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Abstract: The purpose of this paper is to investigate the existence of stratification heterogeneity in
traffic accidents in Shenzhen, what factors influence the casualties, and the interaction of those factors.
Geographical detection methods are used for the analysis of traffic accidents in Shenzhen. Results
show that spatial stratification heterogeneity does exist, and the influencing factors of fatalities and
injuries are different. The traffic accident causes and types of primary responsible party have a
strong impact on fatalities and injuries, followed by zones and time interval. However, road factors,
lighting, topography, etc., only have a certain impact on fatalities. Drunk driving, speeding over 50%,
and overloading are more likely to cause more casualties than other illegal behaviors. Speeding over
50% and speeding below 50% have significant different influences on fatalities, while the influences on
injuries are not obvious, and so do drunk driving (Blood Alcohol Concentration ≥ 0.08) and driving
under the influence of alcohol (0.08 > Blood Alcohol Concentration ≥ 0.02). Both pedestrians and
cyclists violating the traffic law are vulnerable to fatality. Heavy truck overloading is more likely
to cause major traffic accidents than minibuses. More importantly, there are nonlinear enhanced
interactions between the influencing factors, the combination of previous non-significant factors and
other factors can have a significant impact on the traffic accident casualties. The findings could be
helpful for making differentiated prevention and control measures for traffic accidents in Shenzhen
and the method selection of subsequent research.

Keywords: spatial analysis; spatial statistics; geographical detectors; stratified heterogeneity; factors;
traffic accident; nonlinear interaction

1. Introduction

Traffic accidents have an important impact on life safety and economic development. A total of
244,937 road traffic accidents occurred in 2018 in China, which caused 63,194 fatalities, 258,532 injuries,
and direct economic loss valued at 1.38 billion yuan [1]. Shenzhen is an international innovative
metropolis with total urbanization [2] and the highest vehicle density in China [3]. According to the
national strategy of China, by 2025, Shenzhen will be built into one of the leading cities in the world in
terms of economic strength and quality of development [4]. In the past five years, the fatality rate of
10,000 vehicles in Shenzhen has been declining continuously, reaching 0.95 in 2018, but compared with
the developed countries in the world, there is still a gap [3]. In order to narrow this gap, the Traffic
Management Research Institute of the Ministry of Public Security launched a pilot data-mining activity
of traffic accidents in Shenzhen, which have provided traffic accident data of Shenzhen, and the
findings will be used to determine road traffic safety management measures.
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Traffic accidents are geographical events. Spatial autocorrelation and spatial stratified
heterogeneity are two major features of geographical phenomena [5]. Previous studies have confirmed
that traffic accidents also have these two properties [6]. Based on the investigation of the spatial
characteristics of traffic accidents in Shenzhen and from the perspective of spatial stratification
heterogeneity, this paper compares the effects of various factors on fatalities and injuries and the
sub-stratum differences of factors, and studies the types and intensities of the interaction among the
factors. The findings could be helpful for making differentiated prevention and control measures of
traffic accidents in Shenzhen and selecting methods of subsequent research.

2. Literature Review

2.1. Influence Factors on Traffic Accidents

Previous studies have revealed many factors affecting traffic accidents’ severity, such as human
factors, vehicle conditions, traffic characteristics, road infrastructure, and environmental conditions [7,8].
Aberrant driving behaviors were found to be the most important factor of traffic safety [9]. Parker [10]
discussed a three-fold typology of aberrant driving behaviors, namely lapses, errors, and violations,
and their threat to the safety of others. Among these, speeding was found to be the main cause of
traffic accidents [11]. Wang et al. [12] reviewed the road-related factors affecting road traffic accidents,
and concluded that speed, congestion, and road horizontal curvature have mixed effects on road safety
and need further examination. Researches have also suggested that vehicle type, road type, time
of day, streetlight condition, and weather conditions are important factors that affect the severity of
traffic accidents [13]. The occurrence and outcome of traffic crashes have long been recognized as
complex events involving interactions between many factors [14]. However, the type and direction of
the interactions between factors are rarely studied in depth.

Over the years, generalized linear models (GLM) have been widely used in traffic accident risk
factor detection, such as the linear and multiple regressions model, the binary logit and binary probit
models, multiple logistic regression, the ordered logit model, and so on [15]. All GLMs suffer from
a common underlying limitation that each observation (e.g., a crash or a vehicle involvement) is
independent. In reality, this “independence” assumption may often not hold true. When observations
are dependent, the actual number of independent samples is less than that of observation samples,
the confidence intervals will be wrongly estimated, and hence, the regression coefficients might
be biased and the accuracy might be overestimated [16,17]. Furthermore, spatial autocorrelation
means that the value of a point is affected by its neighbors, and the closer they are, the more similar
(positive autocorrelation) or less similar (negative autocorrelation) they are. This might also lead to
biased estimation and even reverse interpretation of influencing factors [18]. Considering these, some
spatial analysis models were developed. By capturing the spatial autocorrelation and heterogeneity,
the geographically weighted regression (GWR) and the Bayesian regression models were proven
to outperform the GLM [19,20]. The models based on linear equations assume that risk factors
influence crash frequency/severity in a linear manner. However, researchers have found that non-linear
relationships exist between crashes and risk factors [21]. Thus, machine learning methods with little
or no prior hypothesis for input variables were introduced to identify risk factors. Examples include
artificial neural networks (ANN) [22], boosted regression trees (BRT) [23], support vector machines
(SVM) [24], and stacking of several machine learning methods [25]. The major disadvantage of machine
learning methods is that they often lack a direct and clear interpretation between accident severity and
related variables.

2.2. Spatial Stratified Heterogeneity Detection of Traffic Accidents

Spatial stratified heterogeneity refers to uneven distributions of traits, events, or their relationship
across a region or, simply, spatial variation of attributes [5]. In statistics, their main performance is that
the variance within strata is less than that between strata, such as geographical division, climatic zone,
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land use map, urban–rural difference, and main functional area [26]. Spatial stratification based on
prior knowledge is a feasible method, stratification of heterogeneity recognized by humans, however,
may be inconsistent with the true stratified heterogeneity in nature due to the limitations of human
intelligence [27]. Many clustering and classification algorithms have been used for segmentation
or group traffic accidents. Examples include, k-means [28,29], latent class clustering (LCC) [30],
and SVM [31]. However, these methods perform like a ‘black box’ approach and it is difficult to
explain the stratification outcome. Although the degree of stratified heterogeneity of a traffic accident’s
attribute is an important indicator, few statistical tests for the significance of the degree of spatial
stratified heterogeneity are available yet. It is necessary to find a method for judging whether the
spatial stratified heterogeneity exits and whether a spatial partition is optimal.

3. Data

The traffic accidents data of Shenzhen, China, during 2014–2016 were collected. They were
provided by the pilot data-mining activity of traffic accidents in Shenzhen carried out by the Traffic
Management Science Research Institute of the Ministry of Public Security of the People’s Republic of
China. Based on preliminary analysis of the data, a set of influence factors on injury severity of traffic
accidents in Shenzhen is set up. Y indicates the injury severity of traffic accident, measured by injuries
and fatalities, respectively. Xi indicates the independent variable that may have a significant impact on
the injury severity of traffic accidents. The set of influence factors includes five aspects:

A. Geographical regions, including zones X1.
B. Time of occurrence, including seasons X2, day of the week X3, and time intervals X4.
C. Road factors, including road type X5, road line type X6, road section type X7, pavement material

X8, pavement condition X9, and roadside protection type X10.
D. Management status, including the traffic sign X11 and lighting condition X12.
E. Environment condition, including weather X13 and topography X14.
F. Traffic violation, including primary cause X15, whether illegal X16, and types of primary responsible

party X17.

According to the description of the location in the accident record, we got the latitude and longitude
of the sites by geocoding with the aid of the application programming interface (API) provided by
Tencent (https://lbs.qq.com), which provides location services with high data quality and complete
address data. Accident records with vague locations were removed, as those data points could not be
used to determine the precise location. Simple traffic accidents and abnormal data were removed too.
Finally, 3250 data points were selected. The dataset is divided into two groups, group 1 is accidents
with casualties and group 2 is accidents with injuries only. Fatalities (Mean = 0.48, standard deviation
(SD) = 0.301) and injuries (Mean = 1.41, SD = 1.055) respectively, indicated the severity of the two
groups. The definitions and descriptive statistics of Y and Xi are shown in Table 1.

The Moran I test [32] shows that there is a less than 1% likelihood that the pattern of traffic accident
fatalities or injuries could be the result of random chance (Moran’s I > 0, Z-value > 2.58 and p-value < 0.01).
There is spatial autocorrelation in traffic accidents of Shenzhen city. This is one of the important bases
for model selection. Ignorance of spatial dependency will lead to biased estimates.

https://lbs.qq.com
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Table 1. Definitions and descriptive statistics.

Variables Definition

Injury Severity

Fatalities Number of fatalities in a traffic accident, integer type

Injuries Number of injuries in a traffic accident without fatality, integer type

Geographical Region

Zones 1 = City Center zone; 2 = Western coastal zone; 3 = Midland zone; 4 = Eastern zone; 5 = Eastern coastal zone

Time of Occurrence

Seasons 1 = Spring (March–May); 2 = Summer (June–September); 3 = Autumn (October–November); 4 = Winter (December–February)

Day of the week 1 = Monday; 2 = Tuesday; 3 = Wednesday; 4 = Thursday; 5 = Friday; 6 = Saturday; 7 = Sunday

Time interval 1 = 00:00–06:59 (midnight to dawn); 2 = 07:00–08:59 (morning rush hours); 3 = 09:00–11:59 (morning working hours); 4 = 12:00–17:29 (afternoon working hours);
5 = 17:30–19:29 (afternoon rushing hours); 6 = 19:30–23:59 (nighttime)

Road Factors

Road type 1 = Highway; 2 = Urban Expressway; 3 = First-class highway; 4 = Second-class highway; 5 = Third-class highway; 6 = Fourth-class highway; 7 = Substandard
road; 8 = Branch urban road; 9 = Road in public parking; 10 = Road in public square; 11 = Road in community; 12 = Other road

Road line style 1 = Straight; 2 = General curve; 3 = General slope; 4 = General curve and general slope; 5 = Steep slope; 6 = Sharp curve; 7 = General curve and steep slope;
8 = General slope and sharp curve; 9 = Sharp curve and steep slope

Road section type 1 = Ordinary section; 2 = Plane intersection; 3 = Bridge; 4 = Access; 5 = Internal section; 6 = Elevated section; 7 = Ramp; 8 = Tunnel; 9 = Narrow section

Pavement material 1 = Asphalt concrete; 2 = Cement concrete; 3 = Sand; 4 = Soil; 5 = Others

Pavement condition 1 = Good; 2 = Under construction; 3 = Convex–concave; 4 = Others

Roadside protection 1 = Green belt; 2 = Border tree; 3 = Concrete guardrail; 4 = Protective Pier (column); 5 = Metal guardrail; 6 = Corrugated beam guardrail; 7 = No protection

Management Status

Traffic sign 0 = Bad or no; 1 = Good;

Lighting condition 1 = Daytime; 2 = Street lighting at night; 3 = No street lighting at night

Environment Condition

Weather 1 = Sunny; 2 = Cloudy; 3 = Rainy; 4 = Others

Topography 1 = Plain; 2 = Hill; 3 = Mountain

Traffic Violations

Primary cause

1 = Drunk driving; 2 = Driving under the influence of alcohol; 3 = Speeding over 50%; 4 = Speeding below 50%; 5 = Overloading; 6 = Backing and wrong-way
driving on highway; 7 = License violation; 8 = Illegal overtaking; 9 = Traffic signal violation; 10 = Traffic sign violation; 11 = Wrong-way driving, not on
highway; 12 = Illegal road occupying; 13 = Illegal backing; 14 = Failure to give way properly; 15 = Illegal meeting; 16 = Helmet violation; 17 = Illegal entering
onto highway; 18 = Vehicle defect; 19 = Other violations; 20 = Road facilities hazard; 21 = Other non-illegal fault

Whether illegal 1 = Illegal fault; 0 = Legal fault

Types of primary responsible party 1 = Pedestrians; 2 = Non-motorized vehicles; 3 = Minibuses; 4 = Large and medium buses; 5 = Light trucks; 6 = Heavy trucks; 7 = Motorcycles; 8 = Other motor
vehicles; 9 = Traffic management authority; 10 = Others
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4. Methods

If an independent variable has an effect on a dependent variable, the spatial distribution of the
independent variable should be consistent with that of the dependent variable. Based on this idea,
Wang and Hu [33] proposed a spatial stratified heterogeneity measurement method. Then, it was
improved gradually and a systematic statistical method to detect spatial stratified heterogeneity and
reveal the driving force behind it was constructed [34,35]. It has a straight physical meaning, and can
detect the real interaction between two variables, not limited to multiplicative interactions. Meanwhile,
it is immune to multicollinearity and has no linear hypothesis for variables. It has four geographical
detectors and has a common name, Geodetector.

4.1. Basic Principles

Conceptually, a stratification of heterogeneity is a partition of a study area, where observations
are homogeneous within each stratum but not between strata [34]. The q statistic is the foundation
of a Geodetector. It is a statistical classification algorithm to find a study area that can minimize the
within-strata difference and maximize the between-strata differences. The differences are measured by
q value, a ratio of the between- and the within-strata variances. The larger the q value is, the greater
the heterogeneity of this study area is. Meanwhile, if the differences are caused by an independent
variable and its classification, it means that this independent variable has an influence on the dependent
variable. The greater the q value is, the greater the influence is.

4.2. Factor Detector

Are there some geographical strata responsible for an observed spatial pattern? This can be
detected by a factor detector. Using the q value to measure how many differences there are in the Y
spatial distribution can be explained by an independent variable X. The value of q is:

q = 1−

H∑
h=1

Nhσ
2
h

Nσ2 = 1−
SSW
SST

(1)

Note that h = 1, 2, . . . , H is the stratification (classification) of the dependent variable Y or the
independent variable X, Nh is the unit number of sub-stratum h, N is the unit number of the whole
strata, and the σ2

h and σ2 are the variances of the variables Y in the H sub-stratum and the whole strata,
respectively. SSW denotes within-strata sum of variances and SST denotes between-strata sum of
variances. The value of q is between 0 and 1. The larger the q value of the dependent variable Y is,
the more obvious the spatial differentiation is. The q value of the independent variable X explains
100 · q% Y. The larger the value, the more consistent the spatial distribution of X and Y, and the
stronger the interpretation ability of X to Y. In extreme cases, if q = 1, then the independent variable X
completely controls the dependent variable Y. If q = 0, then the independent variable X has nothing to
do with the dependent variable Y.

4.3. Influence Detector

The influence detector is used in the search for strata of potential security hazards. It compares
the difference of average values between sub-strata to find the aggregation or fusion strata (regions).
The null hypothesis is: there is no significant difference between the mean attributes of sub-stratum 1
and sub-stratum 2. The significance is tested by t statistics:

tXh=1−Xh=2
=

Xh=1 −Xh=2[
var(Xh=1)

nh=1
−

var(Xh=2)
nh=2

]1/2
(2)
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高亮



Int. J. Environ. Res. Public Health 2020, 17, 572 6 of 17

where, Xh is the mean value of attributes in the H-stratum of the independent variable X, nh is the
number of sample units in the H-stratum of the independent variable X, and var() is the variance.
The statistic t approximately obeys the Student’s t distribution.

4.4. Ecological Detector

The main function of the ecological detector is to compare the influence of two independent
variables, X1 and X2, on the spatial distribution of the dependent variable Y. It is measured by F
statistics:

F =
NX1(NX2−1)SSWX1
NX2(NX1−1)SSWX2

SSWX1 =
H1∑

h=1
Nhσ

2
h, SSWX2 =

H2∑
h=1

Nhσ
2
h

(3)

where, NX1 and NX2 are the sample sizes of the independent variables X1 and X2 respectively,
and SSWX1 and SSWX2 are the sum of intra-stratum variances of the independent variables X1 and
X2, respectively.

4.5. Interaction Detector

Different independent variables can interact with each other. The interaction detector is designed to
evaluate whether the interaction of two independent variables, X1 and X2, will enhance the contribution
to the dependent variable Y, and then discriminate the type of interaction.

The method is as follows: first, calculate the q values of X1 and X2, q(Y/X1) and q(Y/X2)
(abbreviated as q(X1), q(X2)), and then calculate the q values of X1∩X2 (means superposition of X1
and X2) q(Y/X1∩X2) (abbreviated as q(X1∩X2)), and finally, compare q(X1), q(X2) and q(X1∩X2).
The interaction types and strengths are shown in Table 2. The approach is feasibly extendable to three
or more independent variables.

Table 2. Types and strengths of interaction between two independent variables.

Types and Strengths of Interaction Discriminant Basis

Weaken, nonlinear q(X1∩X2) < min(q(X1), q(X2))
Weaken, nonlinear, single min(q(X1), q(X2)) < q(X1∩X2) < max(q(X1), q(X2))

Enhance, bi q(X1∩X2) > max(q(X1), q(X2))
Independent q(X1∩X2) = q(X1) + q(X2)

Enhance, nonlinear q(X1∩X2) > q(X1) + q(X2)

5. Experimental Results

5.1. Spatial Stratified Heterogeneity and Influence Factors

Factor detection reveals spatial stratified heterogeneity and influence factors of fatalities and
injuries in Shenzhen traffic accidents (Table 3). The q value represents the explanatory power of factors
to fatalities or injuries. The factor with a q value greater than 0 and passing the significance test is
the factor with spatial stratification heterogeneity, and also the factor with a significant influence.
Therefore, there is spatial stratified heterogeneity in both fatalities and injuries at the 95% confidence
level. The biggest q value of fatalities and injuries is 0.094 and 0.12 respectively, and the corresponding
influencing factors are all primary cause. That is to say, primary cause can explain the spatial
stratification heterogeneity of 9.4% of fatalities and 12% of injuries.



Int. J. Environ. Res. Public Health 2020, 17, 572 7 of 17

Table 3. Spatial stratified heterogeneity and contribution of each factor.

Factors
Fatalities Injuries

q Value p Value q Value p Value

Zones 0.011 0.000 0.018 0.000
Seasons 0.003 0.03 - -

Day of the week - - - -
Time interval 0.007 0.000 0.008 0.024

Road type 0.037 0.000 - -
Road line style 0.023 0.000 - -

Road section type 0.023 0.000 - -
Pavement material 0.007 0.027 - -

Pavement condition 0.009 0.002 - -
Roadside protection type 0.008 0.000 - -

Traffic sign - - - -
Lighting condition 0.009 0.000 - -

Weather - - - -
Topography 0.016 0.000 - -

Primary cause 0.094 0.000 0.120 0.000
Whether illegal 0.018 0.000 0.003 0.016

Types of primary responsible party 0.042 0.000 0.097 0.000

“-” indicates that the significance test is more than 0.05, and it is meaningless.

5.2. Sub-Strata Comparison of Influencing Factors

Risk detection shows that there are significant differences in the mean value of fatalities and
injuries between sub-strata of each influencing factor. The confidence level below is 95 percent.

5.2.1. Primary Cause

Figure 1 shows the sub-strata comparison result of fatalities and injuries causes. For fatalities,
the sub-strata are 3, 16, 6, 5, 17, 13, 1, 20, 18, and 12 in descending order of mean value, but only
sub-strata 3, 16, 6, 5, 17, 13, 1, and 12 were significantly higher than that of other sub-strata, except
18 and 20. Amazingly, the mean value of injuries in sub-stratum 3 and 5 exceeded 4.0, followed by
sub-stratum 4, 10, 18, 2, and 1. The mean value of injuries in sub-stratum 1, 2, 3, 5, 9, 10, 11, 19, and 21
was significantly higher than that in sub-stratum 12, 13, 16, 17, and 20.

It is noteworthy that there are differences in the heterogeneity of primary cause between fatalities
and injuries. The mean value of fatalities and injuries in sub-stratum 1, 3, and 5 was higher, but the mean
value of fatalities in sub-stratum 12, 13, 16, and 17 were significantly higher, while the mean value of
injuries were significantly lower. For the mean value of fatalities, sub-stratum 1 was significantly higher
than sub-stratum 2, and sub-stratum 3 was also significantly higher than sub-stratum 4. For the mean
value of injuries, however, the difference between sub-stratum 1 and sub-stratum 2, and sub-stratum
3 and sub-stratum 4, were not significant. No matter for fatalities or injuries, sub-stratum 3 was
significantly higher than sub-stratum 1. That is to say, compared with all types of primary cause,
the mean values of fatalities and injuries caused by drunk driving, speeding over 50%, and overloading
were all higher. However, the mean values of fatalities caused by illegal road occupying, illegal backing,
helmet violation, and illegal entering onto highway were significantly higher, while the mean values
of injuries were significantly lower. For the mean value of fatalities, drunk driving was significantly
higher than driving under the influence of alcohol and speeding over 50% was significantly higher
than speeding below 50%. For the mean of injuries, however, the difference between drunk driving
and driving under the influence of alcohol, and speeding over 50% and speeding below 50%, were
not significant. No matter for fatalities or injuries, speeding over 50% was significantly higher than
drunk driving.
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Figure 1. Sub-strata comparison of primary cause.

5.2.2. Types of Primary Responsible Party

Figure 2 shows the sub-strata comparison result of fatalities and injuries of types of primary
responsible party.

For fatalities, sub-stratum 1, sub-stratum 6, sub-stratum 5, and sub-stratum 4 had the highest
mean fatalities. There was no significant difference in the mean values of the first three sub-strata
and it was significantly higher than that of sub-stratum 2, and the mean value of sub-stratum 2 was
significantly higher than that of sub-stratum 3, 7, 8, and 10. Although the mean value of sub-stratum
4 ranks fourth, it was only significantly higher than that of sub-stratum 8 due to its large variance,
while sub-stratum 8 was significantly lower than other layers.

For injuries, it is surprising that the mean values of sub-stratum 4 and 6 were over 3.0, followed
by sub-stratum 5 and 7, and were significantly higher than other sub-stratums. Sub-stratum 5 showed
no significant difference with others, and sub-stratum 6 was only significantly higher than sub-stratum
1 and 9. Sub-stratum 9 and 1 had the lowest mean value, which was significantly lower than other
sub-stratums, except 5 and 8.

It should be noted that there were similarities and differences in the stratification heterogeneity
between fatalities and injuries. The mean values of fatalities and injuries in sub-stratum 4, 5, and 6 were
higher, but fatalities in sub-stratum 4 and injuries in sub-stratum 5 and 6 were discrete. The differences
between the mean values of fatalities and the mean values of injuries in sub-stratum 1, 2, 3, and 7 were
significant. According to the mean values of fatalities from high to low, the ranking is sub-stratum 1, 2,
3, 7, while according to the mean values of injuries, the ranking is sub-stratum 7, 2, 3, 1. The mean value
of fatalities in sub-stratum 1 was significantly higher, while the mean value of injuries was significantly
lower. The mean value of fatalities in sub-stratum 7 was significantly lower, while the mean value of
injuries was significantly higher. No matter for the mean value of fatalities or injuries, sub-stratum
2 was greater than sub-stratum 3. That is to say, compared with all types of primary cause, the mean
values of fatalities and injuries caused by large and medium buses, light trucks and heavy trucks, are
all higher. The differences between the mean values of fatalities and the mean values of injuries caused
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by pedestrians, non-motorized vehicles, minibuses, and motorcycles were significant. According
to the mean values of fatalities from high to low, the ranking of types of primary responsible party
was pedestrians, non-motorized vehicles, minibuses, and motorcycles, while according to the mean
values of injuries, the ranking was motorcycles, non-motorized vehicles, minibuses, and pedestrians.
The mean value of fatalities caused by pedestrians was significantly higher, while the mean value of
injuries was significantly lower. The mean value of fatalities caused by motorcycles was significantly
lower, while the mean value of injuries was significantly higher. No matter for the mean value of
fatalities or injuries caused by non-motorized vehicles, it was greater than that caused by minibuses.
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Figure 2. Sub-strata comparison of types of primary responsible party.

5.2.3. Other Factors

The stratified heterogeneity of geographical zones, road factors, management status, and environment
condition affecting fatalities and injuries was examined. The main findings are shown in Table 4.
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Table 4. Sub-strata comparison of other factors.

Significant Factors of Fatalities or Injuries Sub-Strata Comparison
(Mean Value, 95% Confidence Level) Interpretation

Zones of fatalities 4 > others Zone 4 > Other zones

Zones of injuries 4, 5 > 1, 3 Zone 4, 5 > Zone 1, 3

Time interval of fatalities 2, 5 < others
3, 4 > others

Rushing hours < Other time intervals
Working hours > Other time intervals

Time interval of injuries 2, 5 < others
1, 6 > others

Rushing hours < Other time intervals
Night to dawn > Other time intervals

Seasons of fatalities 4 > 1, 2 Winter > Spring and Summer

Road type of fatalities 1, 5 > 3
11 > 8, 12

Highway and third-class highway > first-class highway and road in community > branch urban
road and other road

Road line style of fatalities 1, 9 < others the straight and sharp curve steep slope is the lowest

Road section type of fatalities 6, 7 > 1, 2, 4 Internal section and elevated section > ordinary section, plane intersection, and access

Pavement material of fatalities 3, 4, 5 > 1, 2 sand, soil, and other pavement > asphalt concrete and cement concrete pavement

Pavement condition of fatalities 3, 4 > 2 > 1 Convex–concave condition and other conditions > under construction condition > good condition

Roadside protection type of fatalities 3 > others Concrete guardrail is the highest

Topography of fatalities 2 > 1, 3 Hill > plain and mountain

Lighting condition of fatalities 1, 3 > 2 Daytime and no street lighting at night > Street lighting at night
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5.3. Interaction of Influencing Factors

The interaction detector was used to check whether two influencing factors work independently
or not, and further discriminate the type of interaction. It is notable that there was no pair of factors
found to be independent or linear. All the factors were found to enhance each other to increase
fatalities and injuries. When any two factors work together, the explanatory power of combination for
fatalities and injuries is greater than that of a single factor. Only two types of interaction were involved:
nonlinear enhancement and bi-enhancement. For fatalities, the two types account for 93.6% and 6.4%
respectively, for injuries, the two types account for 94.5% and 5.5%, respectively.

Ranked by explanatory power, the top 10 interaction details of fatalities and injuries are shown
in Tables 5 and 6, respectively. It is worthwhile to note that the most powerful explanation for both
fatalities and injuries comes from the interaction of primary cause and other factors. Especially
for fatalities, the top 10 powerful explanations are all so. Another notable result is that some top
10 explanatory power comes from the interaction of a non-significant influencing factor and another
factor. For example, day of the week was a non-significant influencing factor for fatalities, but when it
works together with primary cause, the combined factor becomes significant and enhances each other
to increase fatalities nonlinearly. Seasons was a non-significant influencing factor for the injuries, but
after it was combined with primary cause, the combined factor became a significant factor, and the
explanatory power surprisingly became 42.1%, ranking first in all combined factors.

Table 5. Interaction between pairs of factors causing fatalities.

A∩B Q (A ∩ B) Q (A + B) Interaction Type

Primary cause ∩ Types of primary responsible party 0.178 0.135 Enhance, nonlinear
Primary cause ∩ Road section type 0.162 0.117 Enhance, nonlinear

Primary cause ∩ Road type 0.156 0.131 Enhance, nonlinear
Primary cause ∩ Road line style 0.147 0.117 Enhance, nonlinear

Primary cause ∩ Zones 0.136 0.105 Enhance, nonlinear
Primary cause ∩ Roadside protection 0.135 0.101 Enhance, nonlinear

Primary cause ∩ Time interval 0.135 0.101 Enhance, nonlinear
Primary cause ∩ Day of the week 0.129 0.096 Enhance, nonlinear

Primary cause ∩ Topography 0.115 0.110 Enhance, nonlinear
Primary cause ∩ Seasons 0.115 0.097 Enhance, nonlinear

A ∩ B means superposition of A and B; Q (A ∩ B) means the q value of A ∩ B; Q (A + B) means the q value of A plus
the q value of B.

Table 6. Interaction between pairs of factors causing injuries.

A ∩ B Q (A ∩ B) Q (A + B) Interaction Type

Primary cause ∩ Seasons 0.421 0.122 Enhance, nonlinear
Primary cause ∩ Zones 0.345 0.138 Enhance, nonlinear

Primary cause ∩ Types of primary responsible party 0.345 0.217 Enhance, nonlinear
Primary cause ∩ Time interval 0.336 0.128 Enhance, nonlinear

Primary cause ∩ Roadside protection 0.319 0.121 Enhance, nonlinear
Primary cause ∩ Day of the week 0.247 0.122 Enhance, nonlinear

Primary cause ∩ Years 0.221 0.122 Enhance, nonlinear
Types of primary responsible party ∩ Day of the week 0.216 0.099 Enhance, nonlinear

Types of primary responsible party ∩ Seasons 0.203 0.099 Enhance, nonlinear
Types of primary responsible party ∩ Topography 0.202 0.099 Enhance, nonlinear

A ∩ B means superposition of A and B; Q (A ∩ B) means the q value of A ∩ B; Q (A + B) means the q value of A plus
the q value of B.

Which primary responsible parties, and when they have what kind of fault, will lead to a large
number of casualties? The combined factor of primary cause and types of primary responsible party
was geographically detected again. The top 10 high-risk lethal behaviors and high-risk injury behaviors
with significantly higher mean values of fatalities and injuries are shown in Table 7.
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Table 7. Top 10 fatalities and injuries of combined factor (primary cause and types of primary
responsible party).

Rank Traffic Violations of Fatalities Traffic Violations of Injuries

1 Drunk driving of large and medium buses Speeding below 50% of large and medium buses
2 Illegal entering onto highway of non-motor vehicles Overloading of heavy trucks
3 Speeding over 50% of motorcycles Illegal overtaking of large and medium buses
4 Drunk driving of heavy trucks Drunk driving of large and medium buses
5 Speeding over 50% of minibuses Speeding over 50% of minibuses
6 Speeding over 50% of large and medium buses Illegal overtaking of heavy trucks
7 Illegal entering onto highway of pedestrian Traffic sign violation of light trucks
8 Overloading of heavy trucks Traffic signal violation of heavy trucks
9 Drunk driving of minibuses Overloading of light trucks
10 Speeding below 50% of heavy trucks Speeding below 50% of minibuses

6. Discussion

6.1. Spatial Stratification Heterogeneity

Through geographical detection, it was found that traffic accidents in Shenzhen have spatial
stratified heterogeneity. The biggest difference among sub-stratum was primary cause, followed by
types of primary responsible party. Many previous studies have found the stratified heterogeneity
in traffic accidents [36,37]. The existence of spatial stratified heterogeneity makes the global model
or parameters unable to accurately capture the local characteristics [27]. Therefore, it has an
important impact on model selection. Thus, it is suggested that in the analysis and prediction
of traffic accident-related factors, spatial stratified heterogeneity detection should firstly be carried out.
When there is spatial stratified heterogeneity, these methods including modeling data hierarchically,
introducing local variables, or using variable functions, which may perform better. For example,
Li et al. [38] compared the performance of geographically weighted Poisson regression (GWPR)
and the traditional GLM model, and found that as GWPR can capture the spatial non-stationary
relationship between traffic accidents and prediction factors, its prediction performance is better than
the GLM model. De Ona et al. [39] first applied latent class cluster (LCC) to split data, then used
Bayesian networks (BNs) to model the cut dataset and the complete dataset separately, and found that
data-splitting models can identify more factors than models that do not split data. Based on the prior
knowledge, Sun et al. [8] established the binary logistic regression analysis model and the decision
tree model according to the urban functional areas, and found that there are differences in the effects
of traffic accident factors in different urban functional areas, and that the fitting effect of the regional
model is better than that of the global model. However, the functional zones are not always the biggest
factor of the sub-stratum difference. For example, in this study in Shenzhen, the sub-stratum differences
of primary cause and types of primary responsible party were all more obvious than those of zones.

6.2. The Influence of Traffic Violation on the Severity of Traffic Accidents

The results of factor analysis show that there are significant differences in the influencing factors
of fatalities and injuries, which is basically consistent with the previous research findings [40]. Whether
for fatalities or injuries, the primary cause is the most important factor. The casualties caused by
traffic violations are significantly higher than those caused by non-illegal reasons [41,42]. Different
illegal behaviors and different illegal subjects have different effects on the severity of traffic accidents.
The interaction of the two factors further reveals the high-risk behaviors of different subjects.

The role of alcohol as a major factor leading to traffic accidents has been firmly established.
The thresholds of driving under the influence of alcohol and drunk driving in mainland China are 0.02
and 0.08, respectively. This study finds that the average fatalities of drunk driving is significantly higher
than that of driving under the influence of alcohol, but there is no significant difference in injuries,
which implies that lower blood alcohol concentration (BAC) is more effective to reduce fatalities than
injuries. This is similar to the previous research conclusion [43,44]. The results of factor interaction
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further show that drunk driving of large and medium buses is not only the top 10 of high-risk lethal
behaviors, but also the top 10 of high-risk injury behaviors, and that drunk driving of heavy trucks
and minibuses are all included in the top 10 high-risk lethal behaviors.

Speeding is another widely recognized major cause of traffic accidents. A large number of studies
have confirmed that speed can not only affect the frequency of traffic accidents, but also the severity
of accidents [45,46]. This study finds that the larger the speeding range is, the more fatalities will be
caused, but reducing the speeding range does not significantly reduce injuries. The results of factors’
interaction further show that speeding occupies four seats in the top 10 high-risk lethal behaviors.
They are: speeding over 50% for motorcycles, minibuses, large and medium buses, and speeding
below 50% for heavy trucks, and in the top 10 high-risk injury behaviors, speeding occupied three
seats, which are: speeding below 50% for large and medium buses, speeding over 50% for minibuses,
and speeding below 50% for minibuses, respectively.

The results of the sub-stratum comparison of the influencing factors show that overloading is
more likely to cause greater casualties than drunk driving. The results of factor interaction further show
that heavy truck overloading is one of the high-risk lethal behaviors. Chang and Mannering [47] found
that accidents involving trucks are more likely to have serious consequences than non-truck-involved
accidents. China’s statistics show that 69.7% of major truck traffic accidents are caused by overloading.
The larger the overloading is, the more likely it is to cause major casualties [48]. During 2000–2018
in China, more than 50 bridges collapsed due to overloading of heavy trucks [49]. According to
China’s relevant laws, drunk driving is a “crime of dangerous driving”, which will receive criminal
punishment, while for the more dangerous overloading of trucks, only administrative penalties such
as fines can be imposed. This is one of the main reasons why overloading trucks continue to boom
in China. Therefore, it is necessary to promote overloading into the penalty and give full play to the
deterrent role of the law to control truck overloading.

There is no rigid barrier to protect pedestrians, cyclists, and motorcyclists, who are usually called
vulnerable road users (VRUs) [50]. Previous studies have found that when pedestrians and cyclists are
at fault, they are likely to suffer serious injuries, but there are differences, as for motorcycles [51–53].
It is found in this study that pedestrian and non-motor vehicles are more likely to cause fatalities than
minibuses when they violate the traffic law. On the contrary, motorcycles are more likely to cause
injuries than pedestrians, non-motor vehicles, and minibuses. Therefore, the causes of VRUs violations
should be given special attention and should be deeply studied.

6.3. Influence of Other Factors on Traffic Accidents

6.3.1. Time Factors

The influence of time factors on traffic accidents in the literature is diverse and has mixed effects
on road safety due to the regional differences, the different rules of people’s activities, and the different
standards of time division. Feng et al. [54] found that autumn and winter increase the probability of
more severe accidents, and that day of the week is significantly associated with a great increase in the
weekend when compared with weekdays, and that with respect to accidents occurring in the morning,
increases in the likelihood of higher severe accidents are observed throughout both evening and night.
Pahukula, Hernandez, and Unnikrishnan [55] found that serious injury accidents are less likely to
happen in summer, while many serious injury accidents occur between 10:00 a.m. and 3:00 p.m. This
study finds that in Shenzhen, the average number of fatalities in winter is significantly higher than that
in spring and summer. There is no significant difference in fatalities and injuries between the weekend
and weekdays, but the time interval has a significant impact on fatalities and injuries. At the peak hour
in the morning and evening, casualties are significantly lower than other times, since speed would be
lower in congested situations. While the high incidence of fatalities is from 9:00 to 17:30, when the
speed is high and there are many trucks, the high incidence of injuries occurred during 19:30–7:00 the
next day, which may be related to the reduction of VRUs which are vulnerable to serious injuries.
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6.3.2. Road Factors

This study found that there is high probability of fatalities on highways, elevated sections,
and ramps in Shenzhen, similar to previous studies [12]. There are the least fatalities on flat road
sections and the most difficult sections (sharp turns and steep slopes). Higher pavement grade and
better pavement condition contribute to reduced fatalities. Concrete guardrails are more likely to cause
fatalities than other roadside protection facilities.

6.3.3. Environment Condition

The study found that hilly areas are more likely to cause fatalities than plain and mountainous
areas, while Dong et al. [24] found rolling and mountainous topography more likely to cause accidents.
This paper also found that the situation of no lighting in daytime and at night is more likely to cause
fatalities than that of lighting at night, similar to previous research [56].

In view of the above findings, it is necessary to improve the condition of road infrastructure,
strengthen the management and control of highways, elevated sections and ramps, and improve the
lighting conditions of roads at night, so as to reduce the casualties caused by traffic accidents.

6.4. Interaction between Independent Variables

Methods including association rules, decision trees, and hierarchical clustering explore the
characteristics of different combinations of factors and enrich the analysis conclusions. Wang et al. [57]
applied the boosted regression tree model (BRT) to find that the presence of so many interaction effects
indicate that the crash rate at an intersection is dependent on a complex combination of intersection
characteristics (not simply additive). Li et al. [58] examined driver injury severity in intersection-related
crashes using cluster analysis and hierarchical Bayesian models, and found that a number of crash-level
variables, vehicle/driver-level variables, along with some cross-level interactions imposed, significantly
influenced driver injury severity. This study further explained the type of interaction among the
influencing factors and quantified the intensity of the interaction.

7. Conclusions

In this paper, the spatial stratified heterogeneity of traffic accidents in Shenzhen was detected by
a geographic detector. The influence factors of fatalities and injuries, the sub-stratum differences of
factors, and the types and intensity of the interaction among factors were then analyzed. The main
conclusions are as follows: the influencing factors of fatalities and injuries are different, the traffic
primary cause and types of primary responsible party have a strong impact on fatalities and injuries,
and zones, time interval, and whether illegal have a certain impact on fatalities and injuries, while
seasons, multiple road factors, lighting, topography, etc., only have a certain impact on fatalities. There
was a nonlinear enhanced relationship between factors. Top 10 high-risk lethal behaviors and high-risk
injurious behaviors were found through secondary geographical detection.

The results of this study are helpful for making prevention and control measures. The differences
among traffic participants and among traffic violations should be taken into account. Special attention
should be paid to heavy truck overloading along with pedestrian and cyclist violations. Furthermore,
the results are helpful for the method selection of subsequent research. These methods, including
modeling data hierarchically, introducing local variables, or using variable functions will be prioritized.

Some other questions also deserve profound studies. The interaction of factors contains a lot of
valuable information. In this paper, what kind of traffic participants will cause greater casualties with
what fault has been found out through secondary geographical detection of the combination of primary
cause and types of primary responsible party. The second detection of the other two combination
factors and the effect of a combination of more than three factors deserve further study. The mechanism
behind the phenomenon that the combination of non-significant factors and other factors becomes
significant is also worthy of further exploration. Furthermore, this paper only studied the primary
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cause of traffic accidents, but there is more than one cause in many traffic accidents. The influence
of co-occurrence and the interaction of multiple causes on traffic accidents’ severity also deserves
further study.

Author Contributions: Conceptualization, H.L.; Data curation, Y.Z.; Funding acquisition, H.L.; Investigation,
W.Q.; Methodology, Y.Z.; Resources, H.L.; Supervision, H.L.; Validation, Y.Z.; Visualization, Y.Z.; Writing—Original
draft, Y.Z.; Writing—Review and editing, Y.Z., H.L., and W.Q. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is supported by the major consulting project of the Chinese Academy of Engineering:
Research of Transportation Strategy for Powerful Nation (2017-ZD-07).

Acknowledgments: The authors particularly thank Tencent Corporation for providing APIs for geocoding
and position.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. National Bureau of Statistics of China. China Statistical Yearbook. 2019. Available online: http://www.stats.
gov.cn/tjsj/ndsj/2019/indexch.htm (accessed on 15 December 2019).

2. Shenzhen Government Online, About Shenzhen. Available online: http://english.sz.gov.cn/aboutsz/

(accessed on 15 December 2019).
3. Road Traffic Safety Research Center of the Ministry of Public Security. Research Report on Metropolis’ Road

Traffic Development in China (2018, in Chinese); China Communications Press: Beijing, China, 2019.
4. The State Council of the People’s Republic of China. China to Build Shenzhen into Socialist Demonstration

Area. Available online: http://english.www.gov.cn/policies/latestreleases (accessed on 18 August 2019).
5. Wang, J.F.; Liao, Y.L.; Liu, X. Spatial Data Analysis Course, 2nd ed.; Science Press: Beijing, China, 2019.
6. Ziakopoulos, A.; Yannis, G. A Review of Spatial Approaches in Road safety. Accid. Anal. Prev. 2019, 135, 105323.

[CrossRef]
7. Celik, A.K.; Oktay, E. A multinomial logit analysis of risk factors influencing road traffic injury severities in

the Erzurum and Kars Provinces of Turkey. Accid. Anal. Prev. 2014, 72, 66–77. [CrossRef]
8. Sun, Z.Y.; Wang, J.Y.; Chen, Y.Y.; Lu, H.P. Influence Factors on Injury Severity of Traffic Accidents and

Differences in Urban Functional Zones: The Empirical Analysis of Beijing. Int. J. Environ. Res. Public Health
2018, 15, 2722. [CrossRef] [PubMed]

9. Ashley, G.; Osman, O.A.; Ishak, S.; Codjoe, J. Investigating Effect of Driver-, Vehicle-, and Road-Related
Factors on Location-Specific Crashes with Naturalistic Driving Data. Transp. Res. Rec. 2019, 2673, 46–56.
[CrossRef]

10. Parker, D.; Reason, J.T.; Manstead, A.S.R.; Stradling, S.G. Driving errors, driving violations and accident
involvement. Ergonomics 1995, 38, 1036–1048. [CrossRef] [PubMed]

11. Touahmia, M. Identification of Risk Factors Influencing Road Traffic Accidents. Eng. Technol. Appl. Sci. Res.
2018, 8, 2417–2421.

12. Wang, C.; Quddus, M.A.; Ison, S.G. The effect of traffic and road characteristics on road safety: A review and
future research direction. Saf. Sci. 2013, 57, 264–275. [CrossRef]

13. Tay, R.; Rifaat, S.M.; Chin, H.C. A logistic model of the effects of roadway, environmental, vehicle, crash and
driver characteristics on hit-and-run crashes. Accid. Anal. Prev. 2008, 40, 1330–1336. [CrossRef]

14. Abdel-Aty, M. Analysis of driver injury severity levels at multiple locations using ordered probit models.
J. Saf. Res. 2003, 34, 597–603. [CrossRef]

15. Savolainen, P.T.; Mannering, F.; Lord, D.; Quddus, M.A. The statistical analysis of highway crash-injury
severities: A review and assessment of methodological alternatives. Accid. Anal. Prev. 2011, 43, 1666–1676.
[CrossRef]

16. Legendre, P. Spatial autocorrelation: Trouble or new paradigm? Ecology 1993, 74, 1659–1673. [CrossRef]
17. Lennon, J.J. Red-shifts and red herrings in geographical ecology. Ecography 2000, 23, 101–113. [CrossRef]
18. Kühn, I. Incorporating spatial autocorrelation may invert observed patterns. Divers. Distrib. 2007, 13, 66–69.

[CrossRef]
19. Pirdavani, A.; Bellemans, T.; Brijs, T.; Wets, G. Application of Geographically Weighted Regression Technique

in Spatial Analysis of Fatal and Injury Crashes. J. Transp. Eng. 2014, 140, 10. [CrossRef]

http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm
http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm
http://english.sz.gov.cn/aboutsz/
http://english.www.gov.cn/policies/latestreleases
http://dx.doi.org/10.1016/j.aap.2019.105323
http://dx.doi.org/10.1016/j.aap.2014.06.010
http://dx.doi.org/10.3390/ijerph15122722
http://www.ncbi.nlm.nih.gov/pubmed/30513896
http://dx.doi.org/10.1177/0361198119844461
http://dx.doi.org/10.1080/00140139508925170
http://www.ncbi.nlm.nih.gov/pubmed/29105607
http://dx.doi.org/10.1016/j.ssci.2013.02.012
http://dx.doi.org/10.1016/j.aap.2008.02.003
http://dx.doi.org/10.1016/j.jsr.2003.05.009
http://dx.doi.org/10.1016/j.aap.2011.03.025
http://dx.doi.org/10.2307/1939924
http://dx.doi.org/10.1111/j.1600-0587.2000.tb00265.x
http://dx.doi.org/10.1111/j.1472-4642.2006.00293.x
http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000680


Int. J. Environ. Res. Public Health 2020, 17, 572 16 of 17

20. Huang, H.; Abdel-Aty, M. Multilevel data and Bayesian analysis in traffic safety. Accid. Anal. Prev. 2010, 42,
1556–1565. [CrossRef] [PubMed]

21. Traynor, T.L. Regional economic conditions and crash fatality rates—A cross-county analysis. J. Saf. Res.
2008, 39, 33–39. [CrossRef] [PubMed]

22. Jafari, S.A.; Jahandideh, S.; Jahandideh, M.; Asadabadi, E.B. Prediction of road traffic death rate using neural
networks optimised by genetic algorithm. Int. J. Inj. Control Saf. Promot. 2015, 22, 153–157. [CrossRef]

23. Lee, C.; Li, X.C. Predicting Driver Injury Severity in Single-Vehicle and Two-Vehicle Crashes with Boosted
Regression Trees. Transp. Res. Rec. 2015, 2514, 138–148. [CrossRef]

24. Dong, C.J.; Nambisan, S.S.; Richards, S.H.; Ma, Z.L. Assessment of the effects of highway geometric design
features on the frequency of truck involved crashes using bivariate regression. Transp. Res. Part A Policy Pract.
2015, 75, 30–41. [CrossRef]

25. Tang, J.J.; Liang, J.; Han, C.Y.; Li, Z.B.; Huang, H.L. Crash injury severity analysis using a two-layer Stacking
framework. Accid. Anal. Prev. 2019, 122, 226–238. [CrossRef]

26. Anselin, L. Thirty years of spatial econometrics. Pap. Reg. Sci. 2010, 89, 3–25. [CrossRef]
27. Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33,

114–115. [CrossRef]
28. Sohn, S.Y.; Lee, S.H. Data fusion, ensemble and clustering to improve the classification accuracy for the

severity of road traffic accidents in Korea. Saf. Sci. 2003, 41, 1–14. [CrossRef]
29. Alikhani, M.; Nedaie, A.; Ahmadvand, A. Presentation of clustering-classification heuristic method for

improvement accuracy in classification of severity of road accidents in Iran. Saf. Sci. 2013, 60, 142–150.
[CrossRef]

30. Depaire, B.; Wets, G.; Vanhoof, K. Traffic accident segmentation by means of latent class clustering. Accid.
Anal. Prev. 2008, 40, 1257–1266. [CrossRef] [PubMed]

31. Fan, Z.Y.; Liu, C.; Cai, D.J.; Yue, S. Research on black spot identification of safety in urban traffic accidents
based on machine learning method. Saf. Sci. 2019, 118, 607–616. [CrossRef]

32. Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [CrossRef] [PubMed]
33. Wang, J.-F.; Li, X.-H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X. Geographical detectors-based

health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J.
Geogr. Inf. Sci. 2010, 24, 107–127. [CrossRef]

34. Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256.
[CrossRef]

35. Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134.
36. Wu, Q.; Chen, F.; Zhang, G.H.; Liu, X.Y.C.; Wang, H.; Bogus, S.M. Mixed logit model-based driver injury

severity investigations in single- and multi-vehicle crashes on rural two-lane highways. Accid. Anal. Prev.
2014, 72, 105–115. [CrossRef] [PubMed]

37. Zhang, G.N.; Tan, Y.; Jou, R.C. Factors influencing traffic signal violations by car drivers, cyclists, and pedestrians:
A case study from Guangdong, China. Transp. Res. Part F Traffic Psychol. Behav. 2016, 42, 205–216. [CrossRef]

38. Li, Z.B.; Wang, W.; Liu, P.; Bigham, J.M.; Ragland, D.R. Using Geographically Weighted Poisson Regression
for county-level crash modeling in California. Saf. Sci. 2013, 58, 89–97. [CrossRef]

39. de Ona, J.; Lopez, G.; Mujalli, R.; Calvo, F.J. Analysis of traffic accidents on rural highways using Latent
Class Clustering and Bayesian Networks. Accid. Anal. Prev. 2013, 51, 1–10. [CrossRef] [PubMed]

40. Yau, K.K.W.; Lo, H.P.; Fung, S.H.H. Multiple-vehicle traffic accidents in Hong Kong. Accid. Anal. Prev. 2006,
38, 1157–1161. [CrossRef]

41. Zhang, G.N.; Yau, K.K.W.; Chen, G.H. Risk factors associated with traffic violations and accident severity in
China. Accid. Anal. Prev. 2013, 59, 18–25. [CrossRef]

42. Alver, Y.; Demirel, M.C.; Mutlu, M.M. Interaction between socio-demographic characteristics: Traffic rule
violations and traffic crash history for young drivers. Accid. Anal. Prev. 2014, 72, 95–104. [CrossRef]

43. Evans, L.; Frick, M.C. Alcohols effect on fatality risk from a physical insult. J. Stud. Alcohol. 1993, 54, 441–449.
[CrossRef]

44. Fell, J.C.; Voas, R.B. The effectiveness of a 0.05 blood alcohol concentration (BAC) limit for driving in the
United States. Addiction 2014, 109, 869–874.

45. Aarts, L.; van Schagen, I. Driving speed and the risk of road crashes: A review. Accid. Anal. Prev. 2006, 38,
215–224. [CrossRef]

http://dx.doi.org/10.1016/j.aap.2010.03.013
http://www.ncbi.nlm.nih.gov/pubmed/20728603
http://dx.doi.org/10.1016/j.jsr.2007.10.008
http://www.ncbi.nlm.nih.gov/pubmed/18325414
http://dx.doi.org/10.1080/17457300.2013.857695
http://dx.doi.org/10.3141/2514-15
http://dx.doi.org/10.1016/j.tra.2015.03.007
http://dx.doi.org/10.1016/j.aap.2018.10.016
http://dx.doi.org/10.1111/j.1435-5957.2010.00279.x
http://dx.doi.org/10.1016/j.envsoft.2012.01.015
http://dx.doi.org/10.1016/S0925-7535(01)00032-7
http://dx.doi.org/10.1016/j.ssci.2013.06.008
http://dx.doi.org/10.1016/j.aap.2008.01.007
http://www.ncbi.nlm.nih.gov/pubmed/18606254
http://dx.doi.org/10.1016/j.ssci.2019.05.039
http://dx.doi.org/10.1093/biomet/37.1-2.17
http://www.ncbi.nlm.nih.gov/pubmed/15420245
http://dx.doi.org/10.1080/13658810802443457
http://dx.doi.org/10.1016/j.ecolind.2016.02.052
http://dx.doi.org/10.1016/j.aap.2014.06.014
http://www.ncbi.nlm.nih.gov/pubmed/25016459
http://dx.doi.org/10.1016/j.trf.2016.08.001
http://dx.doi.org/10.1016/j.ssci.2013.04.005
http://dx.doi.org/10.1016/j.aap.2012.10.016
http://www.ncbi.nlm.nih.gov/pubmed/23182777
http://dx.doi.org/10.1016/j.aap.2006.05.002
http://dx.doi.org/10.1016/j.aap.2013.05.004
http://dx.doi.org/10.1016/j.aap.2014.06.015
http://dx.doi.org/10.15288/jsa.1993.54.441
http://dx.doi.org/10.1016/j.aap.2005.07.004
User
高亮

User
高亮

User
高亮

User
高亮



Int. J. Environ. Res. Public Health 2020, 17, 572 17 of 17

46. De Pauw, E.; Daniels, S.; Thierie, M.; Brijs, T. Safety effects of reducing the speed limit from 90 km/h to
70 km/h. Accid. Anal. Prev. 2014, 62, 426–431. [CrossRef]

47. Chang, L.Y.; Mannering, F. Analysis of injury severity and vehicle occupancy in truck- and non-truck-involved
accidents. Accid. Anal. Prev. 1999, 31, 579–592. [CrossRef]

48. Traffic Management Bureau of Public Security Ministry. Road Traffic Accident Statistics Annual Report in China
(2015, in Chinese); Traffic Management Bureau of Public Security Ministry: Beijing, China, 2015.

49. Huang, H.Y.; Zhou, J.Y.; Zhang, J.P.; Xu, W.X.; Chen, Z.X.; Li, N.N. Effects of Revised Toll-by-Weight
Policy on Truck Overloading Behavior and Bridge Infrastructure Damage Using Weigh-in-Motion Data:
A Comparative Study in China. Adv. Civ. Eng. 2019, 2019, 13. [CrossRef]

50. Peden, M.; Scurfield, R.; Sleet, D.; Mohan, D.; Hyder, A.A.; Jarawan, E.; Mathers, C.D. World Report on Road
Traffic Injury Prevention; World Health Organization: Geneva, Switzerland, 2004.

51. Shinar, D. Safety and mobility of vulnerable road users: Pedestrians, bicyclists, and motorcyclists. Accid. Anal.
Prev. 2012, 44, 1–2. [CrossRef] [PubMed]

52. Zhang, G.N.; Yau, K.K.W.; Zhang, X. Analyzing fault and severity in pedestrian-motor vehicle accidents in
China. Accid. Anal. Prev. 2014, 73, 141–150. [CrossRef] [PubMed]

53. van Haperen, W.; Riaz, M.S.; Daniels, S.; Saunier, N.; Brijs, T.; Wets, G. Observing the observation of
(vulnerable) road user behaviour and traffic safety: A scoping review. Accid. Anal. Prev. 2019, 123, 211–221.
[CrossRef] [PubMed]

54. Feng, S.M.; Li, Z.N.; Ci, Y.S.; Zhang, G.H. Risk factors affecting fatal bus accident severity: Their impact on
different types of bus drivers. Accid. Anal. Prev. 2016, 86, 29–39. [CrossRef]

55. Pahukula, J.; Hernandez, S.; Unnikrishnan, A. A time of day analysis of crashes involving large trucks in
urban areas. Accid. Anal. Prev. 2015, 75, 155–163. [CrossRef]

56. Bassani, M.; Mutani, G. Effects of Environmental Lighting Conditions on Operating Speeds on Urban
Arterials. Transp. Res. Rec. 2012, 2298, 78–87. [CrossRef]

57. Wang, K.T.; Simandl, J.K.; Porter, M.D.; Graettinger, A.J.; Smith, R.K. How the choice of safety performance
function affects the identification of important crash prediction variables. Accid. Anal. Prev. 2016, 88, 1–8.
[CrossRef]

58. Li, Z.N.; Chen, C.; Ci, Y.S.; Zhang, G.H.; Wu, Q.; Liu, C.; Qian, Z. Examining driver injury severity in
intersection-related crashes using cluster analysis and hierarchical Bayesian models. Accid. Anal. Prev. 2018,
120, 139–151. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.aap.2013.05.003
http://dx.doi.org/10.1016/S0001-4575(99)00014-7
http://dx.doi.org/10.1155/2019/5910463
http://dx.doi.org/10.1016/j.aap.2010.12.031
http://www.ncbi.nlm.nih.gov/pubmed/22062329
http://dx.doi.org/10.1016/j.aap.2014.08.018
http://www.ncbi.nlm.nih.gov/pubmed/25238293
http://dx.doi.org/10.1016/j.aap.2018.11.021
http://www.ncbi.nlm.nih.gov/pubmed/30529992
http://dx.doi.org/10.1016/j.aap.2015.09.025
http://dx.doi.org/10.1016/j.aap.2014.11.021
http://dx.doi.org/10.3141/2298-09
http://dx.doi.org/10.1016/j.aap.2015.12.005
http://dx.doi.org/10.1016/j.aap.2018.08.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Influence Factors on Traffic Accidents 
	Spatial Stratified Heterogeneity Detection of Traffic Accidents 

	Data 
	Methods 
	Basic Principles 
	Factor Detector 
	Influence Detector 
	Ecological Detector 
	Interaction Detector 

	Experimental Results 
	Spatial Stratified Heterogeneity and Influence Factors 
	Sub-Strata Comparison of Influencing Factors 
	Primary Cause 
	Types of Primary Responsible Party 
	Other Factors 

	Interaction of Influencing Factors 

	Discussion 
	Spatial Stratification Heterogeneity 
	The Influence of Traffic Violation on the Severity of Traffic Accidents 
	Influence of Other Factors on Traffic Accidents 
	Time Factors 
	Road Factors 
	Environment Condition 

	Interaction between Independent Variables 

	Conclusions 
	References



