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Spatial relationships between ecosystem services and 

socioecological drivers across a large-scale region: A case study in 

the Yellow River Basin 

Abstract: Understanding the relationships between ecosystem services (ES) and their 

underlying socioecological drivers is essential for forming the efficient management 

decisions of ecosystems. We use a large watershed area as a case-study to analyze 

trade-offs/synergies and bundles of ESs and identify the associated socioecological 

variables (SEVs). This study assessed the supply of 7 ES indicators, namely, three 

provisioning services (crop production, livestock production, and industrial production), 

three regulating services (water conservation, soil conservation, and carbon 

sequestration), and one cultural service (recreation), across 65 municipalities in the 

Yellow River Basin (YRB) in China. We analyzed the paired trade-offs/synergies using 

Spearman’s coefficient and identified the ES bundles (ESBs) by applying principal 

component analysis and K-means clustering. Subsequently, we detected the SEVs that 

affect the ES supply using the geo-detector model and characterized the associations 

between ESBs and socioecological clusters according to the spatial overlap. The results 

demonstrated that the synergies between ESs substantially exceeded the trade-offs, 

among which the strongest synergies were between the crop production and the livestock 

production, and both responded strongly to the cropland and the population density. 

Trade-offs were identified between provisioning services and soil conservation. 

Municipalities were grouped into three ESBs in the YRB. The ESB, which was dominated 

by provisioning ESs, was associated with areas where cropland, precipitation and 
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socioeconomic conditions were all important, and the regulation of ESB was linked to 

regions with distinct ecological characteristics. We also identified an ESB that was 

dominated by carbon sequestration, as determined by extensive grassland and bare land. 

The land use/land cover strongly affected the characteristics of the ESBs. The findings 

can be used by land managers to identify areas in which ESs are dominant, to determine 

the associations of these compositions of the ESs with SEVs, and to support the 

formulation of optimal ES management in large-scale basins. 

Keywords: ecosystem service; spatial relationships; socioecological driver; Yellow River 

Basin 

1. Introduction 

Ecosystem services (ESs) are defined as the benefits that humans directly or 

indirectly receive from ecosystems (Costanza et al., 1997). The Millennium Ecosystem 

Assessment (MA, 2005) developed a classification framework for ecosystem 

assessments around the world. This framework categorized available ES indicators into 

provisioning, regulating, cultural and supporting services based on the linkage between 

ESs and human well-being, among which supporting services are the basis for the 

maintenance and supply of the other three services. There are important dynamically 

complex relationships among the ESs that can lead to simultaneous positive and negative 

changes in the provision of ESs (Bennett et al., 2009). A trade-off occurs when the 

provision of an ES is reduced due to the increased use of another ES (Rodríguez et al., 

2006; Raudsepp-Hearne et al., 2010), while synergy arises when multiple ESs are 
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enhanced simultaneously (Tomscha and Gergel, 2016), which is a win-win scenario (Qiu 

and Turner, 2013). The ES bundle is the repetitive occurrence of trade-offs and synergies 

of ES across space and time (Raudsepp-Heard et al., 2010; Cord et al., 2017), which 

reflects the ES relationships by focusing on inherent bundles of ESs rather than on 

individual ESs (Turner et al., 2014). Understanding these relationships is important for 

making efficient decisions regarding rational ecosystem-based management. Furthermore, 

the identification of the drivers and mechanisms that underlie the ES relationships is 

necessary for better understanding the possibility of forming these relationships (Bennett 

et al., 2009; Dade et al., 2018). Several studies are focused on the trade-offs and 

synergies of ESs that are driven by social and ecological variables across the region 

(Ndong et al., 2020). However, understanding of the relative importance of 

socioecological drivers to the ES supply and the relationships between ESs remains 

limited. 

The methodology of the ES bundle enables the capture of inclusion and the 

geographical visualization of multiple ESs, simultaneously to generate geographical and 

statistical mappings of ES bundles that can indicate which services associated with each 

other based on where they were found repeatedly occurring together (Raudsepp-Heard et 

al., 2010). This approach has increasingly been applied to the spatial identification of the 

relationships between ESs and their drivers (e.g., Queiroz et al., 2015; Dittrch et al., 2017; 

Spake et al., 2017; Lyu et al., 2019) at, for example, the national, regional, and watershed 

scales. The driving variables can be determined by interpreting the spatial distribution of 

ES bundles with respect to known distributions of principal natural variation and human 
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activities within the study area. Nevertheless, distinct bundles are likely produced by 

different sets of socioecological drivers that are targeted towards bundles of services 

instead of individual services (Spake et al., 2017). This bundle approach can be used to 

identify the clusters of socioecological drivers that spatially overlap with ES bundles to 

detect the dominant driving variables of each ES bundle. Therefore, the bundle approach 

is regarded as efficient for predicting the spatial relationships between ESs and conveying 

information on consistent associations to decision-makers (Crouzat et al., 2015; Ndong et 

al., 2020). 

Drivers are the variables that cause ES relationships to develop or change (Bennett 

et al., 2015). The land use/land cover (LULC) (e.g., vegetation cover or land use) has 

been identified most as the determinant of ES relationships (Dade et al., 2018). For 

example, Grimaldi et al. (2014) showed that the land-cover composition dynamics 

explained 45% of the ES metric variance. Spake et al. (2017) showed that crop-dominant 

bundles were associated with the agricultural land coverage and that forest 

service-dominant bundles were associated with high forest cover. In addition, biophysical 

and socioeconomic variables were also commonly regarded as important drivers of ES 

relationships (Dade et al., 2018; Ndong et al., 2020). Substantial effort is being focused on 

investigating the socioecological conditions that are behind the occurrence of ES bundles 

(Gonzalez-Ollauri and Mickovski, 2017). In large-scale regions such as basins and 

surrounding areas, most of the current studies focus on biophysical variables (e.g., 

climate variability, wind erosion, hydrological effects, and soil properties) and policy 

instruments such as vegetation restoration policy. Socioeconomic variables have received 
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less attention in large-scale basins (Feng et al., 2017; Rositano et al., 2018; Jiang et al., 

2018), and the relative importance of socioecological drivers of ES relationships remains 

unclear. Socioeconomic variables also influenced the co-occurrence of 

trade-offs/synergies and ES bundles in a large-scale basin (Qiu and Turner, 2013; 

Queiroz et al., 2015; Meacham et al., 2016). Therefore, research is necessary for 

exploring the socioecological drivers of spatial relationships between ESs in a large-scale 

basin. 

The Yellow River Basin (YRB) is a large-scale basin across northern China, which 

includes the Qinghai-Tibet Plateau, the Loess Plateau and the North China plain, from 

west to east, with substantial differences in natural and socioeconomic conditions. It is an 

important source of freshwater in northern China. Under the pressures of harsh ecological 

conditions and economic growth (Su et al., 2012), the natural and seminatural 

ecosystems of the YRB have become increasingly fragile. For instance, water depletion 

and wetland shrinkage in the upper reaches of the YRB have threatened the supply of 

freshwater resources of the YRB (Zhang et al., 2012; Jiang et al., 2015). Severe soil 

erosion that is caused by a thick mantle of loess, dry climate, and complex topography is a 

direct threat to the conservation of water and soil in the middle and lower reaches of the 

YRB (Bing et al., 2011). Although ecological restoration programs have promoted the 

restoration of forest and grassland, they have not improved the anti-erosion performance 

of the soil in the middle reaches of the YRB (Jiang et al., 2016). The fragility of the 

ecosystems has constrained the supply of ESs and the social and economic development 

in the YRB (Li et al., 2016; Chi et al., 2018; Wang et al., 2019). 
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Current studies on the ES relationships of the YRB have focused mainly on a set of 

soil and water conservation services in ecologically fragile areas at local and regional 

scales, such as the Loess Plateau region (Jiang et al., 2016; Wang et al., 2019), the 

Three-river headwater region (Jiang et al., 2016; Han et al., 2017), desert and semidesert 

regions (Li et al., 2017), and the Yellow River Delta region (Chi et al., 2018; Ma et al., 

2019). For example, a significant trade-off between water provision and soil retention was 

identified in the Loess Plateau in the upper and middle reaches of the YRB (Jiang et al., 

2016). However, a socioecological perspective from which to consider the systematic 

characteristics of relationships between ESs and the socioecological drivers in the YRB is 

lacking (Fu et al., 2015; Lyu et al., 2019). Such a perspective will increase our 

understanding of ES relationships and improve the ability to sustainably manage ESs in a 

large-scale basin. Therefore, multiple ESs and their relationships must be seriously 

considered instead of merely focusing on soil and water conservation for the priority of 

ecological governance in such a large-scale basin (Qiu and Turner, 2013; Queiroz et al., 

2015). 

Focusing on the YRB as a case study, we aim to analyze trade-offs/synergies and 

bundles of ESs and identify the associated socioecological variables. The objectives of 

this study are to (i) quantify and map the spatial distribution of ESs; (ii) analyze the 

pairwise correlations between ESs and characterize the ES bundles; (iii) identify the 

socioecological drivers; and (iv) assess the associations between ES bundles and 

socioecological clusters. The results are expected to provide useful information for 

equilibrating economic development and ecological restoration in large-scale basins. 
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2. Materials and Methods 

In this study, the ES indicators are assessed in the YRB, and the relationships 

between ESs are examined utilizing correlation analysis and the ES-bundle approach. 

Then, the social-ecological drivers are identified for the correlation of ESs and the 

occurrence of ES bundles to mitigate trade-offs and enhance synergies among ESs. 

Municipal boundaries are used to distinguish the spatial units because they represent the 

most efficient administrative boundaries for socioecological governance. In addition, these 

boundaries may be able to represent the social processes that shape the production and 

consumption of ESs (Raudsepp-Heard et al., 2010) in the YRB. Importantly, they define 

the optimum spatial unit at which social and economic census data are available (Dittrich 

et al., 2017).  

2.1. Study area 

The YRB is situated in the northern part of China (31°31’N~43°31’N, 

89°19’E~119°39’E) and covers 1.82 million km2, thereby accounting for 19% of the 

territory of the country (Fig. 1 a). It mainly covers eight provincial-level administrative 

regions, namely, Qinghai, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan, and 

Shandong (Fig. 1 b), which include 65 municipalities (provincial capitals, autonomous 

prefectures, and prefecture-level cities) (Fig. 1 e). The average size of the municipalities is 

27,979 km2, and they range in size from 1,656 km2 (Wuhai, Inner Mongolia) to 253,015 

km2 (Haixi, Qinghai). According to the China Statistical Yearbook (2018), the population of 

the study area accounted for 14.7% of the population of China in 2017, and it contributed 
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14.5% of China’s GDP. The Chinese government put forward the objectives of “ecological 

protection and high-quality development” for the YRB in 2019 (Xi, 2019). Hence, the YRB 

is regarded as an ecological restoration zone in China, and ecological protection has been 

implemented as the premise for economic growth since the policy announcement.  

The study area belongs to the temperate region, with an annual average temperature 

of 1–8 °C in the west, 8–14 °C in the middle, and 12–14 °C in the east. The topography is 

highly complex, with altitudes from -65 to 6813 m above sea level (Fig. 1 c). It has a 

climate gradient from continental arid and semiarid in the west to maritime semihumid in 

the east, with an annual average rainfall of 466 mm (Fig. 1 d). The upper reaches of the 

YRB in the western parts, which belong to the Qinghai-Tibet Plateau (Fig. 1 c), are the 

main water-yielding areas and provide freshwater resources for agricultural, industrial, 

and ecological demands throughout the YRB. The main land cover types in this area are 

alpine meadows, deserts, and lakes (Fig. 1 f). In the upper and middle reaches, the Loess 

Plateau is one of the most severe soil erosion regions in the world (LÜ et al., 2012). The 

dominant land cover types include grassland, desert, forest, and cropland (Su and Fu, 

2013) (Fig. 1 f). The lower reaches of the YRB belong to the plain areas, which are 

dominated by cropland and provide food production services (Wang et al., 2019). There 

are substantial gaps in the levels of socioeconomic development in the 

northwest-southeast orientation of the YRB, such as the population density (Treacy et al., 

2018). Population growth, reclamation, deforestation, and urbanization accelerated water 

and land resource exploitation in highly populated municipalities (Fig. 1 e), thereby 

causing daunting challenges for ecosystem restoration in recent decades. 
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Fig. 1. Locations in the study area and general description of geographical information: (a) The location of the 

Yellow River Basin (YRB) on a map of China, (b) provincial administrative divisions of the YRB and neighboring 

areas, (c) a digital elevation model (DEM), (d) a spatial distribution of the yearly average rainfall, (e) the 

population density across 65 municipalities, and (f) land use and land cover types. 

2.2. ES indicators 

2.2.1. Data collection 

The primary data that are necessary for the ES variables that are used to calculate 

the ES indicators are listed in Table 1. The land use/land cover data with 30 m resolution 
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(for water conservation, soil conservation and carbon sequestration) include nine land 

types: cropland, forest, grassland, shrubland, wetland, water, artificial surfaces, bare land, 

and snow/ice. Maps of the normalized difference vegetation index (NDVI) (for soil 

conservation and carbon sequestration) were constructed using the maximum composite 

value of MODIS NDVI data. A digital elevation model (DEM) (for soil conservation) was 

constructed from SRTM3 data with a spatial resolution of 90 m. The numeric-formatted 

meteorological data (for soil conservation and carbon sequestration) were derived from 

meteorological stations that were distributed throughout the YRB and the surrounding 

areas and interpolated to obtain raster-formatted data with a resolution of 1 km ⅹ1 km to 

cover the whole study area using the kriging method in ArcGIS 10.0. Soil data (for soil 

conservation) were derived from the Harmonized World Soil Database (HWSD), and four 

indices were extracted: “Topsoil Sand Fraction (SAND, % wt)”, “Topsoil Silt Fraction 

(SILT, % wt)”, “Topsoil Clay Fraction (CLAY, % wt)” and “Topsoil Organic Carbon (OC, % 

weight)”. All these primary data were integrated into a spatial resolution of 1 kmⅹ1 km. 

The administrative map, with the municipality as the spatial unit, was provided by the 

National Geomatics Center of China (NGCC) websites. Statistical data of crop yield and 

meat production (for crop production and livestock production, respectively) were derived 

from the Bulletin on National Economic and Social Development. The gross industrial 

output value (for industrial production) was derived from the statistical yearbooks for each 

municipality (e.g., Lanzhou Statistical Yearbook in 2018). The number of tourists (for 

recreation) was obtained from the China City Statistical Yearbook. These statistical data 

were expressed as spatial data in municipal units. All the spatial data were ultimately 
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unified to form the spatial reference (the WGS84 coordinate system and Albers 

equal-area conic projection). 

Table 1 

Summary of the ES variables for the assessment of ES indicators and their data types, time, spatial resolutions, 

and data sources. 

ES variable Data type Time Spatial resolution Data source 

Land use/land cover Raster 2017 30 m Data Center for Resources and Environmental Sciences 

of the Chinese Academy of Sciences: Resource and 

Environment Data Cloud Platform 

(http://www.resdc.cn/data.aspx?DATAID=99) 

NDVI Raster 2017 250 m National Aeronautics and Space Administration and 

United States Geological Survey 

(http://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.006/) 

DEM Raster 2003 90 m National Aeronautics and Space Administration and 

National Imagery and Mapping Agency (http://e0 

mss21u.ecs.nasa.gov/srtm/) 

Precipitation and 

temperature 

Numeric 1956-2017 Sites Meteorological Data Center of China Meteorological 

Administration (http://data.cma.cn/) 

Soil database Raster 2009 30 arc-second Harmonized World Soil Database v1.1 

(http://www.fao.org/soils-portal/soil-survey/soil-maps-and

-databases/harmonied-world-soil-datebse-v11/en/) 

Administrative map Vector 2017 municipality National Geomatics Center of China 
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(http://ngcc.sbsm.gov.cn/ngcc/) 

Crop yield and meat 

production 

Numeric 2017 municipality Bulletin on National Economic and Social Development 

(2018) 

Gross industrial output 

value 

Numeric 2017 municipality Statistical yearbooks of each municipality (2018) 

Number of tourists Numeric 2017 municipality China City Statistical Yearbook (2018) 

2.2.2. Selection of ES indicators 

The selection of suitable ES indicators is a key challenge when assessing ESs (Wong 

et al., 2015). In this study, the criteria for the selection of ES indicators were as follows: (i) 

selection of those in the classification of ES by MA category (MA, 2005) to ensure 

comparability with other studies in this region because the MA classification system is a 

heuristic tool, (ii) selection of the ES indicators that were ecologically, socially and 

economically relevant to the YRB according to previous studies (Wong et al., 2015) and 

(iii) selection of the ES indicators for which the primary data that were required for the 

assessment were available (Bai et al., 2020). Based on these criteria, three ES categories 

and seven ES indicators were selected: provisioning services (crop production, livestock 

production, and industrial production), regulating services (water conservation, soil 

conservation, and carbon sequestration), and cultural services (recreation). 

In this study, we explain the rationale for the selection of industrial production. 

Industrial production is important to economic growth and human well-being in the YRB 

because it partially substitutes ESs that are provided by natural ecosystems (Brauman et 

al., 2007) and, consequently, improves the supplies of other ESs indirectly. The economic 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



value of the industrial sectors is a direct benefit that human societies retrieve from the 

broad ecosystem (Yang et al., 2015). 

2.2.3. Quantification of ESs 

2.2.3.1. Provisioning services 

Crop production (crop yield per square kilometer, ton/km2): The processes that were 

used to assess the ES indicators in the study are listed in Table 2. The crop yield per 

square kilometer has been used as a proxy to quantify crop production (Yang et al., 2015). 

The amount of products from each crop yield (ton) in each municipality was obtained from 

the public datasets of statistical yearbooks (Table 1). It was estimated for the five major 

crop types: rice, wheat, corn, beans, and potatoes. The crop production was measured by 

dividing the crop yield of each municipality by its administrative boundary to calculate the 

per-unit provision service and was input into the attribute table of a vectorized municipality 

image for spatialization. Livestock production (production of pork, beef and mutton per 

square kilometer, ton/km2): The amount of production of pork, beef and mutton (ton) per 

municipality was obtained from the public statistical yearbooks (Table 1). The category of 

meat products in the datasets provides the production of pigs, cattle, and sheep. Like the 

calculation method for the crop production (Table 2), the production of pork, beef and 

mutton was divided by the area of the municipality and was used to estimate the provision 

of livestock production. Industrial production (gross industrial output value per square 

kilometer, million yuan/km2): Following a case study of the Yangtze River Delta in China 

(Yang et al., 2015), the gross industrial output value was selected as a proxy for the 

industrial production to represent the provision of industrial production of each 
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municipality (Table 2). The gross industrial output value (million yuan) was derived from 

the public city statistical yearbooks (Table 1). 

2.2.3.2. Regulating services 

Water conservation (water storage of forest per square kilometer, m3/km2): Water 

conservation was reflected mainly in the conservation of water by vegetation via the 

interception of precipitation, enhancement of soil infiltration, and inhibition of 

evapotranspiration (Bai et al., 2011). A major impact of land use on water conservation is 

the interception of surface water by vegetation. Based on the quantity of retained water, 

the method of water storage of forest ecosystems was used as the proxy for the water 

conservation of the YRB (Table 2), in accordance with Li (1999): 

𝑊𝐶 = ∑ 𝐴𝑖 × 𝑃𝑖 × 𝐾𝑖 × 𝑅𝑖
𝑛
𝑖<1        (1) 

where WC refers to the amount of water conservation (m3); n is the number of forest types 

in the YRB; Ai refers to forest area (km2), which is derived from the land use/land cover 

data with 30 m resolution (Table 1); Pi is the annual average rainfall (mm) in the YRB, 

which is derived from meteorological site data and interpolated to form raster-formatted 

spatial data with a resolution of 1 km ⅹ1 km using the kriging method; Ki is the proportion of 

run-off of the total rainfall, which is 0.4 according to a previous study (Zhao et al., 2004); 

and Ri is the coefficient of the forest ecosystem type (forest, spinney or open woodland in 

the study area), which reduces the run-off compared with that of bare land and ranges 

from 0.21 to 0.39 across forest types. The water conservation values were calculated at 1 

km ⅹ1 km resolution, and this map was resampled for municipalities by the ArcGIS 
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module of zonal statistics to obtain an average water conservation value per municipality. 

Soil conservation (soil conservation amount per hectare per annum, t/(hm2·a)): Soil 

conservation is the ability to reduce soil loss and land degradation, which represents the 

ecosystem function of preserving soil and water (Fu et al., 2015). It is critical for the wide 

arid and semiarid areas in the YRB (Su et al., 2012; Jiang et al., 2016). The universal soil 

loss equation (USLE) (Renard et al., 1991) was used to estimate the soil conservation as 

the difference between the potential and actual soil erosions. It has been validated by the 

example of Haihe River Basin (Ma, 1989), which showed that the soil erosion modulus 

calculated by this method is consistent with the measured values, and can meet the 

precision requirements of soil conservation evaluation in large basins. The equation is 

expressed as follows: 

∆𝐴 = 𝑅 × 𝐾 × 𝐿 × 𝑆 × (1 − 𝐶 × 𝑃)       (2) 

where ΔA is the amount of soil that is conserved (t/(hm2·a)); R denotes the rainfall 

erosivity index (MJ·mm/(hm2·h·a)) (Wischmeier and Smith, 1978); K denotes the soil 

erodibility factor (t·hm2·h/(MJ·mm·hm2)) (Williams, 1990); L and S denote the slope length 

and slope steepness factors, respectively (unitless) (Mccool et al., 1989, Liu et al., 2000); 

C denotes the cover and management factor (unitless) (Cai et al., 2000), and P is the 

support practice factor (unitless) (Lufafa et al., 2003). In this study, factors R, K, L, S and 

C were estimated using the precipitation data in the meteorological site dataset, the soil 

data in the HWSD database, and the DEM and NDVI data (Table 1). To match the spatial 

resolution, these data were aggregated into a common spatial resolution of 1 km ⅹ1 km for 

the evaluation of the soil conservation. Then, the values of the soil conservation at 1 km ⅹ1 km 
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resolution were resampled with respect to municipalities using the module of zonal 

statistics in ArcGIS 10.0. 

𝑅 = ∑ 1.735 × 10(1.5 𝑙𝑔(𝑃𝑖
2 𝑃⁄ );0.08188)12

𝑖<1       (3) 

where Pi is the rainfall in month i (mm) and P is the average annual precipitation (mm). 

𝐾 = ,0.2 − 0.3𝑒𝑥𝑝 *−0.0256𝑆𝐴𝑁
1;𝑆𝐼𝐿𝑇

100
+- (

𝑆𝐼𝐿𝑇

𝐶𝐿𝐴𝑌:𝑆𝐼𝐿𝑇
)
0.3

× *1.0 −
0.25𝑂𝐶

𝑂𝐶:𝑒𝑥𝑝(3.72;2.95𝑂𝐶)
+ ×

[1.0 −
0.7×(1;

𝑆𝐴𝑁𝐷

100
)

(1;
𝑆𝐴𝑁𝐷

100
):𝑒𝑥𝑝⁡(;5.51:22.9×(1;

𝑆𝐴𝑁𝐷

100
))
] × 0.1317       (4) 

where SAND, SILT, CLAY, and OC are the percentages of sand, silt, clay, and organic 

carbon, respectively, in the soil and 0.1317 is the conversion coefficient from the US 

system to the metric system. 

𝐿 = (
𝜆

22.13
)
𝑚
{

𝑚 = 0.5⁡⁡⁡𝜃 > 9%⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑚 = 0.4⁡⁡⁡3% < 𝜃 ≤ 9%
𝑚 = 0.3⁡⁡⁡1% < 𝜃 ≤ 3%
𝑚 = 0.2⁡⁡⁡⁡𝜃 ≤ 1%⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

       (5) 

𝑆 = {
10.8 sin 𝜃 + 0.03⁡⁡⁡⁡⁡ 𝜃 < 9%⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
16.8 sin 𝜃 − 0.50 ⁡⁡⁡⁡⁡9% ≤ 𝜃 < 18%
21.91 sin 𝜃 − 0.96⁡⁡ 𝜃 ≥ 18%⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

       (6) 

where λ is the slope length (m), m is the slope length index (unitless), and θ is the 

percentage of the pixel slope that is generated from DEM data. 

𝐶 = {

1, 𝑓 = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
0.6508 − 0.3436𝑙𝑔𝑓,⁡⁡⁡⁡0 < 𝑓 ≤ 78.3%
0, 𝑓 > 78.3%⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

       (7) 

𝑓 =
𝑁𝐷𝑉𝐼;𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥;𝑁𝐷𝑉𝐼𝑚𝑖𝑛
       (8) 

where NDVImin is the minimum NDVI, NDVImax is the maximum NDVI, f is the degree of 

vegetation cover, and C is the cover and management factor. 

In large-scale regions, support practices cannot be identified (Su et al., 2012). The P 

factor was calculated via the empirical methods that utilize the Wiener equation: 

𝑃 = 0.2 + 0.03𝛼       (9) 

where α is the slope steepness (%) and P is the support practice factor. 
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Carbon sequestration (kilograms of carbon per square kilometer, kg C/km2): 

Vegetation provides significant amounts of aboveground foliage for carbon fixation and 

mediation of the increase in greenhouse gases (Canadell et al., 2007). The net primary 

production (NPP) can be used as a proxy for carbon sequestration (Peng et al., 2016; Lyu 

et al., 2019). In this study, NPP was estimated using the process-based 

Carnegie-Ames-Stanford approach (CASA) model (Potter et al., 1993), which has been 

widely adopted in NPP estimation (Crabtree et al., 2009). In the model, NPP was driven 

by vegetation cover, as interpreted from remote sensing images and interpolated maps of 

climate data in ENVI 5.3 (Gao et al., 2013; Zhou et al., 2017). The equation is expressed 

as follows: 

𝑁𝑃𝑃 = ∑[𝐴𝑃𝐴𝑅( ) ×  ( )]        (10) 

where NPP is the net primary productivity (g C/m2) and APAR is absorbed 

photosynthetically active radiation (MJ/m), which is calculated from the normalized 

difference vegetation index (NDVI). The MODIS NDVI with 250 m resolution was used in 

this study (Table 1). The land use/land cover data and NDVI data were integrated into a 1 

km ⅹ1 km resolution. ɛ is the utilization rate of light energy (g C/MJ) and is affected by the 

temperature stress, water stress and maximal light utilization efficiency of the vegetation. 

For additional details, refer to Zhu et al. (2007). The value of NPP per municipality was 

obtained by allotting the values of NPP at 1 km ⅹ1 km resolution to municipalities in 

ArcGIS 10.0. 

2.2.3.3. Cultural service 

Recreation (number of tourists per square kilometer, person/km2): The number of 
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tourists was selected as the proxy for indirect estimation of recreation (Table 2) due to its 

availability in the areas where other data are scarce, which is in accordance with Bai et al. 

(2020). The number of tourists for each municipality was obtained from the public 

statistical yearbooks (Table 1), which included only tourists and not related services such 

as restaurants. 

Table 2 

ES indicators from the MA categories and their quantitative methods, units and ES variable 

requirements. P- Provisioning services, R- Regulating services, and C- Cultural services. 

ES indicator Code Model or Proxy Unit Required ES variable 

Crop production Cro Crop yield per square kilometer ton/km2 Crop yield 

Livestock production Liv Production of pork, beef and mutton per 

square kilometer 

ton/km2 Production of pork, beef and mutton 

Industrial production Ind Gross industrial output value per square 

kilometer 

million yuan/km2 Gross industrial output value  

Water conservation Wcon Water storage of the forest ecosystem method 

as the proxy for the water-conservation service 

m3/km2 Land use/land cover 

Soil conservation Scon USLE (universal soil loss equation) t/(hm2·a) Soil database, precipitation, DEM, 

NDVI, and land use/land cover 

Carbon sequestration Cseq CASA (Carnegie-Ames-Stanford approach) kg C/km2 Land use/land cover, meteorological 

data, and NDVI 

Recreation Rec Tourists per square kilometer persons/km2 Number of tourists in each municipality 
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2.2.4. Specialization of ESs 

The ES values were individually summarized within each municipality and 

subsequently standardized to reduce the impacts of the magnitude and variability (Spake 

et al., 2017). Min-max normalization was used to standardize the ES values by subtracting 

the minimum value from the ES values of the municipalities and dividing by the difference 

between the maximum and the minimum values to obtain comparable and dimensionless 

standardized values that ranged from 0 to 1 (Mouchet et al., 2017; Peng et al., 2017), 

which can remove the units of the input data. Then, the seven ESs were mapped to 

visualize the spatial distribution across municipalities. Moran’ s I index was employed to 

assess the spatial autocorrelation of the ES distribution. The calculation equation is as 

follows: 

𝑋𝑠 =
𝑋𝑖;𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥;𝑋𝑚𝑖𝑛
            (11) 

where Xs is the standardized value, Xi is the initial value, Xmin is the minimum value of ES 

over 65 municipalities, and Xmax denotes the maximum value of ES. 

2.3. Spatial relationships between ESs 

2.3.1. Correlation analysis 

Correlations of pairwise ESs were quantified by correlation coefficients based on 

Spearman’s rho, which is frequently used to infer the relationships among ESs that are 

provided by the ecosystem (Mouchet et al., 2014). The correlations were identified using 

the Spearman rank correlation (rp), the correlations were considered statistically 

significant at p ≤ 0.05 level. The matrix of correlation coefficients was graphed using the 

“corrgram” package in the R statistical software. According to the normal curve of the 
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histogram and the standard deviation in the SPSS software, the ES data conform to the 

normal distribution characteristics. 

2.3.2. ES bundles 

Raudsepp-Heard et al. (2010) developed a spatially explicit approach for identifying 

ES bundles, which has been widely adopted in case studies (Turner et al., 2014; Renard 

et al., 2015; Spake et al., 2017; Quintas-Soriano et al., 2019). In this approach, principal 

component analysis (PCA) was used to assess whether ES co-occurs in spatial bundles, 

and clustering algorithms (K-means cluster) were applied to define groups of ESs that are 

significantly associated according to the relevant PCA axes. To visualize the ES bundles, 

the clustering results of the ESs were mapped, and the ES values in each ES bundle were 

represented using spider diagrams or flower plots. 

In this study, a three-step approach was employed to delineate ES bundles (ESBs) in 

this study. First, PCA was used to obtain the principal components (PCs) and a more 

stable clustering solution (Hanspach et al., 2014; Turner et al., 2014). The numbers of 

PCs were determined using a scree test and the cumulative variance contribution rate 

(Qiu and Turner, 2013). A correlation biplot with the relevant PCs as axes was established 

according to the Kaiser-Guttman criterion (Legendre and Legendre, 2012). In the second 

step, K-means clustering was applied to the relevant PC axes, which represented 93% of 

the total variance, to delineate the ES bundles using 1000 random starts and 10,000 

iterations. In this way, the K-means clustering municipalities of ES values are more alike 

within than between clusters. The optimal number of clusters was qualitatively determined 

by examining the silhouette measure (Schripke et al., 2019). The third step was to import 
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the cluster resulting values for each municipality into the property sheet of the municipal 

map in ArcGIS 10.0 to present the spatial distribution of the ES bundles, and flower 

diagrams were used to illustrate the relative delivery of ESs within each bundle using the 

R statistical software. These visualizations enabled researchers to identify the localities 

that exhibit similar relationships between the ESs and to qualitatively interpret them by 

association with broad socioecological systems (Raudsepp-Hearne et al., 2010; Mouchet 

et a., 2017). 

2.4. Socioecological drivers for ES relationships 

2.4.1. Identification of critical driving variables 

In selecting the potential driving variables, it was important to include ecological and 

socioeconomic variables that operate simultaneously (Kienast et al., 2015). In this study, 

the potential driving variables were selected from (i) the variables that were used in the 

quantification of the ESs in this study (which include the elevation, slope, climatic 

variables, and land use/land cover, among others); (ii) the variables that directly or 

indirectly drive individual ES and/or their associations, as identified in the relative literature 

(the distance to the nearest city center, the distance to the nearest county center, and the 

distance to nearest river) (e.g., Peng et al., 2016; Lyn et al., 2019); and (iii) the variables 

for which quantitative data were available. Thus, thirteen potential driver variables that 

were important in determining the ES were selected in this study (Table 3). 

The land use/land cover and population density have been identified as driving 

variables of the magnitude and distribution of individual ES and ES bundles (Li et al., 2016; 

Jaligot et al., 2019). The urban population proportion has been used as an explanatory 
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variable to analyze the impact of urbanization on the spatial relationship among ESs 

(Peng et al., 2016). The gross domestic product (GDP) density has been used as an 

independent variable to identify the response threshold of ES to urbanization (Peng et al., 

2017). The distance to the city center and the distance to the county center were used as 

proxies for urban land expansion. The expansion of urban areas shortens the distance to 

the wild land that provides provisioning and regulating services, which may affect the 

provision of ecosystem goods and services (Lyn et al., 2019). It has been shown that the 

further away from a river, the higher the probability of multiple ES availability (Peng et al., 

2016). 

Table 3 

Details of potential driving variables that are important for ES relationships in this study. 

Socioecological variable Code Description Unit Data source 

Elevation elev Derived from the SRTM3 global digital elevation model Meter NASA 

Slope slop Derived from the SRTM3 global digital elevation model Degree NASA 

Precipitation pre Annual trends of precipitation for the 1956-2017 period mm CMA 

NDVI NDVI Vegetation cover % MODIS 

Cropland crop Municipality land area that is occupied by area that is 

classified as cropland 

% RESDC 

Forestland forest Municipality land area that is occupied by area that is 

classified as forest 

% RESDC 

Grassland grass Municipality land area that is occupied by area that is 

classified as grassland 

% RESDC 
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Bare land bare Municipality land area that is occupied by area that is 

classified as bare land 

% RESDC 

Population density pop Population density per square kilometer, as obtained 

by dividing the municipality population size by its area 

person/km2 NBSC 

Urbanization rate urban Urban population proportion % NBSC 

Economic level GDP Gross domestic product density yuan/km2 NBSC 

Distance to the city center city European distance to the nearest city center km NGCC 

Distance to the county center county European distance to the nearest county center km NGCC 

Distance to the river river European distance to the nearest river km NGCC 

To identify the candidate driving variables that significant affect the ESs, a 

redundancy analysis (RDA) with all the potential driving variables and a forward stepwise 

procedure were conducted to select the model with the combination of variables with the 

highest R2 value and the smallest p-value (Legendre and Legendre, 2012) using the 

“vegan” and “packfor” packages in R. RDA revealed that the combinations of the following 

variables significantly explained the ESs in the YRB (p ≤ 0.001): slope, precipitation, crop 

land, forestland, grass land, bare land, population density, urbanization rate, economic 

density and distance to the river. Linear dependencies among the driving variables were 

further explored by computing the variation inflation factors (VIFs). All the VIF values were 

below 5; hence, the multicollinearity of the variables was not problematic in the models. 

Subsequently, the significant socioecological variables were mapped. According to the 

spatial resolution of the primary data of the socioecological variables, the population 

density, urbanization rate and economic density, along with the municipality, slope, 
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precipitation, crop land, forestland, grass land and bare land, were mapped with a 

resolution of 1 km ⅹ1 km. Spatial raster data of the distance to the river with a resolution of 

1 km ⅹ1 km are obtained by using the river as a buffer. These driving variables were 

normalized using the min-max normalization to render them comparable and consistent 

with the ESs and ES bundles as the dependent variables. 

2.4.2. Effects of individual driving variables on the ES distribution 

The spatial distribution of an ES may be closely associated with multiple driving 

variables simultaneously. In the study area, the formation of each ES spatial pattern is the 

result of the spatial superposition of multiple driving variables. It is difficult to distinguish 

the contribution of each factor to the spatial patterns of ESs in the superposition process. 

The geo-detector model (GDM) was used to detect the effects of individual driving 

variables on the ES distribution because it has advantages in terms of spatial stratification, 

heterogeneity, and categorical variables. 

The GDM was applied mainly to assess the spatial correlation between the explaining 

variables and the explained variables via spatial variance analysis (SVA) (Wang et al., 

2010; Wang et al., 2016). The core strategy of the GDM is based on the following 

assumption: if an independent variable X has a significant effect on a dependent variable 

Y, then the spatial distributions of the independent variable and the dependent variable 

should be similar (Hu et al., 2011). GDM has unique advantages in dealing with both 

numerical and categorical variables and has been used to detect the effects of 

socioecological drivers on the spatial distribution of ESs (Lyu et al., 2019; Chen et al., 

2020). In this study, the “factor detector” module of GDM was used to detect the spatial 
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effect of each driving variable on the ESs by detecting the extent to which socioecological 

drivers explain the spatial differentiation of the ES (Wang et al., 2010). The calculation 

results of the factor detector include the q-statistic and p-value. The q-statistic is the 

influencing coefficient of the driving variable on the ES. The larger the q-statistic is, the 

stronger the impact of the socioecological driver on the ES. The p-value indicates the 

significance level of the explanation, and significance is determined the 0.1 level (p-value 

< 0.1). The exploration of the association between the driving variables and the ES is 

expressed as follows: 

𝑞 = 1 −
∑ 𝑁ℎ𝜎ℎ

2𝐿
ℎ=1

𝑁𝜎2             (12) 

where q signifies the influencing coefficients of the driving variables for the ES (q-statistic), 

the values of which range from 0 to 1, namely, 0 corresponds to no correlation between 

the two and 1 to the ES’s complete dependence on a driving variable; σ2 is the variance of 

the ES; and N is the size of the ES. The superposition of the driving variables and the ES 

forms L layers in the ES, which are indexed by h = 1, 2.. l, and Nh and σh
2 represent the 

scale and variance, respectively, of layer h. 

2.4.3. Spatial overlay of ES bundles and social-ecological clusters 

Based on the most important socioecological determinants of ESs that were identified 

using RDA, PCA and the K-means algorithm were used to cluster these driving variables 

into socioecological clusters (SECs) by following the procedure that is suggested in 

Section 2.3.2. To assess whether the ESBs are spatially associated with SECs, the spatial 

congruence between them was assessed using the spatial overlap. Then, the percentage 

of municipalities of each ESB that overlapped with each SEC category was calculated. 
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3. Results 

3.1. Spatial distribution of ESs 

The provision of the seven ESs varied substantially across the YRB and exhibited 

spatial autocorrelation (Moran’s I ≥ 0.34, p = 0.000) (Table 4). The areas with the 

maximum values of crop production, livestock production, and industrial production were 

most prominent in the eastern plains of the YRB (Fig. 2). The water conservation was 

distributed dispersedly across the southern parts. High-value areas of water conservation 

were found in the Yushu Tibetan Autonomous Prefecture in the Qinghai-Tibet Plateau, 

Baoji and Xi’an in the Qinling Mountains. The high-value areas of soil conservation were 

also observed in the Qinling Mountains, whereas the low-value areas were found in the 

northern parts (where desert was the main land cover type) and the eastern plains. The 

high-value areas of carbon sequestration were concentrated primarily in the southern 

mountainous parts and the eastern plains. The low-value areas were primarily in the 

northern Loess Plateau and western Qinghai-Tibet Plateau. The provision of recreation 

was higher in the southeastern parts with more densely populated municipalities and was 

lower in the other regions of the study area. Overall, the distributions of provisioning and 

cultural services exhibited readily observable east-west differences, and regulating 

services showed an observable south-north difference. 

Table 4 

Global spatial autocorrelation index of ES indicators (Moran’s I) 

ES indicator Moran’s I p significance value 
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Crop production 0.57 0.000000 

Livestock production 0.67 0.000000 

Industry production 0.40 0.000000 

Water conservation 0.31 0.000000 

Soil conservation 0.53 0.000000 

Carbon sequestration 0.66 0.000000 

Recreation 0.35 0.000000 
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Fig. 2. Spatial distributions of the ESs across the 65 municipalities in the YRB. 

3.2. Trade-offs and synergies among ESs 

The negative and positive correlation pairs of ESs highlighted the trade-off and 

synergistic relations across the study area (Fig. 3). Among the 21 pairs of ESs, 17 

significantly correlated pairs between ESs (p ≤ 0.05), a total of 14 were positively 

correlated, and the remaining 3 were negatively correlated. Additionally, 1 of them were 

highly correlated (Pearson coefficient, r ≥ 0.7), a total of 4 were moderately correlated (0.5 

≤ r < 0.7), and 12 was weakly correlated (r < 0.7). The provisioning services had the 

strongest positive correlations with each other, while they were negatively correlated with 

soil conservation. Soil conservation, which depends strongly on regulating services 

through vegetation cover, was highly positively correlated with water conservation and 

carbon sequestration. Water conservation was also positively correlated with carbon 

sequestration recreation but was not significantly correlated with provisioning services. 

Carbon sequestration was significantly positively correlated with provisioning, regulating 

and cultural services. Recreation was positively correlated with all other services except 

soil conservation. 
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Fig. 3. Spearman’s rank correlation coefficients of pairs of ESs in the YRB. The darker the color of the 

correlation coefficient font, the higher the significance level. The correlations were considered 

statistically significant at p ≤ 0.05 level. Cro: crop production; Liv: livestock production; Ind: industrial 

production; Wcon: water conservation; Scon: soil conservation; Cseq: carbon sequestration; and Rec: 

recreation. 

3.3. Spatial distribution and characteristics of ES bundles 

Two principal components that explained 70.28% of the variance of ESs were 

identified by PCA across the study area (Fig. 4). The first principal component axis (PC 1) 

represented a trade-off between soil conservation and most other services, most strongly 

with crop production. The second principal component axis (PC 2) represented a synergy 

among crop production, livestock production and industrial production and their trade-offs 

with soil conservation. The 65 municipalities were partitioned into three groups of ES 

bundles via K-means clustering based on the types and amounts of ESs (Fig. 5). The 

number of municipalities in each bundle varied from 14 to 36. The bundles were named 

based on the dominant ES, land cover and the socioecological characteristics. 
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Fig. 4. The principal component analysis biplot for ESs in the YRB. Cro: crop production; Liv: livestock 

production; Ind: industrial production; Wcon: water conservation; Scon: soil conservation; Cseq: carbon 

sequestration; and Rec: recreation. 

The agricultural bundle (ESB 1, n = 15) covered 6.3% of the study area. This bundle 

clustered in the most important agricultural cultivation region in the eastern YRB (Fig. 5 a). 

It was comprised of municipalities that were characterized by the highest values of crop 

production, livestock production and industrial production (Fig. 5 b). The potential for 

water conservation and soil conservation was very low. This bundle had the highest value 

for recreation. The forest regulation bundle (ESB 2, n = 14) covered 12.3% of the study 

area. It was comprised of municipalities that had high values for regulating services and a 

moderate value for recreation but relatively low values for provisioning services (Fig. 5 b). 

An ESB with a relatively single provision of carbon sequestration was identified, namely, a 

grassland and desert bundle (ESB 3, n = 36), the ESs of which were distributed widely 

across arid and semiarid areas with the highest proportion of bare land and grassland 

(Table 5). It covered 81.4% of the study area and had the largest number of municipalities, 

and it occupied the medium- and high-altitude areas (Fig. 5 a, Fig. 1 c). Carbon 

sequestration was much higher than other ESs in this bundle, while it was much lower 
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than the carbon sequestration values in ESB 1 and ESB 2 (Fig. 5 b). 

 

Fig. 5. Spatial distribution of the ES bundles that were identified via K-means clustering for the study area. n is 

the number of municipalities that are grouped in each bundle. The flower diagrams are dimensionless and are 

based on normalized data for each service. The lengths of the petals are comparable within each bundle and 

among bundles. Cro: crop production; Liv: livestock production; Ind: industrial production; Wcon: water 

conservation; Scon: soil conservation; Cseq: carbon sequestration; and Rec: recreation. 

Table 5 

Area proportions of land use/land cover types in each ESB (%). 

ES bundle Cropland Forestland Grassland Wetland Water 

Impervious 

surface 

Bare land Snow/Ice 

ESB 1 74.87 4.62 1.85 0.21 3.90 13.59 0.30 0.00 

ESB 2 29.01 41.78 24.92 0.07 0.41 2.51 0.43 0.01 

ESB 3 9.87 4.61 34.36 0.19 1.29 1.61 47.21 0.46 

3.4. Determining socioecological drivers for ESs 

The detection results for 10 socioecological variables were obtained through the 

factor detectors of GDM, which include the influencing coefficients (q-statistic values) of 
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the ESs and the degree of significance (p-value) (Table S1). Fig. 6 presents the q-statistic 

value of each socioecological variable to reveal their influencing coefficients on individual ESs. 

For crop production and livestock production, the influencing coefficients can be ranked 

according to the q-statistic as cropland (0.73) > population density (0.60) > slope (0.53) > 

GDP (0.50). This result demonstrates that the determinate drivers of these two services 

were similar. GDP had the largest influencing coefficients for industrial production. Water 

conservation was influenced mainly by precipitation, although the influencing coefficient 

was only 0.24. Slope and forestland were the determinate variables of soil conservation 

according to the q-statistic value. Six socioecological variables had larger influencing 

coefficients for carbon sequestration: bare land (0.72), precipitation (0.63), distance to 

river (0.50), population density (0.39), forestland (0.39) and cropland (0.37). For 

recreation, GDP (0.71) and population density (0.59) were the major determinants. 
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Fig. 6. Factor-detected results of determinants of ESs using GDM. The values on the axis of each radar 

diagram represent the q-statistic values. The orange broken lines correspond to provisioning services, the 

green broken lines  correspond to regulating services and the blue broken line corresponds to the cultural 

service. slop: slope; pre: precipitation; crop: cropland; forest: forestland; grass; grassland; bare: bare land; pop: 

population density; urban: urbanization rate; GDP: economic density; and river: distance to the river. 

3.5. Characterization of ES bundles by socioecological covariates 

The 65 municipalities were grouped and partitioned into four clusters according to 10 

social-ecological driving variables. The distributions of the four SECs presented spatial 

differences throughout the study area (Fig. 7 a). The results of the spatial overlay (Fig. 8) 
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demonstrated that ESB 1 (Fig. 5) was dominated by provisioning services (Fig. 6 b) and 

co-occurred spatially with SEC 4 (100%), which was determined by the cropland, 

precipitation, and socioeconomic variables (Fig. 7 b). ESB 2, for which the importance of 

regulating services was high (Fig. 6 b), was mapped mainly in the areas of SEC 3 (85.4%) 

(Fig. 8) and was characterized by large values for the ecological variables and the 

urbanization rate (Fig. 7 b). Sorted in descending order of the percentage of overlap area 

of each cluster, ESB 3 overlapped with SEC 2 (64%), SEC 1 (22.2%), and SEC 3 (12.2%) 

(Fig. 8), which were determined synthetically from ecological and socioeconomic 

variables. SEC 2 was characterized by large values for bare land and grassland, and SEC 

1 was characterized by the largest values for grassland and slope (Fig. 7 b). 

 

Fig. 7. Social-ecological clusters (SECs) that are mapped in the study area: (a) The spatial distribution of four 

SECs and (b) bar graphs that are based on normalized data for each socioecological driving variable, in which 

the height of each bar corresponds to the contribution of each variable to the clusters. The SEC areas are 

dominated by either ecological (blue) or socioeconomic (orange) covariates. slop: slope; pre: precipitation; crop: 

cropland; forest: forestland; grass: grassland; bare: bare land; pop: population density; urban: urbanization rate; 

GDP: economic density; and river: distance to the river. 
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Fig. 8. Overlap of each ES bundle (ESB) per socioecological cluster (SEB) in % of area in the YRB. 

4. Discussion 

4.1. Trade-offs and synergies among ESs with socioecological covariates 

The synergies between paired ESs substantially exceeded the trade-offs in this study 

(Fig. 3 a). The strongest synergetic relation was observed between crop production and 

livestock production (Fig. 3 a), which was consistent with previous studies 

(Raudsepp-Hearne et al., 2010; Yang et al., 2015). This might be explained by their 

similar primary determinants, namely, cropland and population density, with the highest 

influencing coefficients in the detection results of GDM (Fig. 6). Bennett et al. (2009) 

proposed that the provision of ESs can be related either to interactions between ESs or to 

responding to the same drivers. As presented in Fig. 2 and Table 4, the spatial patterns of 

the provision of crop production and livestock production were similar. Thus, it was 

suggested that the strong synergic relation between crop production and livestock 

production depended on the positive responses to the same determinants. Surprisingly, 

synergies were identified between recreation and all other services except soil 
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conservation. The main reason was that recreation was related mainly to socioeconomic 

variables (Fig. 6) and did not require as much land as provisioning and regulating services 

(Peng et al., 2016). For instance, various agricultural or forest landscapes can also be 

used as leisure spaces to attract tourists (Yang et al., 2015; Peng et al., 2016). 

Trade-off relations were identified between provisioning services and soil 

conservation in the correlation analysis results among the ESs (Fig. 3 a). This was 

consistent with the results from previous studies (Raudsepp-Heard et al., 2010; Chen et 

al., 2020). The determining drivers of soil conservation were slope and forestland (Fig. 6). 

Hence, the high provision areas of soil conservation contained substantial forest cover. 

However, there is land use competition between forestland and cropland, which depended 

heavily on the provision of provisioning services. Therefore, these trade-offs might be 

caused by spatial incompatibilities that are due to the dependence of provisioning and 

regulating services on the associated land-use types in this study. 

4.2. Spatial distribution and characteristics of ES bundles 

The detected agricultural bundle was characterized mostly by crop and livestock 

production (Fig. 5 b), which supported the findings of previous studies on ESBs 

(Raudsepp-Hearne et al., 2010; Turner et al., 2014; Yang et al., 2015; Spake et al., 2017), 

such as the corn-soy bundle in Quebec, the agriculture bundle in Denmark and the 

plain-city bundle in the Yangtze River Delta. This bundle was distributed on the flattest 

plains of the downstream region of the YRB (Fig. 1, Fig. 5 a), and cropland accounted for 

as much as 74.87% (Table 5). This regional concentration of provisioning services likely 

reflects the ongoing specialization in agricultural production, which is also occurring for 
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other regions, as shown by Dittrich et al. (2017). A forest regulation bundle was identified 

in the mixed forested and cropland areas that belong to the transitional mountains 

between the cropland plains and the grassland mid-elevation plateau (Fig. 1, Fig. 5 a). 

The proportion of forest in this bundle area was the highest among the three ESBs (Table 

5). As shown in Fig. 5 b, ESB 2 had a large value for the regulating services, which agreed 

well with previous results (e.g., Raudsepp-Hearne et al., 2010), according to which the 

large values of regulating services were often related to substantial forest cover. This 

supported the findings of Buyantuyev et al., (2009) that the carbon sequestration that was 

provided by desert and grassland was lower than that by forest and cropland when 

accounting for NPP as the proxy method. Additionally, trade-offs with distinct signs were 

identified between provisioning services and soil conservation and water conservation in 

the agricultural bundle and the forest regulation bundle (Fig. 5 b). This supported a 

common finding that trade-offs dominated the relationships between provisioning and 

regulating services (Rodríguez et al., 2006; Lee and Lautenbach, 2016). 

4.3. Associations between ES bundles and socioecological covariates 

It was found that the agricultural bundle mainly overlapped with SEC 4 due to the 

large values for cropland and precipitation and the socioeconomic conditions (Fig. 7, Fig. 

8). This highlighted the importance of the amount of cropland and the population density 

for provisioning services. This result was supported by other studies (Qiu and Turner, 

2013; Jaligot et al., 2019) that showed that cropland and population density variables 

were the determinants of the distribution of provisioning services. Nevertheless, the 

agricultural bundle regional concentration of this study was distributed in the 
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high-population-density area (Fig. 1, Fig. 5 a), which was inconsistent with the results of 

Turner et al. (2014), who identified the largest values of crop and livestock production in 

the less populated areas. One explanation could be that the agricultural practices were 

more intensive in Danish municipalities that were under high agricultural land-use 

pressure than in the agricultural bundle area in this study, especially for crop and pork 

production. 

In contrast, the forest regulation bundle that was dominated by regulating services 

overlapped mainly with the intermediate SEC 3 due to the large values for precipitation 

and forestland (Fig. 7 b, Fig. 8). This was consistent with a finding of Spake et al. (2017) in 

a French Alps case study that the ESB that was dominated by regulating services in the 

southern Alps overlapped mainly with forest cover. In this study, the high forest cover in 

this bundle area might be explained by the coupled effects of natural conditions and 

human intervention. This bundle was distributed in the northern margin of Qinling 

mountain with abundant rainfall (Fig. 1), which corresponded to the natural predominance 

of high forest cover. In terms of human intervention, a series of ecological restoration 

programs have been implemented to mitigate the degradation of water and for soil 

conservation since 1999 (Su et al., 2012; Jiang et al., 2016). The Grain for Green Project 

(GFGP), which targets the conversion of cropland to forest and grassland, positively 

affected the forest-dominated ESs in this bundle area (Li et al., 2016; Jiang et al., 2017). 

The grassland and desert bundle overlapped widely with three SECs (SEC 2, SEC 1, 

and SEC 3), which were determined largely by ecological variables (Fig. 7 b and Fig. 8). 

According to the average values of the socioecological variables, these three SECs were 
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ranked as SEC 2, SEC 1, and SEC 3 (Fig. 7 b), and the primary determinants of this 

bundle were grassland and bare land. This can be explained by the observation that this 

bundle was covered mainly by widespread grassland and bare land (Fig. 1 and Fig. 7 a), 

which accounted for 40.8% and 49.3%, respectively, of the total area of this bundle. In this 

case, the absence of pronounced socioeconomic gradients may have limited the diversity 

of the ESs and, thus, prevented known trade-offs with provisioning and cultural services. 

4.4. Limitations 

This study has limitations in the quantification of ESs due to poor data availability. 

The sensitivity of ES relationships depends on the indicator selection and accuracy of ES 

quantifications (Liu et al., 2017). Although the selected ES indicators depended on the 

ecosystems for their provision and were relevant to the study areas, the availability and 

quality of the data severely limited the set of ESs that we could use. To accurately quantify 

the ESs, we considered the ES variables for which spatial, statistical and text data were all 

available for the study area and the assessment accuracies of the models (De Groot et al., 

2010; Mouchet et al., 2014; Lee and Lautenbach, 2016). When evaluating the ESs, more 

than one proxy-based model was used in this study, which inevitably generated 

uncertainties regarding data collection or parameter selection. For instance, the 

calculation of the proxy model for water conservation depends on the secondary type and 

area of the forest. Although this approach had been applied by Yang et al. (2015) in the 

Yangtze River Delta to estimate water conservation, a type of LULC may not have the 

same ES value for all sites, as in this and previous studies (Turner et al., 2014). For the 

soil conservation, the evaluation results of USLE were less accurate in the situations, 
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where the terrain is more complex, tillage systems vary at small scales, and tillage and 

management practices are not specificity. In addition, the number of tourists was used as 

the proxy variable for evaluating recreation (Bai et al., 2020), which likely led to 

overestimation. However, the official statistics on tourists of each municipality were 

publicly accessible, which enabled the direct measurement of the utility of ESs and ES 

mapping in data-scarce regions (Meacham et al., 2016). 

LULC has been regarded as an important determinant of ESs or ES bundles in this 

study and many others (Haman et al., 2015; Meacham et al., 2016; Schulze et al., 2016; 

Dade et al., 2018; Ndong et al., 2020). 

The LULC categories were treated as homogeneous across the study units in this study, 

and the variations of LULC that were due to management practice and biophysical 

gradients were ignored (Spake et al., 2017). Moreover, coarse descriptors such as the 

proportions of cropland, forest, grassland, and bare land were used as the LULC driver 

variables, and only the data availability of land variables in the YRB was considered. 

Neither land use nor management practices (Lyu et al., 2019) were considered in the 

socioecological variables. Indeed, it has been suggested that land use and management 

(e.g., agricultural practices) constitute the basis of service provision (De Groot et al., 

2010). The unmeasured variables or practices could affect trade-offs, synergies, and ES 

bundles in the study area (Spake et al., 2017). Therefore, we agreed with Burkhard et al. 

(2012) on the necessity of identifying the effects of management practices on ESs for 

optimal ecosystem management. 

The administrative boundaries that were used in this study were advantageous for 
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obtaining official statistical data and providing management decisions. However, the 

municipal spatial unit was cruder (Raudsepp-Hearne and Peterson, 2016), and 

understanding of the causality in ES relationships was limited (Cord et al., 2017). In this 

study, the average municipality area was 27,979 km2 and ranged from 1,656 to 253,015 

km2. To reduce the scale effects of the variation of the spatial unit area, the ES indicator 

and socioecological variables that were related to the municipal area were quantified by 

dividing by the area. However, the area of the spatial units in this study was much larger 

than those in previous studies that applied the same ES bundle approach (e.g., 

Raudsepp-Hearne et al., 2010; Yang et al., 2015; Queiroz et al., 2015; Spake et al., 2017; 

Jaligot R et al., 2019; Quintas-Soriano et al., 2019). This approach failed to represent the 

fine-grained ecological and artificial aspects in such large space units, which were 

especially important for the formation and consequence determination of the ES bundles 

(Burkhard et al., 2012). Therefore, the ES bundles should be delineated at multiple spatial 

grain sizes, including municipalities, across the study area in future studies. 

5. Conclusions 

This study assessed the spatial relationships (trade-offs, synergies, and bundles) 

among multiple ESs and identified their social-ecological driving factors. The results 

presented spatial differences in ESs and their statistical correlations at the regional scale. 

Crop production, livestock production, and industrial production were synergistic with one 

another and were determined by similar driving variables: cropland and population density. 

These provisioning services all had trade-off relationships with soil conservation. 
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Surprisingly, the synergies between ESs well exceeded the trade-offs in the study area. 

Three ES bundles were detected among the seven ESs. In the eastern wide plains, the 

ecosystem provided a high provision of provisioning services, which was strongly driven 

by cropland, precipitation and socioeconomic variables. In the southeastern transitional 

mountains between the cropland plains and the grassland, the ecosystem was 

characterized by a high provision of regulating services, which was driven mainly by high 

forest cover. In the western and northern parts of the YRB, all the limited ESs were 

supplied except carbon sequestration, which was mainly determined by grassland and 

bare land. It was observed that LULC plays major roles in the spatial distribution of ESBs 

and in the trade-offs and synergies between ESs within each ESB. This study provides a 

comprehensive analysis of ES relationships and their socioecological drivers across the 

YRB in a large-scale basin. In the future, it is critical to focus on suitable sustainable 

management strategies according to the similar composite patterns of ES bundles and 

social-ecological drivers. 
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Highlights: 

 The synergies between ESs substantially exceeded the trade-offs. 

 Trade-offs occurred between provisioning services and soil conservation. 

 Three bundles were identified, distinct differentiation in the groupings of ESs. 

 Land use/land cover strongly affected the characteristics of the ES bundles. 
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