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ABSTRACT

Understanding the atmosphere–land surface interaction is crucial for clarifying the responses and feedbacks

of terrestrial ecosystems to climate change. However, quantifying the effects of multiple climatic factors to

vegetation activities is challenging. Using the geographical detector model (GDM), this study quantifies the

relative contributions of climatic factors including precipitation, relative humidity, solar radiation, and air

temperature to the interannual variation (IAV) of the normalized difference vegetation index (NDVI) in the

northern grasslands of China during 2000 to 2016. The results show heterogeneous spatial patterns of de-

terminant climatic factors on the IAVof NDVI. Precipitation and relative humidity jointly controlled the IAV

of NDVI, illustrating more explanatory power than solar radiation and air temperature, and accounting for

higher proportion of area as the determinant factor in the study region. It is noteworthy that relative

humidity, a proxy of atmospheric aridity, is as important as precipitation for the IAV of NDVI. The contri-

bution of climatic factors to the IAV of NDVI varied by vegetation type. Owing to the stronger explanatory

power of climatic factors onNDVI variability in temperate grasslands, we conclude that climate variabilitymay

exertmore influence on temperate grasslands than on alpine grasslands.Our study highlights the importance of

the role of atmospheric aridity to vegetation activities in grasslands. We suggest focusing more on the dif-

ferences between vegetation types when addressing the climate–vegetation relationships at a regional scale.

1. Introduction

Climate is one of the major determinants for plant

growth, and vegetation productivity has been largely

changed in the past few decades owing to climate

change (Nemani et al. 2003; Friedlingstein et al.

2006; Xu et al. 2013). In turn, vegetation is simulta-

neously affecting climate through biochemical cy-

cles and biophysical feedbacks (Lee et al. 2011;

Keenan et al. 2013; Zhu et al. 2017; Zhao et al. 2017).

Therefore, understanding the relationship between

climatic factors and vegetation activities is crucial

for predicting vegetation responses and feedbacks to

climate change.

Grasslands cover more than 30% of Earth’s land

surface (Wang and Fang 2009), serving as a critical

feedback source for the global climate. It has been

found that grasslands dominate the global carbon sink

trend and account for the largest fraction of the in-

terannual variation (IAV) in global biome pro-

ductivity (Ahlström et al. 2015). Grasslands in arid

and semiarid areas are also sensitive to global climate

change (Seddon et al. 2016). Thus, clarifying the re-

lationship between the IAV of vegetation pro-

ductivity and climate change is of great importance in

the field of global change ecology. As the ecosystem

type with the largest terrestrial area in the country

(;40%), grasslands in China (Fan et al. 2008) also

have received much attention in climate change re-

search. Studies have investigated the dominant cli-

matic factors in affecting the IAV of vegetation

productivity in grasslands in China. For example, in

Inner Mongolia, the relatively warm and dry climate

and associated droughts are the main factors affectingCorresponding author: Zhongmin Hu, huzm@m.scnu.edu.cn
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vegetation growth (Bao et al. 2014). Precipitation

plays a key role in plant growth in the Loess Plateau

(Li et al. 2015a), Xinjiang (Li et al. 2015b), and even

the Tibetan Plateau (J. Yao et al. 2018). These studies

have largely enhanced our understanding of how the

functions of grasslands in China are affected by cli-

matic factors. However, on the one hand, the spatial

pattern of determinant climatic factors on IAV of

ecosystem productivity across ecoregions and eco-

system types in grasslands in China remains unclear.

On the other hand, the contributions of each climatic

factor on the IAV of ecosystem productivity have not

been well quantified. In particular, the role of atmo-

spheric aridity [e.g., water vapor pressure deficit

(VPD) or air humidity], which has recently been

proved to be critical to the IAV of vegetation pro-

ductivity in grasslands (Novick et al. 2016; Konings

et al. 2017; Ding et al. 2018), has not been taken into

sufficient consideration.

The contributions of climatic variables to the IAV of

vegetation productivity can be quantified using statisti-

cal methods, such as correlation and regression analysis

(e.g., Peng et al. 2013; Y. Yao et al. 2018) and numerical

models (e.g., Mao et al. 2012; Piao et al. 2015). Most

statistical methods quantify climate controls on the

vegetation dynamics with a linear hypothesis (Piao et al.

2015). In fact, numerous experiments and analyses

show that the trajectory of ecosystem responses to

climatic factors is nonlinear (Peng et al. 2013; Yamori

et al. 2014; Piao et al. 2014). Although land models

have been applied to quantify the contribution of envi-

ronmental factors to vegetation productivity, owing to

uncertainties in model structure and parameters in-

consistent or even conflicting results are produced

among models (J. Yao et al. 2018). Recently, the geo-

graphical detector model (GDM) has been proposed to

quantify the contribution of factors (drivers) to de-

pendent variables (attributes or phenomenon) based on

spatial stratified heterogeneity (Wang et al. 2010). The

GDM can identify the connection between variables

based on the consistency of their distributions (time or

spatial). This technique does not require a linear hy-

pothesis to identify the critical driving factors behind

stratified heterogeneity. This method has shown good

performance and is widely used in the fields of ecologi-

cal, atmospheric, and geographic studies (Luo et al.

2016; Wang et al. 2016; Zhou et al. 2018). Therefore,

GDM is an effective tool to quantify the contributions

of various climatic factors to the IAV of vegetation

productivity.

To solve the issues mentioned above, here we used

GDM to quantify the contributions of climatic fac-

tors to IAV of the normalized difference vegetation

index (NDVI, a proxy of vegetation productivity) in

grasslands in northern China. The main objectives of

this study are 1) to identify the determinant climatic

factor controlling the IAV of NDVI and clarify the

spatial pattern of the factor in the study region, and 2) to

quantify the contribution of each climatic factor to the

IAV of NDVI and clarify the difference among sub-

regions and vegetation types. In particular, the climatic

factor of atmospheric aridity (i.e., air relative humidity)

was included in our analysis, which has not been paid full

attention in previous studies.

2. Materials and methods

a. Study region

Grasslands in northern China account for more than

80% of grassland areas in China, which comprises four

geographical units: Inner Mongolia, the Loess Plateau,

the Tibetan Plateau, and Xinjiang. The study region is

the temperate grasslands mainly distributed in Inner

Mongolia, the Loess Plateau, and Xinjiang, and the al-

pine grasslands in the Tibetan Plateau, and a few

mountain meadow grasslands (Fig. 1). Most of the study

region has typically arid and semiarid climates, while the

Tibetan Plateau has a typically cold and dry alpine cli-

mate. The mean annual temperature and mean annual

precipitation range from 238 to 98C and from 100 to

700mm, respectively (Guo et al. 2012; Sun andQin 2016;

Ding et al. 2018).

Three temperate grassland types are distributed along

themean annual precipitation gradient: meadow steppe,

typical steppe, and desert steppe. Alpine steppe is

mainly distributed in the northeast, alpine meadow is

more scattered in the middle, and alpine desert steppe

is mainly located northwest of the Tibetan Plateau.

Mountain meadow is mainly located in northern Inner

Mongolia and eastern Tibetan Plateau. The strong spa-

tial heterogeneity in grassland types and climatic con-

ditions governs the spatial pattern of the sophisticated

relationship between climate variations and vegetation

dynamics in this region.

b. Datasets

1) METEOROLOGICAL DATA

Four climatic variables—precipitation, air tempera-

ture, relative humidity, and solar radiation—were se-

lected to quantify their importance onNDVI variability.

Precipitation, air temperature, and relative humidity

from 756 nationwide meteorological stations (290 sta-

tions in this study region) in China were acquired from

the China Meteorological Data Service Center website
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(http://data.cma.cn/en). Site-level solar radiation was

calculated at 8-day time resolution using the Ångström
formula, which relates solar radiation to extraterrestrial

radiation and the duration of relative sunshine; it is

the recommended algorithm of the Food and Agricul-

ture Organization (http://www.fao.org/docrep/x0490e/

x0490e07.htm#radiation). The site-level data were

interpolated at 10-km resolution with the ANUSPLIN

software package (Hutchinson and Xu 2013), which

provides an interpolation of noisy multivariate data us-

ing thin plate smoothing splines from observation data

acquired from meteorological stations. ANUSPLIN is

widely used for interpolation of climatic variables (e.g.,

Ukkola et al. 2016). The quality of the interpolated me-

teorological dataset has previously been fully evaluated

and found to have reliable accuracy (Yu et al. 2004).

2) NDVI

NDVI is a proxy of vegetation productivity (e.g., Piao

et al. 2014; Wang et al. 2017). NDVI is generated from

MODIS observations with the data processed to remove

clouds and then gap-filled (Liu et al. 2017). In this study,

8-day NDVI datasets covering 2000–16, derived from

the National Earth System Science Data Sharing In-

frastructure (http://www.geodata.cn/), were used to in-

vestigate their association with climatic factors. NDVI

data were further aggregated to 10km3 10km to match

the resolution of meteorological data using the grid re-

sample method. The dataset quality has been verified to

be suitable in China (e.g., Hu et al. 2017).

3) GRASSLAND CLASSIFICATION

Grassland types and their distribution were obtained

from a 1:1 000 000 digitalized vegetation map of China

(Editorial Board of Vegetation Map of China, Chinese

Academy of Sciences 2007).We extracted the grasslands

including three temperate grassland types (temperate

meadow, temperate steppe, and temperate desert

steppe), three alpine grassland types (alpine meadow,

alpine steppe, and alpine desert steppe), and mountain

grassland. Other vegetation types were not included in

this study.

FIG. 1. (a) Spatial pattern of determinant climatic factors on the IAV of NDVI over grasslands in northern China, and the location of the study

region and (b) its four subregions and (c) vegetation types. The four subregions are InnerMongolia (IM), the Loess Plateau (LP), theTibetan Plateau

(TP), and Xinjiang (XJ). The determinant climatic factor is indicated in each grid cell including precipitation (PPT), relative humidity (RH), solar

radiation (SR), andair temperature (Ta).Gridswith significant climatevariability effectsongrasslandgrowth (p, 0.05)are labeledwith cross symbols.
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c. Data analysis and methods

With the time series (2000–16) of NDVI and the cli-

matic variables, we used GDM to quantify the contri-

bution of each climatic factor to the interannual

variation in NDVI at each grid. The GDM works with

categorical variables, which can be discretized using the

K-means classification algorithm when using numerical

variables. The discretization scheme with the largest q

value is generally selected to achieve the best perfor-

mance for the GDM. The explanatory power for each

climatic variable x on IAV of NDVI is quantified by the

power of determinant q:

q
x
5 12

�
m

i51

N
i
s2
i

Ns2
5 12

SSW

SST
, (1)

where qx (qx2 [0, 1]) is the power of the climatic factor x;

i 5 1,. . . , m is the stratum (category) of NDVI for cli-

matic factor x;Ni andN are the total sample numbers of

the i stratum and overall period (2000–16), respectively;

s2
i and s2 are the variances of NDVI in the i stratum and

overall period, respectively; and SSW and SST are the

within sum of squares in the i stratum and total sum of

squares in the overall period, respectively.

The sum (for precipitation) and mean (for NDVI,

relative humidity, solar radiation, and air temperature)

of the climatic variables during each growing season

[day of year (DOY) 121–273] were calculated as the

annual values. With the annual values of NDVI and the

climatic variables in 2000–16, we quantified the contri-

bution of each climatic factor to NDVI dynamics at an

annual basis. The reason we used the mean (or sum) of

each growing season rather than the whole year is that

there is no plant growing during the period of non-

growing seasons of grasslands in our study region. In

addition, the annual productivity was found to bemostly

correlated with climatic factors in the growing season

but not the whole year (e.g., Bai et al. 2004; Guo

et al. 2015).

3. Results

a. Spatial pattern of determinant climatic factors

Figure 1 shows the distribution of the determinant

climatic factors on the IAV of NDVI in the grasslands of

northern China during 2000–16. Apparently, the spatial

distribution of the dominant controlling factor was

heterogeneous in the study region without clear transi-

tional zones being detected. The zones of every de-

terminant climatic factor were distributed in an

interlaced manner without clear spatial demarcation

and transitional transect among any two factors. The

area of the precipitation determinant was concentrated

on the eastern part, those of air temperature and solar

radiation were located on the Tibetan Plateau, and that

of relative humidity was scattered across thewhole study

region. Grids with significant climate variability affect-

ing grassland growth were distributed in the hinterland

of the temperate steppe and the transition zones of al-

pine meadows and alpine steppe.

Precipitation and relative humidity determined the

IAV of NDVI in the majority of the region, accounting

for 31.3% and 29.8% of the whole area, respectively,

while air temperature and solar radiation accounted for

21.4% and 17.5%, respectively (Fig. 2a). Areas with

grassland productivity significantly constrained by pre-

cipitation and relative humidity accounted for 40.1%

and 34.2%, respectively, of all significant areas, much

more than air temperature (18.8%) and solar radiation

(6.4%) (Fig. 2b). Zones with more contribution (grids

with significant effects) of climatic factors spread from

the northeast to southwest along the regional boundary.

FIG. 2. (a) Area percentage of each determinant climatic factor of the whole study region and (b) the significant

(p , 0.05) proportion area of all grids with significant effects on grassland dynamics across the grasslands of

northern China (the whole) and its four subregions (IM, LP, TP, XJ). Abbreviations are defined in Fig. 1.
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In general, the explanatory power of GDM showed that

precipitation had the largest contribution (24.3%) to the

IAV of NDVI in the whole region, followed by relative

humidity (24%), air temperature (18.9%), and solar

radiation (17%) (Fig. 3).

b. Contributions of climatic factors to NDVI
variability in different subregions

Precipitation and relative humidity were the leading

important climatic constraint factors on the IAV of

NDVI for each subregion, showing rough agreement

with the pattern of the whole study region. In detail, the

effects of precipitation and relative humidity on the IAV

of NDVI occupied 49.2% and 30% of Inner Mongolia,

36.2% and 28.8% of the Loess Plateau, 23.3% and

28.2% of the Tibetan Plateau, and 37.1% and 36.4% of

Xinjiang, respectively (Fig. 2a). Grids with climatic

factor significantly (p , 0.05) controlling the IAV of

NDVI were mainly concentrated in the middle section

of Inner Mongolia and the northwestern Loess Plateau,

but they were relatively scattered in the Tibetan Plateau

and Xinjiang region (Fig. 1). Regarding the proportion

of significant (p , 0.05) climatic determinant factors,

precipitation was the leading factor of the IAV of NDVI

in Inner Mongolia (46.9%), the Loess Plateau (30.6%),

and the Tibet Plateau (37.8%), while relative humidity

dominated in Xinjiang (53.6%) (Fig. 2b).

The explanatory power of precipitation and relative

humidity was 37.8% and 32.2% in Inner Mongolia,

26.2% and 25.7% in the Loess Plateau, 18.9% and

20.6% in the Tibetan Plateau, and 26.8% and 26% in

Xinjiang, respectively (Fig. 3). Particularly, four climatic

factors had roughly equivalent contributions, with the

explanatory powers of around 20% controlling the IAV

of NDVI in the Tibetan Plateau. Climatic variability

(the IAV of four climatic factors) had weaker regulatory

effect (sum of the explanatory power of four climatic

factors) on the IAV of NDVI in the Tibetan Plateau

(76.1%) than in Inner Mongolia (109.6%), the Loess

Plateau (88.6%), and Xinjiang (81%). Changes in solar

radiation and air temperature had relatively less effect

on the grasslands dynamics in each subregions.

c. Contributions of climatic factors to NDVI
variability in different grassland types

For temperate grasslands, precipitation and relative

humidity played absolutely dominant roles, as either the

determinant factor or their average explanatory power

in a percentage or significant proportion of the area

(Figs. 4 and 5). Of the temperate meadow, temperate

steppe, and temperate desert steppe, the precipitation

dominated 36.3%, 44.3%, and 43.4% of the areas, while

relative humidity accounted for 43.5%, 31.2%, and

25.5%, respectively (Fig. 4a). The same pattern was

FIG. 3. Average explanatory powers of climatic factors (PPT,

RH, SR, Ta) for grassland dynamics in grasslands of northern

China (the whole) and its four subregions (IM, LP, TP, XJ). Bars

indicate standard error. Abbreviations are defined in Fig. 1.

FIG. 4. (a) Area percentage of each determinant climatic factor of the whole study region and (b) the significant

(p , 0.05) proportion area of all grids with significant effects on grassland dynamics for different grassland types

(AM: alpine meadow; AS: alpine steppe; AD: alpine desert steppe; TM: temperate meadow steppe; TS: temperate

typical steppe; TD: temperate desert steppe; MM: mountainous meadow). Abbreviations are defined in Fig. 1.
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observed for the proportion of grids experiencing sig-

nificant effect (Fig. 4b). The average explanatory powers

of precipitation and relative humidity were 36.4% and

37.5% for temperate meadow, 34.7% and 31.2% for

temperate typical steppe, and 28.1% and 22.5% for

temperate desert steppe, respectively, showing a de-

crease with reduced water availability. Solar radiation

and air temperature had relatively weak effects on the

IAV of NDVI in temperate grasslands, with explanatory

powers ranges of 19.3%–13.6% and 21.5%–17.6%, re-

spectively (Fig. 5).

As the determinant factors, precipitation and relative

humidity accounted for larger percentages of areas at

25.7% and 27.7% of alpine meadows, 23.4% and 33.3%

of alpine steppes, and 18.2% and 27.4% of alpine desert

steppes, respectively (Fig. 4a).The average explanatory

powers of climatic variables for alpine grassland showed

ranges of 13.7%–21.2% (precipitation), 17.8%–22.9%

(relative humidity), 17.5%–18.8% (solar radiation), and

17.3%–19.7% (air temperature), which were much less

than those for temperate grasslands (Fig. 5). Climate

variability explained the IAV of NDVI more in temper-

ate grasslands than in alpine grasslands. The aggregated

explanatory power of four climatic factors on the IAV

of NDVI were 113.6% (temperate meadow), 104.6%

(temperate steppe), 81.8% (temperate desert steppe),

81.1% (alpine meadow), 78.0% (alpine steppe), and

66.4% (alpine desert steppe). Air temperature played a

more important role in alpine grassland than in temperate

grassland, with significant area proportions of more than

20% in alpine grasslands (Fig. 4b). In mountain meadows

as a nonzonal vegetation type, the four climatic variables

had roughly equivalent influences on the IAV of NDVI,

and the proportion and average explanatory power pat-

tern was similar to that of alpine grasslands.

4. Discussion

a. Relative importance of climatic factors on the IAV
of NDVI

Relative humidity and precipitation played leading

roles in annual grassland activity, in terms of both the

explanatory ability and area percentage in the study

region. These results confirmed that precipitation has a

critical effect on vegetation productivity in Inner Mon-

golia and the Loess Plateau during the growing season

(Chuai et al. 2013; Bao et al. 2014; Xie et al. 2016). Our

results are consistent with previous studies finding water

availability dominated vegetation activities, and vege-

tation activity was sensitive to water availability in

water-limited ecosystems (Li et al. 2015b; Y. Yao et al.

2018). Our results also indicated that relative humidity

has made an equal and even larger contribution to the

IAV of NDVI especially on the Tibetan Plateau. The

reason is that relative humidity is a key index of atmo-

spheric aridity (Méndez-Barroso et al. 2009; Novick

et al. 2016; Sulman et al. 2016; Wang et al. 2017), which

constrains plant growth and ecosystem carbon fluxes

(Wu et al. 2011) by governing stomatal closure and

subsequent plant carbon uptake (Novick et al. 2016;

Sulman et al. 2016; Konings et al. 2017). Therefore,

relative humidity plays a crucial role in affecting the

interannual variations in vegetation productivity in

grasslands, which should be paidmuchmore attention in

future studies.

In our study, we used the average or sum of the cli-

matic variables in the growing season as the values to

investigate the climate–NDVI relation at an annual

scale. It has been suggested that some other factors at

finer scales, such as precipitation seasonality and pre-

cipitation in previous year (i.e., the lag effect), may also

FIG. 5. Average explanatory powers of climatic factors (PPT, RH, SR, Ta) for grassland

dynamics for each grassland type (AM, AS, AD, TM, TS, TD, MM). Bars indicate standard

error. Abbreviations are defined in Figs. 1 and 4.
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impact vegetation productivity at an annual scale (Guo

et al. 2015). In our study region, it has been found that

the total amount of precipitation in the growing season,

rather than other rainfall characteristics, is the dominant

index depicting the IAV of annual primary productivity

in the grassland ecosystems (Hu et al. 2018). In addition,

no lag effect of precipitation on aboveground net pri-

mary productivity has been found in the study region

(Guo et al. 2013). For the other climatic factors (e.g.,

relative humidity, solar radiation, and air temperature),

their seasonal patterns are regular among years. There-

fore, using growing season mean or sum for these vari-

ables is effective in detecting their relative importance to

NDVI variability.

b. Divergent contribution of climatic factors to NDVI
variability among grasslands types and subregions

Climate variability exerted less influence on the IAV

of NDVI in alpine grasslands than that in temperate

grasslands, owing to large differences between the two

vegetation types in the contribution of precipitation and

relative humidity. Two reasons may cause the difference

between the two distinct grassland types. First, the im-

portance of aridity on plant growth is different between

the two grassland types. In the temperate grasslands, low

annual precipitation in combination with relatively high

air temperature make plant growth mostly constrained

by water availability (Cong et al. 2017). Thus, pre-

cipitation and relative humidity, indicators of aridity,

demonstrate high explanatory ability for IAV of NDVI.

In comparison, the air temperature in alpine grasslands

is relatively low owing to the high elevation, which

largely alleviates the constraint of water availability due

to low evapotranspiration under this condition. There-

fore, the contributions of precipitation and relative hu-

midity on IAV of NDVI are lower in alpine grasslands.

Second, the topology in alpine grasslands, which are

mostly located on the Tibetan Plateau, is more com-

plex than that in temperate grasslands, making the

spatial pattern of environmental conditions muchmore

heterogeneous in alpine grasslands. In other words, the

interactions among the environmental factors in alpine

grasslands are more complex and their impacts on the

IAV of NDVI are difficult to quantify. The different

combinations of all vegetation types produce the di-

vergence of the area proportion (determinant climatic

factors) and explanatory ability (each climatic factor)

among subregions.

c. Merits and uncertainty of GDM

GDM can detect spatial stratified heterogeneity,

which mainly reflects the two-dimensional relationship

between the variables. This method used in this study

was based on the assumption that the IAV of vegetation

activity is determined by the climatic variables (de Jong

et al. 2011). GDM is found to have better performance

for quantifying the contributions of independent vari-

ables to a dependent variable, owing to its independence

from the linear assumption (Wang et al. 2010). There-

fore, GDM is more beneficial for revealing a causal law

than traditional methods. To the best of our knowledge,

this study is the first attempt of using GDM to quantify

the contributions of climatic factors to vegetation ac-

tivities. Note that there are still some limitations of using

GDM to quantify the contribution of climatic factors to

the IAV of NDVI. First, GDM is a statistical model in

essence and cannot fully clarify the mechanisms of the

relationship of vegetation productivity and climatic

variability. Further analysis and cross-validation of the

results are required in conjunction with process models.

Second, the total contribution of four climatic factors

was less or more than 100%, implying that interactions

exist between different factors, which warrant further

study.

5. Conclusions

Using the geographical detector method, we quan-

tified the contributions of four climatic factors (pre-

cipitation, relative humidity, air temperature, solar

radiation) on interannual variations in NDVI in the

grasslands of northern China. We found that pre-

cipitation and relative humidity were the dominant

factors controlling the NDVI variability. Importantly,

in terms of both the area fraction and the relative

contribution, relative humidity plays a considerable

or even more important role in affecting NDVI vari-

ability than precipitation. Thus, our findings highlight

the importance of atmospheric aridity to the interan-

nual variability of vegetation productivity in grass-

lands of northern China, or other arid regions in

the world. In addition, the accumulative explanatory

power of climatic factors for NDVI variability is

weaker in alpine grasslands than in the temperate

grasslands. This implies that the mechanism control-

ling the NDVI variability is more complex in the al-

pine grasslands, and predicting the response of

vegetation to climate change in this region would be

more challenging.
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