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Interest in assessing the effects of temperature on hand, foot, and mouth disease (HFMD) has increased. How-
ever, little evidence is available on spatial heterogeneity in relationship to temperature and HFMD in metropol-
itan (capital city andmunicipal districts) and other areaswhere economic levels are significantly different. In this
study, the Bayesian space-time hierarchy model was applied to identify the spatiotemporal heterogeneity of
HFMD. GeoDetector was then used to quantify the determinant power of temperature to the disease in regions
where the economic level has significant spatial heterogeneity. There was significant spatial heterogeneity in
the influence of temperature on the incidence of HFMD in metropolitan and other areas. In metropolitan areas,
where the disease risk is higher (hot spots), the HFMD incidence was higher alongside an increase in average
temperature. However, in non-metropolitan areas, where the disease risk is lower (cold spots), there was an ap-
proximately S-shaped relationship between the temperature and the HFMD risk. More specifically, when the
temperature was N25 °C, the HFMD incidence no longer increased monotonically with the increasing tempera-
ture. There was significant spatial heterogeneity in the effects of temperature on the HFMD incidence in metro-
politan and non-metropolitan areas. This finding may serve as a suggestion and basis for the surveillance and
control of this disease and it is conducive to the rational allocation of medical resources in different areas.
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1. Introduction
Hand, foot, and mouth disease (HFMD) is a common childhood in-
fectious disorder, mainly caused by enterovirus 71 (EV71) and
Coxsackie virus A16 (CV-A16) (Ooi et al., 2010; Schmidt et al., 1974).
Since the early 1970s, many countries in the Asia-Pacific region have re-
ported HFMD epidemics, such as Singapore (Ang et al., 2009), Vietnam
(Van Tu et al., 2007), Thailand (Puenpa et al., 2011), Japan (Onozuka
and Hashizume, 2011), Australia (Burry et al., 1968), and China (Xing
et al., 2014). Although extensive studies have been conducted to iden-
tify the causative agent of HFMD, its pathogenesis is still completely un-
clear and no specific curative treatment for HFMD has been found.
Therefore, HFMD remains a global public health concern (Chan et al.,
2003; Ho et al., 1999).

It is widely accepted that temperature plays an important role in the
transmission of many infectious diseases (Stanton et al., 1977). The re-
searches of many studies have indicated there is a most suitable tem-
perature for survival, reproduction, and transmission of the virus. For
example, results from a previous study demonstrated that when the
temperature is higher than 25 °C, the infectivity and activity of EV71 is
restricted (Arita et al., 2005).Moreover, the leaders of an in-vitro exper-
iment reported that compared to the replication rate at 37 °C, enterovi-
rus replication is inhibited by nearly 90% at 39 °C (Stanton et al., 1977).
Similarly, some researchers have pointed out that, in a certain range, the
higher the temperature, the faster the virus reproduces and causes a
higher incidence of HFMD. However, if the temperature is too high or
too low, the viral activity is restrained, with an approximately inverted
V shape (Xu et al., 2015; Zhu et al., 2016). Verified by virology evidence,
it has been reported that there is a close temperature-sensitive nature of
enteroviruses and other human enteric viruses (Kung et al., 2010;
Rzezutka and Cook, 2004).

Additionally, over the past 30 years, the original ecological environ-
ment and people's life conditions have undergone great changes influ-
enced by rapidly increasing global urbanization. The suitable survival
environment of the virus may be also unavoidably further affected to
some extent; this will likely continue to exert subtle effects on public
health (Biadgilign et al., 2019; Gong et al., 2012; Lee et al., 2018) as it
has in the past and as it is currently doing. As more megacities and
urban agglomerations emerge, human activities are generating a ten-
dency to be concentrated in these areas. This, in turn, may be causing
some regionswith higher economic levels and greater population densi-
ties to contribute to the accelerated transmission of these viruses (Gong
et al., 2012; Lee et al., 2018). For example, Hu et al. demonstrated that the
child population density explains 56% of the variance in the cumulative
monthly HFMD incidences in 2912 counties in China (Hu et al., 2012).
Yan et al. also showed that the HFMD incidence was higher in urban
areas compared to rural areas, further demonstrating that the distance
to the nearest freeway and per capita gross domestic product (GDP)
are both risk factors associated with HFMD incidence (Yan et al., 2014).

These findings imply that both the natural and socioeconomic envi-
ronment, to some extent, make transmission of the virus possible and ef-
fective. The leaders of some previous studies have examined the
association between meteorological factors and HFMD incidence while
also considering socioeconomic factors. However, to our knowledge, few
researchers have explored the heterogeneity of temperature related to
the highest HFMD risk while considering variations in urban conditions
where economic conditions have significant heterogeneity. Therefore,
this study was designed to assess and capture the heterogeneity of tem-
perature related to thehighestHFMDrisk among regionswhere economic
conditions differ. The objectives of this study were to: (1) identify the
county-level spatiotemporal heterogeneity of HFMD risks in the Beijing-
Tianjin-Hebei area of China from 2009 to 2013; (2) detect the hot/cold
spots (higher/lower disease risk areas, respectively); and (3) quantify
the effects of temperature on the HFMD incidence between metropolitan
and non-metropolitan regions, then capture the heterogeneity of temper-
ature related to the highest HFMD risk among these regions.
2. Data and methods

2.1. Study area

The Beijing-Tianjin-Hebei area, located in the northern part of the
North China Plain, is one of the most densely populated regions of
China. The region has a continental monsoon climate with an
average annual temperature of 12 °C and, on average, 460 mm of
annual precipitation. This area includes Beijing, Tianjin City, and
the Hebei province in which Beijing and Tianjin are international
megalopolises and together serve as the center of politics, the econ-
omy, and transportation in China (Fig. 1). Additionally, a large num-
ber of travelers move in and out of the region every day. Therefore, it
is significant to prevent and control infectious diseases (e.g., HFMD)
in the Beijing-Tianjin-Hebei area.

2.2. Data sources

Monthly data on HFMD cases were collected from January 2009 to
December 2013 in each county from the Chinese Centre for Disease
Control and Prevention for use in this study, with a total of 598,835
cases. The month-scale's temperatures and relative humidity data
from the selected time period in each county were acquired from the
China Meteorological Data Sharing Service System, as shown in Fig. 3.
City socioeconomic variables such as the yearly-scale household elec-
tricity consumption, GDP, and population density from 2009 to 2013
were also collected (Table S1).

2.3. Statistical analysis

In this study, a Bayesian space-time hierarchy model (BSTHM) was
first introduced to explore the spatiotemporal heterogeneity of HFMD
risks and to classify the study area in terms of hot spots and cold
spots. GeoDetector was then used to quantify the association between
temperature and the HFMD incidence. Hereafter, the heterogeneity in
the temperature that related to the highest epidemiological risks in
hot and cold spots was captured.

2.3.1. Bayesian space-time hierarchy model
The BSTHM is used to reveal spatial and temporal information im-

plied in spatiotemporal data, based on Bayesian statistical thoughts. In
our method, the number of cases yit and the risk population nit were
modeled by Poisson regression with the log link function (Li et al.,
2014), as follows:

yit � Poisson nituitð Þ
log uitð Þ ¼ α þ si þ b0t� þ vtð Þ þ b1it

� þ εit
ð1Þ

in which uit indicated the potential risk of HFMD in the i (i = 1, 2, …,
208) county andmonths t (t=1, 2,…, 60). The term αwas used to de-
note thefixed effect of the overall disease risk in the study region during
the selected period (Li et al., 2014). The spatial term si, during the se-
lected period, described the spatial heterogeneity of the disease risk.
Similarly, (b0t⁎ + vt) represented the overall time evolution of the dis-
ease risk with the random effect vt ~ N (0, σv

2) (Gelman, 2006). The
term t⁎ was used to express the time span relative to the midpoint
tmid. The term b1i, quantified the deviation from the overall temporal
variation b0 (Li et al., 2014). εit was chosen to denote the Gaussian
noise following the normal distribution N (0, σε

2) (Gelman, 2006).
Hereafter, all counties were divided into hot, cold, and neither hot

nor cold spots, following the classification principle proposed by
Richardson et al. (2004). Specifically, if the county's posterior probabil-
ity p [exp (si) N 1|data] ≥ 0.975, it was defined as a hot spot, whereas
b0.025 was considered a cold spot; the other counties were regarded
as neither hot nor cold spots, in which all calculations were imple-
mented in WinBUGS (Lunn et al., 2000).



Fig. 1. The geographic location of the Beijing-Tianjin-Hebei area in China with the average monthly incidence of HFMD in each county in children from 2009 to 2013. Note: CD: Chengde
city; ZJK: Zhangjiakou; BJ: Beijing; LF: Langfang; TS: Tangshan; QHD: Qinhuangdao; BD: Baoding; TJ: Tianjin; CZ: Cangzhou; SJZ: Shijiazhuang; HS: Hengshui; XT: Xingtai; HD: Handan.
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2.3.2. GeoDetector
The GeoDetector model both could quantify the stratified heteroge-

neity of a responding variable (i.e., HFMD risk) and the determinant
power of an impact factor (i.e., average temperature) on a dependent
variable under the assumption that if the two variables were associated,
their spatial stratified heterogeneity tended to be consistent (Wang et al.,
2010;Wang andXu, 2017). This included fourmodules: the factor detec-
tor, the interaction detector, the risk detector, and the ecological detec-
tor. The factor detector and the risk detector are introduced in this study.

The factor detector can quantify the spatial and temporal heteroge-
neity of HFMD risk according to the BSTHM's results and examine the
determinant power of driving factors (Xs) to Y by the q statistic value
(Wang and Hu, 2012). In this study, its input data included an explana-
tory variable and hierarchical information of an impact factor. Then, the
statistic significant indicator p-values were calculated through a non-
central F-distribution (Wang and Xu, 2017). The q value was calculated
as below:

q ¼ 1−
∑L

h¼1Nhσ2
h

Nσ2 ð2Þ

where q was the determinant power of the risk factor and also quanti-
fied the spatiotemporal stratified heterogeneity for the target variable
(i.e., HFMD risk), ranging from 0 to 1, indicating the determinant
power of a risk factor or a target variable's heterogeneity. Nh and N
were used to represent the number of samples in sub-region h and
the whole region, respectively; h = 1, 2, …, L was the stratification of
impact factor X. Similarly, σ2 and σh
2 were chosen to represent the

total variance of Y across the entire study area and the sub-region h.
The spatial heterogeneity of an impact factor has different effects on

Y in different regions. The risk detector can determinewhether there is a
significant difference in the effect of X's different categories on Y in two
sub-regions by a t-test so as to capture the temperature that relates to
the highest epidemiological risks, as follows:

tyh¼1−yh¼2
¼ Yh¼1−Yh¼2

Var Yh¼1
� �
nh¼1

þ Var Yh¼2
� �
nh¼2

" #1
2

ð3Þ

where Yh and nh represent the average value of Y (i.e., the HFMD inci-
dence) and the number of samples in the sub-region h, respectively;
Var denotes the variance. All of the above processes were implemented
in GeoDetector which was downloaded from www.geodetector.cn.

3. Results

3.1. Spatiotemporal variation of HFMD

The results showed that geographically, the HFMD risk had signifi-
cant spatial heterogeneity with a q value of 0.67 as calculated using
GeoDetector. Notably, areas with the highest spatial relative risk (hot
spots) were mainly concentrated in large cities like Beijing and Tianjin

http://www.geodetector.cn
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that have developed economies, high population densities, and mixed
socio-human environments (Chang et al., 2016; Xu et al., 2017). Con-
versely, areas with the lowest spatial relative risk (cold spots) were
mainly scattered in the non-metropolitan regions; these have underde-
veloped economic levels and lower population densities (Fig. S1)
(Chang et al., 2016; Xu et al., 2017). As shown in Fig. 2, 63 and 63
counties classified as hot and cold spots corresponded to metropolitan
and non-metropolitan areas, respectively, while another 82 counties
were identified as neither hot nor cold spots.

The overall temporal trend of HFMD risk from 2009 to 2013 was
non-homogeneous (Fig. S2), demonstrated by the q value of
GeoDetector at 0.51. Specifically, for each year, higher disease risks oc-
curred in the late spring and summer (May to July) while lower disease
risks occurred in the winter (December to February).

3.2. Spatial heterogeneity of the associations between HFMD and
temperature

Using GeoDetector, the determinant powers of temperature were
assessed. In hot spots, for temperature, the q value was 0.32
Fig. 2. Distribution of the hot spots and c
(p b 0.01). The incidence of HFMD increased alongwith the rise in aver-
age temperatures (Fig. 3), with the incidence of HFMD at 60.84/104 and
3.34/104 in high and low temperature conditions, respectively. The re-
sult for relative humidity was not statistically significant.

In cold spots, therewas a converse relationship between HFMD risks
and temperature, with a q value of 0.14. There was an approximately S-
shaped relationship between temperature and the HFMD risk. When
the temperature was lower than 25 °C, the HFMD risk increased with
an increase in temperature and the incidence of HFMD no longer in-
creased monotonically with increasing temperature (Fig. 3).

4. Discussion

In recent years, childhood HFMD has become increasingly recog-
nized as a significant health problem (Huang et al., 2013; Xiao et al.,
2017). Moreover, in areas with different economic conditions, the
HFMD risk has introduced a significant difference. In this study, the
BSTHMwas used to classify the study area into hot and cold spots that
corresponded to metropolitan and non-metropolitan areas, respec-
tively. Then, the effects of temperature on childhood HFMD were
old spots of HFMD in the study area.



Fig. 3. Comparison of the effects of temperature on the incidence of HFMD in hot and cold spots.
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quantified using GeoDetector. Notably, this study stands out from prior
studies by revealing that, in regions with different economic levels,
there is a significant heterogeneity in temperatures that relate to the
highest epidemiological risks.

Alternatively, in areas where the economic level was different, the
temperature that corresponded to the highest epidemiological risk
was also different: Areas with a higher economic level tended to report
a higher temperature related to the highest risk, which has been dem-
onstrated in previous studies. For example, Zhu et al. conducted a
time-series study to investigate the impacts of temperature on the
HFMD incidence in 17 cities in the Shandong province inwhich the eco-
nomic level was higher in the eastern large cities while lower in the
western counties. The temperature that related to the highest epidemi-
ological risk in the large eastern cities was higher than that in the west-
ern counties (Zhu et al., 2016). Similarly, Xiao et al. implemented a
study in China in which the economic situation was high in southern
China, converse in northern China. They demonstrated that in southern
China, the temperature that related to the highest epidemiological risk
was higher than that in northern China (Xiao et al., 2017). Furthermore,
Xing et al. found that for patientswhowere infectedwith EV71, living in
Fig. 4. The scatter plot of per capita GDP and tem
a rural area was a risk factor for severe disease (Xing et al., 2014). The
potential reason may be that in metropolitan areas, the effect of eco-
nomic levels cannot be ignored: A developed economyand complete in-
frastructure can protect the urbanized population from weather. For
instance, the use of air conditioning and heaters, especially in the sum-
mer and winter, are so great that the living and working environments
are far more comfortable than that in natural environments (Figs. S3
and S4).

Undoubtedly, in metropolitan regions, when the living and working
environments are controlled by modern equipment, the temperature
that restricts the growth or transmission the virus has not been reached.
Alternatively, in non-metropolitan regions, underdeveloped economies
with incomplete infrastructure make residents' lives less dependent on
modern equipment, the temperature that restricts the growth or trans-
mission the virus could be easily reached. Even though some families
have installed air conditioning or heaters, they may be reluctant to use
these devices because of their desire to save money due to the low in-
comes seen in non-metropolitan regions. These results can be demon-
strated from selected proxy variables such as household electricity
consumption and GDP (Figs. S3 and S4).
perature corresponded to the highest risk.
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Ultimately, we analyzed the association of per capita GDP and the
temperature that corresponded to the highest epidemiological risk in
17 cities of Shandong province, China, from one previous study, which
can be used to support our results (Zhu et al., 2016). Fig. 4 shows that
in regionswith different economic levels, there is a significant heteroge-
neity in the temperature that related to the highest epidemiological
risk; areas with a higher economic level tended to report a higher tem-
perature related to the highest risk. Moreover, the Pearson's correlation
coefficient between per capita GDP and the temperature that
corresponded to the highest risk was introduced; the value was 0.66,
which can be used to support our study.

One limitation of this study is that the micro-environments may
have significantly influenced the HFMD incidence, including commu-
nity and home environments and even educational levels. The spatial
scale used in this study was at the county level, which may have ob-
scured some factors through the ecological fallacy effect. It could also
have introduced some uncertainties in the study.

5. Conclusions

This study described the detailed spatiotemporal dynamics of HFMD
incidence from 2009 to 2013 in the Beijing-Tianjin-Hebei area, China.
Then the high-risk areas (hot spots) were detected, which were mainly
concentrated in metropolitan areas, while the low-risk areas (cold
spots) were mainly distributed in non-metropolitan regions. Addition-
ally, the study captured that, in themetropolitan and non-metropolitan
areaswith different economic levels, the temperature that related to the
highest epidemiological risk was significantly different. These results
provide a good illustration for theheterogeneity of the temperature's ef-
fect on theHFMD incidence. This information can serve as a point of ref-
erence and as a basis for the surveillance and control of this disease in
practice. Both are conducive to informing the rational allocation ofmed-
ical resources.
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