectively (Davin et al., 2010; Yu 

et al., 2020). The biogeophysical effects of re-afforestation throughout Europe include 

uncertainty over the diverging responses in summer temperature changes (Davin et al., 

2020). Global warming would exceed the optimal temperature for vegetation growth, 

resulting in limited safe operating space for these ecosystems (Huang et al., 2019; Xu et 

al., 2013). Therefore, dominant climatic factors varied spatially and temporally, leading 

to potential differences in vegetation activity with climate change and spatial variation. 

Changes in the association between climate change and vegetation activity variation 

could change the dominant climatic factors, leading to a variation in plant growth. 

Vegetation growth trends are spatially heterogeneous and closely related to 

climatic factors. The spatial extent of vegetation productivity in a water-limited 

grassland is consistent with annual precipitation distribution (Piao et al., 2006). From 

1981–2007, average greening was observed across the global semi-arid areas (0.015 

NDVI (Normalized Difference Vegetation Index)), both in areas where precipitation 

was the dominant factor of plant production (0.019 NDVI) and air temperature was the 

primary growth constraint (0.013 NDVI). However, their explanations differ widely, 
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and the local and regional trends reveal considerable variation in the direction and 

magnitude of change (Fensholt et al., 2012). It is suggested that surface vegetation 

growth trends are complicated by the dominant factors, and greenness could occur in 

regions where either precipitation or temperature limit vegetation activities. The 

interaction between vegetation dynamics and climate change leads to potential 

adaptation and feedback in the vegetation–climate system. Exploring the changes in the 

degree of the association between climatic factors and vegetation activity and how it 

regulates their trends in a region where an evident surface greenness shift has occurred 

is important for predicting the response and adaptation of the carbon cycle to climate 

change. Northwest China provides a potential platform for identifying the spatial and 

temporal variation in vegetation growth trends and the interaction between vegetation 

dynamics and climate change, as considerable breakpoints in vegetation growth were 

observed in most regions in 1999 (Niu et al., 2019).  

The response and relationship between climate change and vegetation activity 

are uncertain but vary with spatio-temporal changes in disturbance, such as human 

activities and terrain. Warming has increased the carbon cycles of the Tibetan Plateau 

but not of the Inner Mongolia grasslands; this is because vegetation growth is 

constrained by temperature in the Tibetan Plateau and water in the Inner Mongolia 

region (Liu et al., 2018). The NDVI increase rate was lower during 2000–2010 than 

during 1982–1999 (Piao, 2003; Peng et al., 2011). The largest greening and browning 

trends are found in southwest China and northeastern Inner Mongolia (Piao et al., 

2015), respectively. A shift in dominant climatic factors to vegetation dynamics is a key 
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indicator for predicting future vegetation activity under climate change. Ecological 

restoration programs have enhanced surface vegetation greening (Piao et al., 2015), but 

whether vegetation planting increases carbon sequestration (Baldocchi & Penuelas, 

2019) or causes high water consumption (Cao, 2008; Chen et al., 2015; Wang et al., 

2019) in the long run is debated. The association between climate change and 

vegetation activities is highly related to global ecosystem sustainability. However, the 

association role between climate change and changes in vegetation activity in the 

evolution of the climate–vegetation system remains poorly understood. In the present 

study, we compared two periods before and after 1999: stage I; 1982–1998 and stage II; 

1999–2015. First, we investigated the divergent patterns in NDVI trends and their 

spatial distribution in four sub-regions. Second, we quantified the association between 

climate change and changes in vegetation activities. Lastly, we explored the trends’ 

characteristics in both vegetation growth and dominant climatic factors in terms of 

changes in the degree of the association between climate change and changes in 

vegetation activity. 

2 Materials and Methods 

2.1 Study region 

This study was conducted in northwest China (25°59′N–53°19′N, 73°26′E–

125°59′E) and included four geographical subregions (Figure 1a): Inner Mongolia 

(IM), Loess Plateau (LP), Tibetan Plateau (TP), and Xinjiang (XJ); these corresponded 

to 21.91%, 6.97%, 53.99%, and 17.13% of the total area, respectively. Grasslands were 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



abundant in most of these regions, with temperate grasslands mainly distributed in IM, 

LP, and XJ, and alpine grasslands distributed in the TP (Zhao et al., 2019), which 

contained scattered, sparse forest and shrub. To mitigate the effects of desertification 

and dust storms, the Chinese government implemented large-scale ecological 

restoration projects in the study region; e.g., the Three-North Shelterbelt Project 

(TNSP) (Li et al., 2012), Grain for Green Project (GGP) (Feng et al., 2016), and 

Beijing-Tianjin Sand Source Control Project (BSSCP) (Wu et al., 2014). Most of the 

study region is typically characterized by arid and semi-arid climate, and TP has a 

typical cold and dry alpine climate. The mean annual temperature and mean annual 

precipitation range from −3 to 9 ℃ and 100 to 700 mm, respectively (Zhang et al., 

2016). 

 

2.2 Meteorology dataset 

Gridded total precipitation (PPT) and average monthly value of air temperature 

(Ta), vapor pressure deficit (VPD), and solar radiation (SR) at each growing season 

(from May to September) during 1982–2015 at 10 km resolution were analyzed in this 

study. Data on daily Ta, PPT, and actual sunshine duration recorded by 756 nationwide 

stations were obtained from the China Meteorological Data Service Center 

(http://data.cma.cn/en). Site-level daily short radiation was calculated using the 

Ångström formula, which is the algorithm recommended by the Food and Agriculture 

Organization (http://www.fao.org/docrep/x0490e/x0490e07.htm#radiation). This 

relates short radiation to extraterrestrial radiation and the relative sunshine duration, 
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which is calculated using the actual sunshine duration to remove the impact of clouds. 

The site data of daily VPD was calculated by measuring Ta and relative humidity (RH) 

(Howell & Dusek, 1995): 

a17.27

237.3
0.611 e (1 )

100
a

T

T RH
VPD




   

 

Furthermore, data obtained from the sites were interpolated to 10 km and 15-day 

resolutions throughout the nation using the ANUSPLIN software package (Hutchinson 

& Xu, 2013), which provides an interpolation of noisy multivariate data using 

thin-plate smoothing splines from observation data acquired from meteorological 

stations. ANUSPLIN is widely used for the interpolation of climatic variables (Ukkola 

et al., 2015). The quality of the interpolated meteorological dataset has been fully 

evaluated and has reliable accuracy (Yu et al., 2004).  

2.3 NDVI dataset 

NDVI is associated with surface cover change and is generally used to evaluate 

the temporal and spatial patterns of vegetation activity (Huang et al., 2019; Piao et al., 

2015). The GIMMS (Global Inventory Modelling and Mapping Studies) NDVI3g 

dataset is now available covering 1982–2015 with an 8 km spatial resolution and a 

bimonthly temporal resolution (Pinzon & Tucker, 2014); this has proved efficacious in 

representing plant growth owing to their long time-series record (Fensholt & Proud, 

2012; Tian et al., 2015). NDVI is a good indicator of surface vegetation cover, and 

increasing and decreasing NDVI is referred to as “greening” and “browning,” 

respectively (Alcaraz-Segura et al., 2010). Grids with a mean NDVI >0.1 in any 
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growing season were selected as available units, and all farmland grids were removed 

according to the land use map (http://www.resdc.cn/) from 1982 to 2015. A 

significance level of p < 0.05 was used. We calculated the mean NDVI of the annual 

growing season (May–September) using the average value of monthly NDVI 

resampled with the nearest-neighbor method using ArcGIS 10.2 software at the same 

spatial resolution (10 km) as the meteorological data.  

2.4 Trends detection 

The non-parametric Mann-Kendal (M-K) (Kendall, 1975; Mann, 1945) and 

Pettitt tests were applied to examine the trends in NDVI and climatic factors at the pixel 

scale in the study region for stages I and II. The average NDVI trend was the mean 

value of NDVI trends in all grids across the study region.  

The M-K test measures the degree to which a trend is generally increasing or 

decreasing and is not subject to a particular distribution nor outliers dataset and has 

been widely used in climatology and ecology (Fansholt et al., 2012; Ely Yacoub et al., 

2019; Araminienė et al., 2019; Wingate et al., 2019; de Oliveira Serrão et al., 2020). 

Furthermore, the Shapiro–Wilk test was performed for the NDVI time series to confirm 

normal distribution in the dataset. The specific statistical value (S) and standardized test 

statistics (ZMK) were calculated as follows:  

1

1 1

sgn( )
n n

j i

i j i

S X X

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 
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where ZMK >0 shows an increasing trend with time and vice versa, and if |ZMK| is 

>1.96 (p < 0.05), then the null hypothesis is rejected, and a significant trend is observed 

and vice versa.  

2.5 Association between climatic factors and vegetation dynamics 

The Geographical Detection Method (GDM) was used to quantify the association 

between each climatic factor and interannual variation (IAV) of vegetation dynamics in 

a grid in the study region. The method is a type of variance analysis that can measure 

spatial heterogeneity and detect potential factors (Wang et al., 2010). The GDM does 

not require a linear hypothesis to identify the explanatory power behind stratified 

heterogeneity and has been widely applied in studies of ecological processes and 

geographic applications (Zhao et al., 2019; Luo et al., 2019; Ding et al., 2019; Zhao et 

al., 2020). Using the K-means classification algorithm, we discretized the numerical 

variables into categorical groups as the stratum of NDVI and climatic factors in GDM. 

The explanatory power for each climatic variable (x) on the IAV of NDVI was 

quantified by the indicator (q):  
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1
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where qx (∈[0,1]) is the explanatory power of the climatic factor x; i = 1,…; m is the 

stratum (category) of NDVI for the climatic factor x; Ni and N are the total sample 

numbers of the i stratum and overall period (1982–1998 or 1999–2015), respectively; 

σi
2
 and σ

2 
are the variances of NDVI in the i stratum and overall period, respectively; 

SSW and SST are the within sum of squares in the i stratum and total sum of squares in 

the overall period, respectively. 

2.6 Data analysis 

Using the M-K method and GDM, we detected the vegetation trends and 

identified the dominant factors in both stages. There were four reasons for choosing 

1999 as the breakpoint. First, the three ecological restoration programs (GGP, NFCP, 

and BSSCP) were implemented around 1999 following the TNSP (Feng et al., 2016). 

Second, a pronounced surface greening breakpoint was detected in 1999 in most areas 

where ecological restoration programs had been implemented (Niu et al., 2019). Third, 

after the late 1990s, there was a sharp global increase in VPD (Li et al., 2018), an 

important driver of atmospheric water availability for plant growth (Rawson et al., 

1977). Lastly, the two periods before and after 1999 were both 17 years, ensuring the 

same sample sizes and convincing contrast analysis.  
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3 Results 

3.1 Divergent Spatial distribution of NDVI trends before and after 1999 

The mean value of NDVI trends across the whole study region was 1.02 ± 0.01‰ 

yr
−1

 in stage Ⅰ but was lower (0.64 ± 0.01‰ yr
−1

) in stage Ⅱ (Figure 1b). In contrast, 

the variation coefficient for all pixel NDVI trends was 4.19 in stage II and 1.34 in stage 

I. Average NDVI trends increased by 1.06 ± 0.01‰ yr
−1

 and 1.32 ± 0.02‰ yr
−1

 (IM); 

1.48 ± 0.03‰ yr
−1

 and 5.62 ± 0.07‰ yr
−1

 (LP); and 1.00 ± 0.02‰ yr
−1

 and 0.36 ± 

0.03‰ yr
−1

 (XJ) in stages Ⅰ and Ⅱ, respectively. Meanwhile, the average NDVI trends 

on TP were positive (0.96 ± 0.01‰ yr
−1

) in stage Ⅰ and negative (−0.19 ± 0.01‰ yr
−1

) 

in stage Ⅱ. 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Figure 1. (a) The location of the study region and its subregions, (b) the average NDVI 

trends, (c) and its spatial distribution before and after 1999. (a) Pie chart shows the ratio of 

the area of four subregions: Inner Mongolia (IM), Loess Plateau (LP), Tibetan Plateau (TP), and 

Xinjiang areas (XJ). (b) Bars denote the average NDVI trends in stage I (blue) and stage II (red) 

in the whole region and its subregions. The error bars represent standard deviations.  

 

The increase in positive NDVI trends was similar to the decrease in negative 

NDVI trends for the whole region in stage II compared with that in stage I, but in IM 

and LP, the increase in positive NDVI was higher than the decrease in negative NDVI 

(Figure 2). NDVI trends in the whole region increased from 1.34 ± 1.26‰ yr
−1

 to 2.09 ± 

2.42‰ yr
−1

 and decreased from −0.54 ± 0.65‰ yr
−1

 to −1.38 ± 1.38‰ yr
−1

. For positive 

NDVI trends, the average value increased from 1.33 ± 1.19‰ yr
−1

 (stage I) to 2.14 ± 

1.90‰ yr
−1

 (stage Ⅱ) in IM and from 1.92 ± 1.35‰ yr
−1

 (stage I) to 5.94 ± 3.32‰ yr
−1

 

(stage Ⅱ) in LP. In contrast, for negative NDVI trends, the average value decreased 

from −0.45 ± 0.65‰ yr
−1

 (stage I) to −1.2 ± 1.07‰ yr
−1

 (stage Ⅱ) in IM and from −0.58 

± 0.64‰ yr
−1

 (stage I) to −1.42 ± 1.41‰ yr
−1

 (stage Ⅱ) in LP. Additionally, the 

magnitude of the increase in positive NDVI trends was less than that of the decrease in 

negative NDVI trends for TP and XJ in stage II compared with those in stage I.  

Areas of positive NDVI trends (greening) were reduced in stage Ⅱ compared 

with those of stage Ⅰ, except for in LP. The frequency of the NDVI trend was flatter in 

stage Ⅱ than that in stage Ⅰ for each region (Figure 2). The area percentage of greening 

decreased from 82.8% to 58.0% in the whole region in stage II than in stage I. The area 
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percentage exhibited the highest reduction in greening from 82.6% to 46.2% in TP, 

followed by 82.8% to 59.2% in XJ, and the smallest reduction was from 85.1% to 

75.5% in IM in stage II compared with that in stage I. However, increased greening was 

observed in LP (84.0% and 96.0% of the area before and after 1999, respectively). In 

stage II, the TP region dominated the decreased greening area of the whole region due 

to the large reduction in greening area.  

 

Figure 2. The frequency, area percentage, and mean value of NDVI trends before and after 

1999. Lines denote the frequency of NDVI trends in stage I (blue) and stage II (red). Horizontal 

bars denote the average magnitude of negative and positive NDVI trends in stage I (blue) and 

stage II (red), respectively. Histograms denote the area percentages of NDVI increase (green) and 

decrease (yellow). The error bars represent standard deviations. 
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3.2 Association between climate change and the IAV of NDVI 

In the study area, the area percentages of each dominant factor in stages Ⅰ and Ⅱ 

were similar, but the total explanatory power of the four climatic factors to the IAV of 

NDVI (sum of the mean explanatory power of PPT, SR, Ta, and VPD in the grid) in 

stage II (71.3%) was higher than that in stage I (63.2%). In the whole study region, the 

average explanatory power of PPT was 17.0% and 19.5%, that of SR was 13.9% and 

14.6, and that of Ta was 14.3% and 17.0%, in stages I and II, respectively; these values 

were higher in stage II compared to stage I. Climatic variability regulated vegetation 

dynamics more strongly in stage Ⅱ than stage I. 

For each subregion, the PPT area, as the dominant factor, accounted for larger 

percentages in stage Ⅱ than stage Ⅰ with 41.3% and 36.6% in IM, 33.8% and 24.7% in 

LP, 21.7% and 20.6% in TP, respectively; however, the opposite was observed in XJ 

with 34.6% and 36.9% in stages II and I, respectively (Figure 3). Meanwhile, the area 

percentages of SR as the dominant factor were lower in stage II than those in stage I 

with 9.1% and 18.0% in IM, 15.5% and 19.3% in LP, 14.0% and 21.7% in XJ, 

respectively; however, the opposite was observed in TP with 26.5% and 21.5% in 

stages II and I, respectively. Furthermore, Ta as the dominant factor accounted for 

relatively similar area percentages in stages Ⅱ and Ⅰ, which were 15.4% and 13.6% in 

IM, 24.5% and 25.9% in LP, 29.4% and 25.4% in TP, and 18.8% and 20.2% in XJ, 

respectively. It is noted that VPD as the dominant climatic factor accounted for equal or 

more area percentage than PPT, which was 30.0% and 36.0% in IM, 22.6% and 31.2% 
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in XJ, 31.4% and 24.8% in LP, and 28.5% and 26.4% in TP in stages I and Ⅱ, 

respectively (Figure 3).  

Meanwhile, the average explanatory power of PPT in stage II was higher than 

that in stage I, which was 30.6% and 24.8% in IM, 20.8% and 16.1% in LP, and 14.6% 

and 12.7% in TP, respectively; however, the opposite was observed in XJ with 20.3% 

and 21.2% in stages II and I, respectively (Figure 3). The average explanatory power 

pattern of SR was similar in the two stages and four subregions and was similar to their 

area percentage distribution. Additionally, Ta variability in stage Ⅱ contributed more to 

the IAV of NDVI than that of stage Ⅰ: 20.3% and 12.7% in IM, 18.1% and 14.2% in 

LP, 16.0% and 14.8% in TP, and 15.8% and 14.8% in XJ, respectively. Interestingly, 

the IAV of NDVI for all regions was explained by VPD more substantially in stage Ⅱ 

than in stage I, the explanatory power was 29.2% and 23.5% in IM, 19.1% and 17.9% in 

LP, 16.4% and 15.7% in TP, and 20.4% and 17.7% in XJ, respectively. 
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Figure 3. The area percentage of dominant climatic factors and the mean value of 

explanatory powers between four climatic factors and the IAV of NDVI in each region. 

Bars denote the area percentage of PPT, SR, Ta, and VPD as the dominant climatic factors in 

stage I (blue) and stage II (red). Circles and triangles denote the average explanatory powers of 

four climatic factors (PPT, SR, Ta, and VPD) in stages I and II, respectively, in the whole study 
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region and its four subregions (IM: Inner Mongolia; LP: Loess Plateau; TP: Tibetan Plateau; XJ: 

Xinjiang). 

 

3.3 NDVI trends coupled with dominant climatic factors 

Figures 4a and 4b show that NDVI trends intensified with increasing NDVI, and 

the pattern of the NDVI distribution curve was much flatter in stage Ⅱ than in stage I. 

When the NDVI trend was 0–3‰ yr
−1

, the average NDVI was from 0.20 to 0.48 in 

stage I and 0.21 to 0.39 in stage Ⅱ. In contrast, when the NDVI trend was −3–0‰ yr
−1

, 

the average NDVI was from 0.50 to 0.17 in stage I and 0.48 to 0.22 in stage II. It was 

noted that a higher average NDVI was observed in stage I than in stage II when much 

greening occurred (NDVI trend >1‰ yr
−1

). Moreover, the area of greening with an 

average of 0.2–0.4 NDVI value was greater in stage II (79.4%) than in stage I (65.8%).  

Figures 4c and 4d indicate that the association between climatic factors and 

vegetation dynamics increased with the intensifying NDVI trends in stage II. 

Nevertheless, the same pattern was not observed in stage I. However, what is relevant is 

that the explanatory power between PPT and VPD and the IAV of NDVI was mostly 

higher than that of each factor in stage I. Furthermore, with the NDVI trend of −3–3‰ 

yr
−1

, the average PPT and VPD trends were less marked and narrowed in scope in stage 

I than in stage II. They were −0.69 to 1.47 mm yr
−1

 and −0.007 to 0.019 hpa yr
−1

 in 

stage I; and −1.07 to 3.13 mm yr
−1

 and −0.018 to 0.037 hpa yr
−1

 in stage II, respectively 

(Figure 4e, 4f). Specifically, the PPT trend increased, and VPD decreased; this was 

strengthened by coupling with the increasing NDVI trend in stage II. However, this 
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pattern was not observed in stage I, in which both the PPT and VPD trends only slightly 

fluctuated. No obvious differences were observed for the average explanatory power of 

Ta and SR between stages I and II. 

 

Figure 4. The pattern of NDVI, the average explanatory power between climate change and 

the IAV of NDVI, and trends of the climatic factors following NDVI trends. (a) and (b) 

shows the frequency of NDVI trends (bars) and the average NDVI following the corresponding 

NDVI trend group in stages I and II, respectively. (c) and (d) shows the average explanatory 

powers of four climatic factors (blue line: Ta; red line: PPT; orange line: VPD; purple line: SR) 

following the corresponding NDVI trend group. (e) and (f) shows the average trends of PPT (blue 

line) and VPD (orange line). (g) and (h) shows the average trends of Ta (blue line) and SR 

(orange line) following the corresponding NDVI trend group. 
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4 Discussions 

4.1 Divergent spatial distribution of NDVI trends 

We investigated NDVI trends and found a prevalent greening during 1982–2015 

and a divergent spatial distribution of NDVI trends before and after 1999. Since 1999, 

the ecological restoration has had a positive effect on surface greening (Niu et al., 2019; 

Wu et al., 2014) in northwest China, which confirmed our results of greening in this 

region. However, the average increasing rate of NDVI was lower after 1999 than before 

1999, as the area of greening (positive NDVI trends) reduced and the magnitude 

weakened across the whole region in stage II. For subregions, the LP largely led the 

increased greening in both area and amplitude of positive NDVI trends after 1999; this 

is consistent with the considerable improvement in vegetation dynamics following 

revegetation programs since 1999 (Feng et al., 2016; Li et al., 2017). Notably, in stage 

II, the vegetation was browning in TP, which was explained by the occurrence of severe 

droughts (Wu et al., 2014). Nonlinear changes in surface greenness were detected in 

eastern Inner Mongolia, human activities drove the increasing phase, and droughts 

induced the decreasing phase (Ding et al., 2020). 

These results highlight that greening occurred consistently in northwestern China 

over the past decades in spatially and temporally heterogeneous patterns, especially in 

LP with significant greening and in TP with slight browning from 1999 to 2015, 

relative to that from 1982 to 1998. This result suggested that although China has been 
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leading global greening in the past decades (Chen et al., 2019), more attention should 

be paid to the spatial heterogeneity of NDVI trends, which would lead to land 

degradation and ecosystem shifts, especially in regions that are fragile to global change 

(Berdugo et al., 2020). Determining how to assess the spatial variability and its 

ecological mechanism with long-term field observations is urgently required.  

4.2 Increased explanatory power between climate change and the IAV of NDVI  

In northwest China, the association between climatic variation and vegetation 

dynamics was enhanced in 1999–2015 compared with 1982–1998. The average 

explanatory powers of PPT and Ta and the IAV of NDVI were largely increased after 

1999 compared with those before 1999, especially in IM and LP. This is because 

enhanced vegetation restoration and regrowth reduced surface runoff and soil erosion 

(Deng et al., 2012; Farley et al., 2005; Wang et al., 2015; Zhang et al., 2016) and 

consequently improved water use efficiency (Ukkola et al., 2015; Zhang et al., 2016; 

Zheng et al., 2019). This led to a higher explanatory power for precipitation change and 

the IAV of NDVI at the regional scale than the previous sparse vegetation. 

Furthermore, increased drought events resulted in the increased atmospheric aridity in 

IM (Piao et al., 2015). Land–atmosphere feedbacks could exacerbate soil drought and 

atmospheric aridity (VPD increasing) and, consequently, severe constrain terrestrial 

carbon uptake in stage II (Zhou et al., 2019). Additionally, increased precipitation not 

only enhanced ecosystem carbon fluxes but also mitigated the negative effects of 

climate warming on ecosystem carbon fluxes. Vegetation regrowth could produce a 

negative feedback effect on warming, which would probably be attributed to increased 
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evapotranspiration resulting from increased NDVI (Bonan, 2008; Zhao et al., 2017). 

These results suggested that the potential advantageous revegetation in response to 

climate change enhanced the total explanatory power of each other.  

Greater coupling of vegetation growth with dominant factor variation was 

observed after 1999 compared with before 1999 in northwest China. The favorable 

water conditions enhanced sustainability and environmental benefits, and climate 

change played an additive role in strengthening vegetation growth trends. In the 

semi-arid region, greening was considered a response to increasing precipitation, which 

was the dominant factor of the IAV of NDVI (Peng et al., 2013). Browning was 

observed where VPD was the dominant factor since intensified atmospheric aridity had 

constrained vegetation growth by affecting plant photosynthesis over the past decades 

(Yuan et al., 2019). In the present study, the results after 1999 indicated that the 

distribution pattern of NDVI trends was consistent with that of changes in dominant 

climatic factors, and the positive NDVI trends corresponded with increasing PPT and 

decreasing VPD trends (Figure 4). However, the same pattern was not observed before 

1999, owing to the weak explanatory power of climate change and the IAV of NDVI. 

Although PPT and VPD are the dominant factors of vegetation activities either before 

or after 1999, the increased association between climate change and the IAV of NDVI 

enhanced the coupling of climate change and vegetation growth after 1999 compared 

with that before 1999. Ecological projects have changed the surface energy balance and 

created an external disturbance in land surface–atmospheric feedbacks, and improved 

the association between climate change and vegetation activities and their dependence 
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on one another. Additionally, CO2 fertilization positively affected vegetation growth, 

but interannual variation in CO2 concentration was relatively stable, and also hot 

drought reduced the effect of CO2 elevation on tree water use efficiency and carbon 

metabolism (Birami et al., 2020). 

Climate–vegetation interactions were regarded as the critical core of the 

terrestrial ecosystem carbon cycle, especially in water-limited ecosystems that are 

sensitive to climate change (Seddon et al. 2016), such as drylands that dominate the 

interannual variability in global carbon sinks (Poulter et al., 2014; Ahlström et al. 

2015). Global dry areas showed high NDVI variability, and an increase in the IAV of 

vegetation greenness was observed over time, which was primarily driven by climate 

change without considering human disturbance (Chen et al., 2019). In turn, the 

biophysical effects of greening on climate change were widely reported as either 

cooling or warming the surface in different climatic zones (Forzieri et al., 2017; Chen 

et al., 2020). The future trajectories of the vegetation–atmosphere system are likely to 

coevolve even more closely than that at present (Forzieri et al., 2017), an assertion 

that was supported by the present study. Our results indicated that the increased 

strength of the association between climate change and vegetation activity variation 

could improve surface greening under favorable dominant climate trends and vice 

versa. Uncertainties remain regarding the sustainable adaptation of vegetation growth 

to climate change. First, there is uncertainty over regional water storage assessments. 

This is closely related to the regrowth of planted vegetation and is greatly affected by 

climate change characteristics (Feng et al., 2016), including surplus precipitation and 
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an increase in drought. Second, there is a more effective way to understand the 

mechanism underlying the climate–vegetation feedbacks, including the influences of 

seasonal rainfalls, drought events, and even frost, which are all important for vegetation 

growth in arid and semi-arid regions. Lastly, vegetation dynamics represent a 

comprehensive response to climate change, and the interaction between climatic factors 

and vegetation dynamics should be paid more attention to in the future. Long-term 

monitoring across ecosystems and an integrated process model, including vegetation 

traits and their response to climate change, are key to improving our predictions of how 

ecosystems respond to global change.  

 

5 Conclusions 

Average greening was observed in northwest China in both stages (1982–1998 

and 1999–2015). However, divergent spatial distribution of NDVI trends was evident 

with much more heterogeneity in the whole region after 1999 than before 1999. After 

1999, LP played an important role in leading the greenness trends, both in the area of 

greening and the amplitude of positive NDVI trends. Conversely, average browning 

was observed in TP. This suggested that the coupling of the climate–vegetation 

system varied with tempo-spatial changes. The association of climate variation with 

the IAV of NDVI was quantified and strengthened in stage II (1999–2015) than in 

stage I (1982–1998). Although water availability was the dominant factor for 

vegetation growth in both stages, the increased association between climate change 
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and changes in vegetation activity enhanced the coupling of dominant factors with 

vegetation growth trends after 1999. Dominant factors affected the positive NDVI 

trend pattern due to increasing PPT and decreasing VPD after 1999 but not before 1999, 

owing to their weak explanatory power. Our results imply the significance of the degree 

of association between climate change and vegetation dynamics for predicting 

ecosystem carbon storage variation. 
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Highlights 

 NDVI trends with weaker greening but greater spatial heterogeneity after1999. 

 Loess Plateau had high greening but Tibet Plateau showed mean browning 

post-1999. 

 Association in variability of climate and vegetation were strengthened after 1999. 

 PPT and VPD are most closely related to the IAV of NDVI in 1982-1998 and 

1999-2015. 

 NDVI trends were corresponding to changes in PPT and VPD post-1999 but no 

pre-1999.  
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