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Highlights 

 combine the use of Geodetector analysis, PCA, and the GWR model. 

 present a novel approach to analyze complex spatially non-stationary relationships; ( 

 assess the spatial variation of PM2.5 concentrations in the Pearl River Delta region by using the 

proposed methodology. 

 

Abstract 

This study develops an augmented geographically weighted regression (GWR) model to analyze the 

spatial distribution of PM2.5 concentrations through the incorporation of Geodetector analysis and 

principal component analysis (PCA). The modeling approach we propose allows effective 

identification of important PM2.5 drivers and their spatial variation. Technically speaking, Geodetector 

analysis is used to detect synergies between potential predictor and select predictor variables that truly 

affect the dependent variable, and PCA is adopted to eliminate multicollinearity among the variables. 

The spatial distribution of PM2.5 concentrations within the Pearl River Delta region, China, is analyzed 

using the augmented GWR model. The augmented GWR model has an obvious advantage of 

parsimony, and moreover, it significantly outperforms the traditional regression model.  

 

Keywords: Geographically weighted regression, Geodetector, Principal component analysis, PM2.5, 
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collinearity, Pearl River Delta region, China 

 

1. Introduction 

In China, the urbanization-induced PM2.5 pollution not only results in smog incidents but also 

poses a significant risk to human health. Therefore, it becomes a major environmental concern and its 

mitigation receives extensive attention from governments, scholars, and so forth (Li et al., 2019; Xu 

and Yang, 2019; Zhao et al., 2019). Monitoring PM2.5 concentrations is the first and foremost step 

toward the identification of PM2.5 sources and dynamics and can provide insights into PM2.5 pollution 

mitigation and prevention (Pui et al., 2014). It is traditionally performed using ground (monitoring) 

stations. However, it is difficult to investigate spatial variations of PM2.5 simply based on data from 

ground stations due to the limited number of stations and the non-standardized measurement frequency 

(Zou et al., 2015; Chu et al., 2016; Lee et al., 2016). 

Numerous technological approaches, including geospatial interpolation (Li et al., 2014; Liu et al., 

2014), the inversion of remote sensing data (Shi et al., 2018; Zhang et al., 2019), and geostatistical 

regression (Huang et al., 2018a), have been employed to fill the gaps by transforming discrete data 

points from ground stations into spatially distributed data. Importantly, spatial interpolations tend to be 

constrained by the number and geographical distribution of ground stations. If the distribution of 

ground stations is sparse and non-uniform, the accuracy and predictive power of the interpolation will 

decrease significantly (Li and Heap, 2011).  

Remote sensing-based approaches usually utilize the aerosol optical depth (AOD) measured by a 

satellite to predict the concentration of near-surface atmospheric pollutants (Zhao et al., 2018). 

However, the ability to construct a relational model between the AOD and PM2.5 is largely influenced 

by meteorological factors (Zheng et al., 2016). Geostatistical regression models, such as the 

geographically weighted regression (GWR) model, are often used to analyze the spatial variation or 

heterogeneity of atmospheric pollutant (e.g., PM2.5 and NO2) concentrations and its influencing factors 

(Hu et al., 2016; Wolf et al., 2017; Yang et al., 2017a). Notably, GWR models are exceptionally 

popular because they can account for spatially non-stationary (or spatially heterogeneous) relationships 

between the dependent variable and regressors (or predictor variables, independent variables) (Lloyd 

2010; Harris et al. 2010a, 2011a; Harris and Juggins 2011; Xu and Huang, 2015; Wang et al., 2019; 

Yang et al., 2020). 
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An essential step of model construction is the identification and selection of variables to be 

included in the regression model. Existing methods that deal with variable selection are mainly based 

upon correlation analysis, supervised stepwise regression (Zhou et al., 2014), and cluster analysis 

(Yang et al., 2017b); however, these methods involve various degrees of uncertainty. For example, 

predictor variables may interact with each other, which may result in multicollinearity (Wu et al., 

2015). However, if one cruelly excludes collinear variables, a loss of information may occur (Nguyen 

and Ng 2019; Tsao 2019).  

To address the abovementioned issues, an augmented GWR model is developed in this study to 

describe the relationship between the spatial distribution of PM2.5 concentrations and a set of 

contributory factors. Notably, Geodetector analysis is combined with principal component analysis 

(PCA) to determine key regressors for the GWR model. More specifically, Geodetector analysis 

reveals how variables interact with each other by analyzing their spatial disparities and is used to select 

important predictor variables (Wang et al., 2010, 2017); and PCA recombines the important predictor 

variables (selected by Geodetector analysis) into mutually independent regressors to reduce the 

multicollinearity (Zhai et al., 2018). The application of the two methods in tandem improves the 

representativeness of selected variables, thereby improving the predictive accuracy of the model and 

avoiding the multicollinearity problem. Following this approach, an augmented GWR model is 

developed to analyze the spatial distribution of PM2.5 within the Pearl River Delta (zhu jiang san jiao 

zhou) region, China. Results illustrate the explanatory power of the augmented GWR model.  

The contributions of this paper include the following: (1) combining Geodetector analysis, PCA, 

and the GWR model and presenting a novel approach to analyze complex spatially non-stationary 

relationships; (2) assessing the spatial variation of PM2.5 concentrations in the Pearl River Delta region 

by using the proposed methodology. 

The remainder of this paper is organized as follows. Section 2 reviews existing literature on 

identifying the contributory factors of PM2.5 concentrations and summarizes the factors. Section 3 

introduces the study area and data. Section 4 reveals the methodologies of Geodetector analysis, PCA, 

and GWR modeling. Section 5 shows the results estimating from the augmented GWR model and 

presents technical discussions. Section 6 concludes the paper and points out future research directions. 

 

2. Summary of factors affecting PM2.5 concentrations 
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The identification of factors influencing PM2.5 concentrations is critical for the construction of 

statistical models. The selection of influencing factors is often based upon the source apportionment 

of PM2.5. PM2.5 particles are emitted by a variety of sources, including industry, traffic, and domestic 

sources (Pui et al., 2014). Cheng et al. (2015) and Tian et al. (2015) noted that traffic emissions are 

the main source of PM2.5 in Hong Kong and Chengdu, China, respectively and that they contribute to 

approximately 25% of the total in these regions. However, Hua et al. (2015) and Wang et al. (2016) 

found that industrial emissions are the main source of PM2.5 in the Yangtze River Delta region and in 

Northwestern China, respectively and that they account for more than 30% of the total. In 

comparison, Yao et al. (2016) demonstrated that industrial emissions contribute up to 70% of the total 

PM2.5 emissions in Northwestern China.  

Existing findings indicate that the emission sources of PM2.5 vary significantly across the region 

(Yang et al., 2018). In agricultural regions, the main source of PM2.5 is the burning of straws and 

biological matters (Tao et al., 2013; Yin et al., 2017); in manufacturing and mining-dominated 

regions, the main source of PM2.5 is industrial emissions (Wang et al., 2015); and in economically 

developed regions where the tertiary (service) sector is dominant, PM2.5 emissions are closely related 

to domestic consumption and urban transport (Lin et al., 2014). Indeed, Ross et al. (2007) and 

Clougherty et al. (2008) found that the spatiotemporal variation in PM2.5 concentrations is mainly 

caused by differences in land-use type and population distribution. Their conclusion is also supported 

by Wolf et al. (2017) and Lu et al. (2018). 

Meteorological factors also play a major role in the creation of spatially varying PM2.5 

concentrations (Lin et al., 2015). Zhang et al. (2015) concluded that in Beijing, China, precipitation is 

negatively correlated with PM2.5 concentrations, indicating that an increase in precipitation 

significantly decreases PM2.5 concentrations. In the Sichuan Basin, southwestern China, Li et al. 

(2015) showed that temperature and atmospheric pressure affect the regional accumulation and 

migration of PM2.5 by influencing the convective motion of the air. Chen et al. (2017) investigated the 

correlations between PM2.5 concentrations and various meteorological factors in the Jing-Jin-Ji 

Metropolitan Region, Northern China. They found that wind speed has the greatest impact among all 

the contributory factors. Cheng et al. (2019) and Meng et al. (2019) showed that air temperature, 

atmospheric pressure, relative humidity, and precipitation are the most important factors that 

contribute to the spatial variation of PM2.5 concentrations in Beijing. 
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By and large, these existing studies provide valuable insights into the identification of factors 

influencing the spatial distribution/variation of PM2.5 concentrations. However, they do not adequately 

consider the potential influences of inter-factor interactions (Xu et al., 2014). We, therefore, propose an 

augmented GWR model to circumvent a few problems and limitations in existing methods. Moreover, 

following existing literature, independent variables used in this study are selected based on three key 

categories, namely meteorological conditions, urban geography factors, and PM2.5 sources at two 

different levels (i.e., intragroup or intergroup). More specifically, land-use type and population counts 

are applied as the urban geographic factors, and industrial and traffic emissions are considered as the 

primary sources of PM2.5. 

 

3. Study area and data  

3.1 Study area 

The Pearl River Delta region (or the Pearl River Delta Metropolitan Region) is chosen as the 

study area. The region is located in southern Guangdong and also in the lower reaches of the Pearl 

River near the Southern China Sea, and it is the mainstay of in the Guangdong–Hong Kong–Macao 

Greater Bay Area (yue gang ao da wan qu). The region stretches from 112° E to 115.5° E and 21.5° N 

to 24° N and consists of 9 cities, namely Guangzhou, Huizhou, Dongguan, Shenzhen, Foshan, 

Zhongshan, Jiangmen, Zhaoqing, and Zhuhai (Fig. 1). The Pearl River Delta region is one of the most 

economically developed regions in China: its gross domestic product (GDP) accounts for 9.1% of the 

national total (National Bureau of Statistics, 2015).  

The rapid economic development of the region inevitably increases stress on resources and the 

environment. The Pearl River Delta region is also one of the major air pollution control zones in China 

alongside the Jing-Jin-Ji (Beijing-Tianjin-Hebei) Metropolitan Region, the Yangtze River Delta 

Economic Zone, the Cheng-Yu (Chengdu-Chongqing) Economic Zone, and the Fen-Wei Plain. 

 

3.2 Data sources 

Data from various sources are used in this study, including ground-based PM2.5 monitoring data, 

traffic data, industrial data, population density data, land-use data, and meteorological data (Table 1). 

The ground-based PM2.5 monitoring data are obtained from the China National Environmental 

Monitoring Centre (NEMC, 2015) and recorded on an hourly basis from 1/1/2015 – 31/12/2015 by 54 
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air quality monitoring stations in 9 cities within the Pearl River Delta region. The hourly data are 

converted to annual average data for each station. The land-use data are derived from Landsat 8 

remote sensing images in the Geospatial Data Cloud (GDC, 2015), and the following four types of 

land-use are considered: agricultural land, green space, building land, and water body. Monthly 

averages of each meteorological element recorded during 2015 at all the weather monitoring stations 

are obtained from the National Meteorological Information Center (NMIC, 2015). These data are 

subsequently processed to obtain annual average data. Traffic data are obtained from the BIGEM road 

vector dataset (http://www.bigemap.com/). Population density data (1 km × 1 km) are obtained from 

the Resource and Environment Data Cloud Platform (REDCP, 2015). Data related to industrial PM2.5 

emissions are obtained from field investigation, including the number of key enterprises that have 

been prioritized for air pollution monitoring within the study area and their emission loads.  

 

It is noteworthy that the length of roads and the number of enterprises are used to assess traffic 

emissions and industrial emissions, respectively. Since data that directly reflect traffic intensity and 

industrial emissions are unavailable to the authors, the length of roads and the number of enterprises 

are used as proxies for such indicators. Moreover, previous studies have demonstrated the 

applicability of using the two factors to evaluate traffic emissions and industrial emissions because of 

their close relationships with PM2.5. For instance, Hu et al. (2016) applied the length of roads in the 

study area as an indicator of traffic emissions and found that the indicator has a high correlation with 

PM2.5. Similarly, Huang et al. (2017) screened predictors from a huge number of potential PM2.5 

influencing factors and used the length of roads as a measure of traffic emissions. Zhai et al. (2018) 

predicted the spatial distribution of PM2.5 by incorporating the number of enterprises into the 

regression model.  

 

3.3 Data integration 

All of the datasets are projected onto the Gauss-Kruger/Beijing 1954 coordinate system in ArcGIS 

(v 10.2).  

Since the spatial position of the PM2.5 monitoring stations does not perfectly match that of the 

meteorological stations, the meteorological data need to be processed to match the PM2.5 data. 

However, interpolation involves the uncertainty problem. As such, several interpolation methods are 
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tested.  

Relative errors of different interpolation methods for each meteorological measure are shown in 

Table 2. We opt for the method that provides the smallest relative error for each meteorological 

indicator in subsequent analysis: inverse distance weighting (IDW) interpolation is used for average 

and maximum wind speeds and average water vapor pressure; Kriging interpolation is used for relative 

humidity; natural neighbor interpolation is used for precipitation; and trend interpolation is used for 

average air temperature and average atmospheric pressure. Furthermore, several buffer zones (0.1 km – 

10 km) are constructed around each PM2.5 monitoring center (see Table 1), from which the datasets 

corresponding to each variable are extracted. 

 

4. Methodology 

4.1 Research framework 

The augmented GWR model is constructed in several stages (Fig. 2). First, the five categories of 

factors in Table 1 are used as independent variables, while PM2.5 concentrations are adopted as the 

dependent variable. Geodetector analysis (detailed in Section 4.2) is used to compute the contribution 

of each factor to PM2.5 concentrations and to detect synergies between factors with respect to PM2.5 

concentrations. Since independent variables that put into Geodetector analysis should be categorical 

variables, it is necessary to categorize all continuous variables (Cao et al., 2013). Therefore, in this 

study, air temperature, atmospheric pressure, population density, and traffic sources are divided into 10 

categories, while precipitation, water vapor pressure, and wind speed are divided into 9 categories. The 

correlation between each variable and PM2.5 concentrations is assessed using Pearson’s correlation 

analysis. Effective predictor variables are then selected based on the results of Pearson’s correlation 

analysis and Geodetector analysis. Finally, PCA is used to select the principal components (PCs) 

whose cumulative contributions exceeded 95%. These PCs are used as input for the GWR model. 

 

Model validation is performed using the leave-one-out cross-validation (LOOCV) method to 

orthogonally validate the model. For this, the datasets are divided into training and validation sets. The 

PM2.5 concentration data and predictor variables at 53 monitoring stations in the training set are used to 

construct the GWR model, the results of which are used to predict the PM2.5 concentration at the 

validation point. This process is repeated 54 times until every monitoring station has been used as the 
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validation point.  

The augmented GWR model is compared to other regression models based on the coefficient of 

determination (R2), the adjusted R2, and the Akaike Information Criterion (AICc). Higher values of R2 

and adjusted R2 and lower values of AICc are indicative of the improved model accuracy (Yang et al., 

2019). 

 

4.2 Geodetector analysis  

The Geodetector method is a quantitative technique that determines whether the spatial 

distribution of a geostatistical variable is similar to that of an independent variable that has been 

identified as an important explanatory factor (Wang et al., 2010, 2017). The key idea behind 

Geodetector is that if factor X is associated with Y, then X and Y would exhibit similar spatial 

distributions. In other words, if the spatial variability of PM2.5 concentrations is caused by a specific 

factor, there should be some similarity between the spatial distributions of the factor and PM2.5 

concentrations. The Geodetector method uses the power of determinant (𝑞𝑋) to reflect the spatial 

correspondence of factor X and Y by using the following equation (Wang et al., 2010, 2017): 

𝑞𝑋 = 1 −
∑ 𝑁ℎ𝜎2

ℎ

𝐿

ℎ=1

𝑁𝜎2  , 
(1) 

where N is the number of samples in the study area; 𝑁ℎ is the number of samples in zone (category) h 

of factor X; σ2 is the total variance of Y in the study area; σh
2 is the variance of Y within zone (category) 

h of factor X; and L is the number of zones (categories) of factor X. 𝑁ℎ𝜎 2
ℎ
 is within sum of variances, 

and 𝑁𝜎2 is total sum of variances. The greater the value of 𝑞𝑋 is, the more factor X explains Y, and 

vice versa.  

If 𝑞(𝑋1  𝑋2)  >  Max(𝑞(𝑋1), q(𝑋2)), then the interactions between X1 and X2 increase their 

influences on Y. Conversely, if q(𝑋1 𝑋2)  <  Max(q(𝑋1), q(𝑋2)), then the influence of X1 and X2 on 

Y is diminished by the interactions between X1 and X2. Finally, if q(𝑋1  𝑋2)  =  q(𝑋1) + q(𝑋2), then 

the effects of X1 and X2 on Y are mutually independent (Wang et al., 2010, 2017). 

 

4.3 Principal component analysis  
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PCA uses an orthogonal transformation to convert possibly correlated variables into a number of 

linearly uncorrelated variables, namely independent PCs (Abdul-Wahab et al., 2005; Harris et al. 

2011b; Demšar et al., 2013). The first PC has the largest possible variance, constituting as much of 

the variability in the data as possible, following by the second PC and the third PC. In this way, PCA 

reduces collinearity between predictor variables. Each PC can be expressed as follows: 

𝑃𝐶𝑖 = 𝑙𝑖1𝑋1 + 𝑙𝑖2𝑋2 + ⋯ + 𝑙𝑖𝑛𝑋𝑛, (2) 

where PCi is the i-th PC; Xj is the j-th predictor variable; and lij is the coefficient of Xj (i, j = 1, 2 …, n). 

 

4.4 GWR model 

Traditional regression models use only one equation to describe the global relationships between 

predictor and predicted variables and produce one-size-fits-all outcomes. However, they ignore some 

interesting and important local differences in the determinants (Fotheringham et al., 2002). By contrast, 

GWR, a local regression technique, relaxes the assumption of constant (or spatially invariant) 

relationships between predictor and predicted variables in traditional regression models and creates 

multiple equations to describe such relationships. GWR models can reflect relationships with a space-

varying nature and offer local or location-specific regression results (Harris et al., 2014).  

GWR is seminally proposed by Brunsdon et al. (1996) and Fotheringham et al. (2002). Since then, 

it has become a popular approach to modeling social processes. GWR is a locally linear regression 

technique that captures spatially non-stationary relationships between the dependent variable and 

predictor variables by incorporating geographical information. In other words, the GWR model 

predicts the relationship between the dependent variable and predictor variables at each location by 

constructing local (or location-specific) regression equations. The GWR model is mathematically 

expressed as follows (Fotheringham et al., 2002): 

𝑌𝑖 = 𝛽0(𝑢𝑖  , 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖 , 𝑣𝑖)𝑘
𝑋𝑖𝑘 + 𝜀𝑖, 

(3) 

where Yi is the dependent variable; Xik is the k-th independent variable; (ui, vi) is the geographical 

coordinates of the i-th point; β0 (ui, vi) is the intercept of the i-th point; βk (ui, vi) is the coefficient of Xik 

and εi is the residual of the i-th point. 

A regression equation that considers only nearby observations is developed for each point by 

using a weighted least square method. Each nearby observation is weighted by means of a function of 
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the distance to the regression point through various methods. Common spatial weighting or distance 

decay methods include fixed Gaussian and adaptive bi-square kernel functions. The fixed Gaussian 

function can be written as  

2 2exp( / )ij ijw d  
, 

(4) 

where ijw
 is the weight value of observation j for estimating the coefficient of observation i, ijd

 is 

the straight-line distance between observations i and j, and   is a constant bandwidth. 

The adaptive bi-square kernel function allows the spatial extent to vary (or keeps adjusting the 

spatial extent) at different regression points and includes the same number of neighbors for local model 

estimation. It can be written as 

2 2 2

( ) ( )

( )

(1 / )   

0                          

ij i k ij i k

ij

ij i k

d d
w

d

 



  
 

 , 

(5) 

where ( )i k
 is an adaptive bandwidth; and other variables are as defined before. 

Interest readers can refer to Brunsdon et al. (1996) and Fotheringham et al. (2002) for more 

information of GWR. 

 

5. Results and Discussion  

5.1 Results from the augmented GWR model 

Table 3 shows the correlations between variables from Geodetector analysis. It is clear that the 

meteorological factors are important determinants of PM2.5 concentrations. In addition, inter-factor 

interactions significantly increase PM2.5 levels. By performing Pearson’s correlation analysis, 14 

effective predictor variables are selected from 119 potential factors, as shown in Table 4. However, the 

high value of the variance inflation factor (VIF) indicates a significant degree of multicollinearity 

between these variables.  

To eliminate multicollinearity, PCA is used to convert the 14 variables into 14 mutually 

independent PCs (PC1 – PC14), through which the VIF values of predictor variables are significantly 

reduced. Table 5 reveals PCA results. PC1, PC2, ... , and PC8 carry over 95% of the total variance, and 

they are used in subsequent analysis. Other PCs are discarded. 
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Both fixed Gaussian and adaptive bi-square kernel functions for GWR modeling were tested in 

this study, and they produce very similar results. As such, finally, the adaptive bi-square kernel 

function was used as the distance decay function, and the Golden bandwidth selection method was 

adopted in the GWR estimation. The fit and cross-validation results of the proposed GWR model are 

shown in Table 6. The R2 values indicate that the goodness-of-fit of the model is excellent, indicating 

that the predictor variables explaining 84% of the variance in PM2.5 concentrations. In addition, the 

mean absolute prediction error (MAE), mean relative error (MRE), and root mean square error (RMSE) 

of the model are all relatively small. Thus, we can conclude that the augmented GWR model is stable 

and robust. 

Comparing the augmented GWR model and other models reported in existing literature can more 

or less provide insights into model performance. Ding et al. (2016) employed kriging interpolation, 

IDW interpolation, and regularized spline interpolation to interpolate PM2.5 concentrations for the Pearl 

River Delta region. These techniques achieved MREs of 0.195, 0.192, and 0.186, and RMSEs of 

10.781, 10.295, and 10.142, respectively. The values of MREs and RMSEs are higher than those of the 

augmented GWR model (see Table 6). This can be explained by the fact that the augmented GWR 

model accounts for spatially non-stationarity relationships of predictor variables, overcoming an 

obvious inherent weakness of non-spatial (or aspatial) regression, namely the omission of geographic 

information. 

 

Fig. 3 shows the spatial distribution of PM2.5 concentrations in the Pearl River Delta region 

derived from the augmented GWR model. The maximum annual average PM2.5 concentration for the 

Pearl River Delta region is 39.05 µg/m3, which is far lower than that of the Jing-Jin-Ji Metropolitan 

Region (125.54 µg/m3) (Zhai et al., 2018). This can be attributed to the Air Pollution Prevention and 

Control Action that was promulgated in 2013 by the Central Government of China. This plan calls for a 

15% reduction in PM2.5 levels by 2017 relative to 2012 levels, the use of energy-saving measures, and 

the upgrading in all coal-fired power plants, coal-fired boilers, and industrial furnaces within this 

region by the end of 2015 (China’s State Council, 2013). The enactment of this plan leads to the 

optimization of energy structures and industrial transformation throughout the Pearl River Delta, which 

saw a 17% reduction in PM2.5 concentrations from 46 µg/m3 to 38 µg/m3 by the end of 2015 (Jiang et 

al., 2015). 
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Annual average PM2.5 concentrations are generally higher in the northwest of the region and lower 

in the southeast. PM2.5 concentrations are significantly lower in the southeast (e.g., Shenzhen and 

Dongguan) than in the central region (e.g., Foshan and Guangzhou). This is consistent with the findings 

of Shen and Yao (2017). Possible explanations for this spatial pattern are as follows: (1) Shenzhen and 

Huizhou are coastal cities with highly variable land-cover types. This feature encourages the formation 

of small, local circulations between the sea and land, thereby increasing the atmosphere’s diffusion 

capacity and decreasing the PM2.5 concentrations (Yan et al., 2018); (2) As Guangzhou and Foshan are 

far from the shoreline, the atmospheric dispersion is relatively limited in these regions. Furthermore, 

these industrially developed and densely populated cities account for a large share of the Pearl River 

Delta’s total PM2.5 emissions (Huang et al., 2018b); (3) Between the nine major cities in the Pearl River 

Delta region, Shenzhen and Zhuhai have higher levels of “green development” due to the 

transformation of their economic structures and the vigorous development of high-tech industries 

(Wang et al., 2020). In contrast, Zhaoqing and Jiangmen have relied on traditional manufacturing and 

processing for a long time, and the growth of emerging industries in these cities is relatively limited 

resulting in significant environmental pressures. This implies that the contributions of the industrial and 

energy sectors to PM2.5 concentrations vary significantly due to differences in the economic structure 

(Wang et al., 2018). 

 

5.2 Model comparison 

The performance of the augmented GWR model is compared to an ordinary least squares (OLS) 

regression model and a conventional GWR model using the same datasets. Results are shown in Table 

7. The two GWR models outperformed the OLS model in all three measures.  

The augmented GWR model has an adequate goodness-of-fit that is close to that of the 

conventional GWR model. However, in this study, the conventional GWR model uses numerous 

variables and suffers from the multicollinearity problem (shown by high VIF values). In other words, 

simply using the conventional GWR model is not rigorous, and the result estimating from the 

conventional GWR model is not reliable. Fortunately, the augmented GWR model does not have such a 

problem and uses much fewer variables. It has a distinct strength of parsimony, and its performance is 

good. 
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The augmented GWR model for the spatial distribution of the Pearl River Delta region has a high 

goodness-of-fit relative to its counterparts reported in existing studies. For example, Song et al. (2014) 

used a general linear regression model, a semi-empirical model, and a GWR model to simulate the 

spatial distribution of PM2.5 concentrations in the Pearl River Delta region. The adjusted R2 values for 

the three models are 0.564, 0.526 and 0.74, respectively, which are lower than for our augmented GWR 

model developed in this study. Furthermore, Yang et al. (2017c) utilized ground monitoring data, 

satellite remote sensing, air quality model, and geographic and local source related spatial inputs to 

predict the distribution of PM2.5 concentrations in the Pearl River Delta region. They reported an 

adjusted R2 of 0.676, which is also smaller than that of our augmented GWR model. Admittedly, the 

difference in the model performance in previous studies can be related to the selection of predictor 

factors. Song et al. (2014) mainly focused on the impacts of meteorological factors, while Yang et al. 

(2017c) placed an emphasis on source apportionment.  

 

5.3 Discussion 

From our case study, the augmented GWR model showed a high goodness-of-fit, considerably 

larger than that of the conventional OLS model; moreover, it performs similarly to the convention 

GWR model that utilizes much more variables (than the augmented GWR model), suffers from the 

multicollinearity problem, and thus produces unreliable results. The augmented GWR model has an 

obvious strength of parsimony. All the above indicates possible advantages of the augmented GWR 

model in modeling the spatial distribution of air pollutants on a regional scale, even when ground 

monitoring stations are unevenly distributed.  

Although the augmented GWR model is applicable for modeling the spatial distribution of PM2.5, 

there are a number of uncertainties (Propastin et al., 2008) remained: (1) Uncertainties in the data 

source of PM2.5: First, the distribution of PM2.5 ground stations are uneven: the number of stations in 

the middle area is more than that in the surrounding area (see Fig. 1). Moreover, the meteorological 

data has been processed to maintain on the same measurement scale compared with the PM2.5 

concentrations. Though several interpolation methods have been tested, uncertainties still occurred at 

their data integration; (2) Uncertainties in the augmented GWR model itself: This study models 

spatially non-stationary relationships between PM2.5 concentrations and a number of potential 

contributory factors. However, the formation of PM2.5 and its composition and physicochemical 
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characteristics are omitted, which would have an unknown impact on the explanatory power of the 

model; and (3) Uncertainties in PCA: To avoid the multicollinearity problem, variables used in the 

augmented GWR model are selected by using PCA, in which some of the information losses. This 

gives rise to uncertainties in model results. 

When assessing GWR as a predictor, Kriging with an external drift (KED) (alternatively called 

universal kriging) offers a useful alternative to GWR from the Geostatistics paradigm. KED caters for 

solving the spatially non-stationarity among variables, which considers additional information as 

external drift (Harris et al., 2010b, 2011a). However, KED usually selects variables that show high 

correlations with PM2.5 as the external drift (Pearce et al., 2009; Ramos et al., 2016). Therefore, it is 

uncertain whether KED has better performance on the prediction by using the Geodetector and PCA to 

select key variables among a huge number of possible influencing factors. In addition, as mentioned 

above, the distribution of PM2.5 ground monitoring stations are uneven in the study area: the number of 

stations in the middle area is more than that in the surrounding area. For this reason, this study prefers 

to use geostatistical regression instead of spatial interpolation to improve the coverage from individual 

points to broader planes. However, testing the power of KED for the studied problem is left for future 

research. 

 

6. Conclusions  

In this study, a GWR model is augmented by the incorporation of Geodetector analysis and PCA 

to better characterize the spatial distribution of PM2.5 concentrations in the Pearl River Delta region, 

China. Geodetector analysis is used to assess the contribution of potential influencing factors and their 

interactions with PM2.5 concentrations, and PCA is used to eliminate multicollinearity between the 

factors. The augmented GWR model is capable of identifying the contribution of each factor, thus 

ensuring that selected variables produced a model with a great predictive capacity than other modeling 

approaches; the augmented GWR model achieved reasonable goodness-of-fit, much higher than the 

conventional OLS model. Our model simulation results indicate that there are significant disparities 

between the eastern and western regions of the Pearl River Delta region with respect to PM2.5 

concentrations in 2015; and that PM2.5 concentrations are relatively high in western cities such as 

Zhaoqing, Foshan, Guangzhou, and Jiangmen, but relatively low in the southeast of the region, which 

includes Shenzhen, Dongguan, Huizhou, Zhuhai, and Zhongshan. 
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Future work is needed to further validate the proposed GWR model, including its suitability for 

different spatial and temporal resolutions, convergence in long-term predictions, and sensitivity 

towards changes in the regional scale. In addition, variables used in the model can be updated based on 

an improved understanding and data on PM2.5 formation mechanisms, as well as its composition and 

physicochemical characteristics, to improve predictive accuracy. Furthermore, as noted above, KED, 

the power of which has extensively confirmed in existing literature (Harris et al. 2010b, 2011a; Pearce 

et al., 2009; Ramos et al., 2016), should be explored for the studied problem in upcoming research. 
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Fig. 1. Location of the study area and spatial distribution of PM2.5 monitoring sites and 

meteorological stations. 
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Fig. 2. GWR modeling approach based on Geodetector and PCA. 
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Fig. 3. Spatial distribution of PM2.5 concentrations based on an augmented GWR model. 
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Table 1 Description of potential PM2.5 predictor variables used in this study. 

Category Factor/Variable Unit Buffer size (km) 

Meteorological  Temperature  ℃ NA 

Precipitation  mm NA 

Average wind 

velocity 

m/s NA 

Maximum wind 

speed 

m/s NA 

Relative humidity  RH% NA 

Atmospheric 

pressure 

hPa NA 

Vapor pressure hPa NA 

Land use  Agricultural land  m2 1, 1.2, 1.5, 1.8, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10 

Green space m2 1, 1.2, 1.5, 1.8, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10 

Building land  m2 1, 1.2, 1.5, 1.8, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10 

Water body m2 1, 1.2, 1.5, 1.8, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10 

Traffic  Length of roads  m 0.1, 0.2, 0.3, 0.4, .5, 0.6, 0.7, 0.8, 1, 1.2, 1.5, 

1.8, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10 

Industrial Number of 

enterprises  

count 1, 3, 5, 7, 10 

Demographic  Population  person/

km2 

1, 1.2, 1.5, 1.8, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10 

 

  

Jo
ur

na
l P

re
-p

ro
of



 

Table 2 Relative errors of interpolation using the meteorological data. 

Meteorolo
gical 
                
data 
Interpolation  
method             

Temperat
ure  

Precipitati
on  

Avera
ge 
wind 
velocit
y 

Atmosphe
ric 
pressure 

Vapor 
pressu
re 

Relativ
e 
humidi
ty  

Maximu
m wind 
speed 

IDW interpolation 2.07% 10.70% 10.52
% 0.65% 2.23% 3.40% 10.85% 

Kriging 
interpolation 2.15% 11.70% 11.60

% 0.88% 2.50% 3.38% 11.04% 

Natural neighbor 
interpolation 2.19% 9.36% 10.94

% 0.74% 2.67% 3.42% 10.92% 

Trend interpolation 1.88% 11.99% 14.57
% 0.61% 2.56% 3.45% 12.22% 

Spline interpolation 3.06% 11.89% 
13.38

% 
0.96% 3.40% 3.56% 14.48% 
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Table 3 Correlations between variables from Geodetector analysis 

  V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 

Atmospheric pressure 

(V1) 

0.378 – – – – – – – – – – 

Temperature (V2) 0.682 0.365 – – – – – – – – – 

Precipitation (V3) 0.678 0.494 0.273 – – – – – – – – 

Relative humidity 

(V4) 

0.696 0.530 0.528 0.256 – – – – – – – 

Vapor pressure (V5) 0.607 0.527 0.537 0.495 0.159 – – – – – – 

Average wind velocity 

(V6) 

0.725 0.611 0.622 0.664 0.600 0.393 – – – – – 

Maximum wind speed 

(V7) 

0.539 0.697 0.539 0.642 0.625 0.718 0.320 – – – – 

Population (V8) 0.696 0.646 0.624 0.522 0.677 0.664 0.628 0.206 – – – 

Length of roads (V9) 0.644 0.708 0.470 0.525 0.506 0.617 0.591 0.496 0.085 – – 

Land use (V10) 0.621 0.503 0.487 0.445 0.452 0.540 0.513 0.408 0.304 0.085 – 

Industrial emissions 

(V11) 

0.468 0.424 0.358 0.329 0.253 0.445 0.442 0.304 0.266 0.204 0.004 
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Table 4 Details of the effective variables 

Variable Correlation  VIF 

Temperature  -0.347** 22.562 

Precipitation  0.301** 13.903 

Mean wind speed -0.158 36.899 

Maximum wind speed -0.028 12.159 

Relative humidity  -0.169 7.234 

Atmospheric pressure -0.280** 10.402 

Vapor pressure -0.343** 16.346 

Agricultural land area in the 

buffer of 8 km 
0.162 3.872 

Green space area in the buffer 

of 4 km 
-0.287** 3.288 

Building land area in the 

buffer of 8 km 
0.420** 4.366 

Water body area in the buffer 

of 10 km 
0.236* 1.484 

Length of roads in the buffer 

of 10 km 
0.177 3.284 

Number of enterprises in the 

buffer of 3 km 
0.076 1.331 

Population counts in the 

buffer of 5 km 
0.184 2.478 

*Significant at the 5% level (two-tailed). 

**Significant at the 1% level (two-tailed). 
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Table 5 Details of the PCs. 

PCs PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 

VIF 1.008 1.007 1.002 1.001 1.001 1.004 1.001 1.001 1.001 1.001 1.001 1.003 1.007 1.011 

Contribution 0.342 0.221 0.114 0.093 0.077 0.053 0.031 0.021 0.019 0.014 0.007 0.003 0.002 0.001 

 

Table 6 Accuracy assessment for the augmented GWR model. 

Model  R2 MAE  MRE RMSE 

Augmented 

GWR 

0.84 2.49 0.07 2.94 

 

Table 7 Comparison of different regression models. 

Model  Predictor variable AICc  R2  Adjusted R2  

OLS PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8 290 0.7 0.65 

GWR Numerous variables 261 0.81 0.78 

The augmented 

GWR 

PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8 273 0.84 0.77 
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