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Abstract
Conventionally, the evolutions of landscape patterns show different regularities in terms 
of different spatial scales. Therefore, the changes of arable land use pattern under the 
influence of human activities in the Loess Plateau of China also follow similar rules. To 
examine this assumption, we selected Per Capita Arable land Area (PCAA) as an index to 
indicate arable land use pattern, and Human Activity Intensity (HAI) as an index to indi-
cate the influence of human activities. We also used land use data and demographic data 
at a 5-year interval from 1990 to 2015 to quantify PCAA and HAI in four different spa-
tial scales across over the Loess Plateau region. These four scales include the whole loess 
Plateau region, provincial (autonomous region) scale, municipal (autonomous prefecture) 
scale, and county (city, district) scale. The theoretical model of arable land use pattern 
and the HAI calculation model were used comprehensively. We performed spatial analysis 
on the whole PCAA and HAI with the support of GIS geographic information technol-
ogy, and conducted spatial autocorrelation analysis and Pearson’s correlation analysis. We 
performed analysis of factor driving on the PCAA and HAI for different land-use types 
at the county (city, district) scale. We found that the changes in arable land use pattern of 
the Loess Plateau were dominated by human activities at the whole region and provincial 
scales from 1990 to 2015. However, at the municipal and county scales, human activities 
account for 60% of the changes in land use pattern. Two interesting findings were found at 
the municipal and county scales: one is that with the changing rate of HAI increases, the 
changing rate of PCAA decreased substantially; the second is that with HAI decreases, 
PCAA increased significantly. Besides, the changes in arable land use pattern can be 
explained by the synergy effect of multiple factors of human activities. This study provides 
insight knowledge in understanding the drives under the change of arable land use pattern 
in the Loess Plateau and hopefully can provide guidance for the sustainable goal of the 
local and country scale planning from the management perspective.
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1 Introduction

It has been proved that the spatial and temporal patterns of arable land are not only sen-
sitive to natural environmental conditions, but also closely relevant to human activities 
(Halpern et al. 2015; Shi and Shi 2015). Due to the growing population and the limited 
arable land, changes in the pattern of arable land use can substantially affect cropland pro-
duction, which in turn affects local food security (Chen et al. 2018; Hu et al. 2018). As an 
important indicator to measure to what extent of human influence on the natural environ-
ment, the research on the intensity of human activities has become a great endeavor to the 
academic community (Xu and Xu 2017; Xu et al. 2015a, b). The change of arable land pat-
tern primarily due to two factors, including the climate change and human activities. The 
method to quantify the contribution of these two factors on different spatial and temporal 
scales is not only a scientific problem from an ecological point of view, but also involve 
the knowledge of surface system science perspective (Li et  al. 2018, Shi and Shi 2015). 
The problems of arable land use pattern and human activity characteristics in the Loess 
Plateau region are now hotspots to the scientific community (Huang et al. 2016; Li et al. 
2017a, b; Li et al. 2016; Xin et al. 2007; Xu and Xu 2017; Zhao et al. 2017, 2018; Zhu 
et al. 2019). Previous studies suggested that human economic activities since the industrial 
revolution has great feedbacks to the climate system at a global scale, and named it as 
“Anthropocene” to represent a new era. The indirectly human-induced climate change sub-
stantially affects grain production and has substantial impact on the pattern of arable land 
use, especially when the pattern of arable land use was expressed by Per Capita Arable 
land Area (PCAA) (Liu et al. 2018a, b; Liu et al. 2014; Shi et al. 2019; Steffen et al. 2015). 
In recent years, research results about the effects of climate change and human activities on 
the pattern of arable land use have emerged in an endless stream. Researchers have found 
that social economy and policy also play an active role in the change of arable land pattern 
(Shi and Shi 2015). However, land-use planning is a multi-scale and multi-dimensional 
problem (Liu et  al. 2009; Newman et  al. 2014; Rutten et  al. 2014; Schweizer and Mat-
lack 2014; Zhang et  al. 2015). Changes in arable land patterns can be described indica-
tors such as Human Activity Intensity (HAI) (Ge et al. 2018a, b; Li et al. 2015; Xu et al. 
2015a, b; Li et al. 2017a, b). Therefore, multi-scale spatial analysis of changes in arable 
land use patterns under the influence of human activities is a critical technology to answer 
this question.

It is noted that in recent years, with the continuously increase in the intensity of human 
activities, the PCAA decreases inevitably, suggesting a negative correlation between the 
two statistically. However, everything has generality and particularity, and the geographi-
cal spatial thinking tells the spatial heterogeneity between regions and regions. The similar 
geographical phenomenon will suggest different scientific findings in various scales. Most 
scholars focus on temporal scales only but ignore the spatial scale, participant scale and 
land classification accuracy (Shi and Shi 2015). Therefore, the spatial scales of the Loess 
Plateau used in this study include the whole region scale, provincial scale, city scale and 
county scale of the Loess Plateau. As we all know, since the 1990s, human society devel-
oped rapidly with the progresses on information technology, especially since the devel-
oping policy of the western China was implemented in 2000, the Loess Plateau substan-
tially suffers from intense human disturbances. Therefore, the temporal scale in this study 
is 25 years which ranges from 1990 to 2015. Thus, the quantitative analysis of the changes 
in arable land use pattern at different spatial and temporal scales was conducted (Xu and 
Xu 2017; Shi and Shi 2015). The characteristics, as well as the relationship between human 
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activities and arable land use patterns, provide a reference for understanding the changes 
in arable land-use patterns under the influence of human activities in the Loess Plateau. 
Here, we used regularities to explain this phenomenon, and this condition is also known 
as a spatial imbalance. We used an idealized example to describe downscaling shown in 
Fig. 1 which is closely relate to spatial imbalance. On the whole region scale (Fig. 1a), a 
phenomenon can be denoted as light gray color, but on the quarter spatial scale (Fig. 1b), 
the color range of the phenomenon varies from white color to gray color, and then on the 
sixteenth space scale (Fig. 1c), the color range of the phenomenon is from white to black. 
On the contrary, the reverse process is called upscaling. A recent study found that, there is 
a nonlinear relationship between urban population growth and sustainable development at 
the global scale; however, in Moldova, continuous rural–urban migration is correlated to 
accessibility to socio-economic resources and it is negatively correlated to environmental 
burden per capita (Shaker 2018).

2  Materials and methods

2.1  Research area overview

The total area of the Loess Plateau is about 640,000 km2, covering all of Shanxi Province 
and Ningxia Hui Autonomous Region, most of Shaanxi, parts of Inner Mongolia Autono-
mous Region, Henan Province, Gansu Province, and Qinghai Province. This area involves 
43 prefecture-scale cities distributed in 7 provinces and we merged the municipal districts 
of some cities due to research needs. For example, the six districts of Xi’an City were 
merged into one district (Fig. 2). The inherently fragile natural ecosystems in the region 
and the long-term inappropriate activities of humans led to serious soil erosion and deteri-
orating ecological environment. It has become an area with extremely sharp contradictions 
between human and earth, which has always been one of the hot topics in academic society 
of China and other international groups (Xu and Xu 2017).

2.2  Data sources and pre‑processing

The population data were obtained from the statistical yearbook of the several provinces 
(autonomous regions) and cities (autonomous prefectures) within the Loess Plateau between 
1990 and 2015. In order to facilitate the expression, the provinces (autonomous regions), cities 

a On the whole scale b On the quarter scale c On the sixteen scale

Fig. 1  The representation of a phenomenon on different scales
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(autonomous prefectures), counties (cities, districts) involved in the article are all correspond-
ing areas of the province (autonomous region) located in the Loess Plateau region.

The land use data were obtained from the Remote Sensing Monitoring Database of China’s 
Land Use Status provided by the Resource and Environmental Science Data Center of the Chi-
nese Academy of Sciences (http://www.resdc .cn). This database covers the national land area 
year-to-year, supported by a number of major scientific and technological projects and impor-
tant projects of the National Science and Technology Support Program and the Chinese Acad-
emy of Sciences Knowledge Innovation Project. The data set covers six time periods including 
the late 1980s (1990), 1995, 2000, 2005, 2010 and 2015. The raw data of land-use are mainly 
based on the Landsat TM/ETM remote sensing image, which is generated by visual interpreta-
tion. The major land-use classifications include 6 primary land types and 25 secondary types. 
These 6 primary land types include arable land, forest land, grassland, water area, construc-
tion land and unused land, respectively. The 25 secondary types include paddy field, dry land, 
woodland, shrub, sparse woodland, other woodland, high coverage grass, medium coverage 
grass, low coverage grass, river channel, lake, reservoir pit, permanent glacier snow, beach, 
shallows, urban land, rural settlement, other construction land, sandy land, Gobi, saline-alkali 
land, wetlands, bare land, bare rock texture, other unused land, respectively. The data of arable 
land area were post-processed by arable land data of the Loess Plateau with the regional statis-
tics of the provincial, municipal, and county scales.

2.3  Analysis methods

(1) Characterization of arable land use pattern

Fig. 2  The location map of study area

http://www.resdc.cn
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The PCAA is an important indicator used to quantify the characteristics of the transfor-
mation pattern of arable land use, which represents the ratio of the arable land area and 
the population for each statistical unit.

where PCAA is the per capita arable land area  (hm2/person), AA denotes the arable land 
area  (hm2) in each statistical unit; POP is the population (person) in the corresponding sta-
tistical unit.

(2) Quantification of Human Activity Intensity (HAI)

The HAI is an indicator used to quantify the characteristics of human activities, and it 
represents the influence of human activities on the region. This study uses the measure-
ment method named “Equivalent area of construction land as a percentage of total area” 
proposed by Xu et al. (2015a, b), emphasizing the total proportion and spatial difference 
of HAI on the landform. Then the weight of different land types was adjusted, combined 
with the land-use data in this study. Thus, HAI is calculated as follows:

where HAI is the HAI; SCLE is the equivalent area of the construction land; S is the total 
land surface area of the study;

where  SLi is the area of the ith land-use/cover type;  CIi is the construction land equivalent 
conversion factor of the ith land use/cover type (Table 1); n is the number of land-use/cover 
types in the area (Xu et al. 2015a, b).

(3) The rate of interannual variation

The rate of interannual variation is used to characterize the change of a certain element 
in year-to-year, quantitatively and is expressed as a percentage. In this study, the rate of 
interannual variation of PCAA and that of HAI were quantified. Firstly, using the PCAA 
of the current year minus the PCAA of the previous statistical year to get a value “a”; 
Secondly, using the value “a” divided by the PCAA of the previous statistical year to get 
the rate of interannual variation of PCAA.

(4) Spatial overlay analysis

This method is a spatial analysis method commonly used in GIS. It refers to overlapping 
and adding spatial and attribute data of two different geographical features in the same 
area under the same spatial coordinate system to generate multiple attribute features of 
spatial regions or establish spatial correspondence among geographic objects. Accord-
ing to the data structure, it can be divided into vector-based spatial overlay analysis and 
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grid-based spatial overlay analysis. In this study, vector-based spatial overlay analysis 
was used.

(5) Correlation analysis

For the correlation analysis of spatial variables, Moran’s is one of the widely used index 
to characterize the spatial autocorrelation of each variable, and Pearson’s correlation coef-
ficient is commonly applied to test the correlation between two variables. Then this study 
used the Moran’s index and Pearson’s correlation coefficient for correlation analysis.

Spatial autocorrelation analysis of ESDA (Exploratory Spatial Data Analysis) refers to 
the potential interdependence of observational data of some variables in the same distribu-
tion area, and its coefficient varies in terms of the observation scales (or analysis scale). If 
the value of a regionalized variable becomes more similar when the spatial scale shrinks, 
this variable presents a spatial positive correlation; if the value of the variable becomes 
more different when the spatial scale shrinks, it is called spatial negative correlation; if the 
value of the variable does not exhibit any spatial dependence, then this variable exhibits 
spatial irrelevance or spatial randomness. This study used the Moran’s I index to character-
ize the spatial autocorrelation of HAI and PCAA and then analyzes the spatial correlation 
between the two.

Pearson’s correlation, also known as Pearson Product-Moment Correlation, is a very 
common way to measure correlation. It is used when both variables are at least at inter-
val scale and data are parametric. It is calculated by dividing the covariance of the two 
variables by the product of their standard deviations. In other words, it is the proportion of 
variation that can be explained. A high explained proportion is good, and value 1 means 
perfect correlation. This study used the Pearson’s correlation coefficient to characterize the 
correlation of HAI and PCAA and then analyzed the correlation between the two.

In order to further explore the changes in arable land use patterns under the influence of 
human activities on the Loess Plateau, this study conducted the two methods of correlation 

Table 1  Construction land equivalent conversion factor of land use/cover type

Code Name Factor Code Name Factor

11 Paddy field 0.2 51 Urban land 1
12 Dry land 0.2 52 Rural settlement 1
21 Woodland 0 53 Other construction land 1
22 Shrub 0 61 Sandy land 0
23 Sparse woodland 0 62 Gobi 0
24 Other woodland 0.167 63 Saline-alkali land 0
31 High coverage grass 0 64 Wetlands 0
32 Medium coverage grass 0.067 65 Bare land 0
33 Low coverage grass 0.133 66 Bare rock texture 0
41 River channel 0.067 67 Other unused land 0
42 Lake 0
43 Reservoir pit 0.067
44 Permanent glacier snow 0
45 Beach 0
46 Shallows 0
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analysis including HAI and PCAA. There are spatial autocorrelation analysis and Pearson’s 
correlation analysis. Spatial autocorrelation index scores differ from each other; however, 
positive scores indicate similar values which are spatially grouped and negative scores indi-
cate unlike values which are spatially grouped. Pearson’s correlation coefficients are com-
monly classified into very positive (> 0.75), medium positive (0.75 to 0.50), positive (0.50 
to 0.25), neutral (0.25 to − 0.25), negative (− 0.25 to − 0.50), medium negative (− 0.50 to 
− 0.75) or very negative (< −0.75) scale, respectively. (Shaker 2018).

(6) Geodetector’s analysis

Spatial stratified heterogeneity is the spatial expression of natural and socio-economic pro-
cess, which is an important approach for human to recognize nature since Aristotle. Geo-
detector is a new statistical method used to detect spatial stratified heterogeneity and reveal 
the driving factors behind it. It contains the four sub-detectors, which are factor detector, 
risk detector, interaction detector, ecological detector. They are used to detect spatial het-
erogeneity of the variable Y, and detect to what extent one factor X can explain the vari-
able Y. There is a “q” value in measuring the spatial variations. Q-statistic in Geodetector 
has already been applied in many natural and social sciences studies which can be used to 
measure spatial stratified heterogeneity, detect explanatory factors and analyze the interac-
tive relationship between variables (Wang and Xu 2017).

In this study, factor detector and interaction detector in the geodetector are used to ana-
lyze the factors effecting the spatial heterogeneity of the change of arable land use pattern 
under the influence of human activities in the Loess Plateau. Due to the request of dis-
crete  independent variables in geodetector, this study did some preparatory work for the 
follow-up analysis, such as classifying these ten explanatory variables. Natural breaks clas-
sification method was used and carried out in software ArcGIS 10.2.

① Factor detection

The factor detector is used to detect the influence of each factor on the spatial variations 
in the change of arable land use pattern. It is measured by q value. The larger the q value, 
the stronger the effect of factor X on the spatial variations in the change of arable land use 
pattern, and the weaker the opposite meaning. The q value indicates that factor X explains 
the spatial variations in the change of arable land use pattern of 100*q %. More detailed 
information could be found in Wang and Xu (2017).

② Interaction detection

Interaction detection is used to indicate the relationship between two-factor and spatial var-
iations of the changes in arable land use pattern. Take factors Xa and Xb effect the spatial 
variations of the changes in arable land use pattern as follows: q(Xa) and q(Xb), and the 
driving force after interaction is q(Xa ∩ Xb).

If q(Xa ∩ Xb) < Min(q(Xa), q(Xb)), it shows that the interaction of factors Xa and Xb has 
a nonlinear weakening effect on the spatial heterogeneity of the change in arable land use 
pattern.

If Min(q(Xa), q(Xb)) < q(Xa ∩ Xb) < Max(q(Xa), q(Xb)), it shows that the interaction of 
factors Xa and Xb has a one-factor nonlinear weakening effect on the spatial variations of 
the changes in arable land use pattern.
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If q(Xa ∩ Xb) > Max(q(Xa), q(Xb)), it shows that the interaction of factors Xa and Xb has 
a two-factor enhancement effect on the spatial variations of the changes in arable land use 
pattern.

If q(Xa ∩ Xb) = q(Xa) + q(Xb), it shows that factors Xa and Xb are independent of each 
other.

If q(Xa ∩ Xb) > q(Xa) + q(Xb), it shows that the interaction of factors Xa and Xb has a non-
linear enhancement effect on the spatial variations of the changes in arable land use pattern 
(Wang and Xu 2017).

3  Results and analysis

Here, we quantified HAI and PCAA in different spatial scales. The characteristics of arable 
land use patterns under the influence of human activities are analyzed in four spatial scales, 
including whole region scale, provincial scale, city scale and county scale, respectively.

3.1  Whole region scale correlation analysis

At the scale of the entire Loess Plateau, while the HAI is increasing, the PCAA, which 
is an important indicator of the pattern of arable land use, show large variations. The two 
have a strong negative correlation, with a correlation coefficient value of − 0.89. Obviously, 
with the intensification of regional human activities induced by the increase in population 
and urbanization in the region, the PCAA decreased inevitably (Fig. 3).

3.2  Provincial scale correlation analysis

In provincial scale (autonomous regions) within the Loess Plateau, the changes of ara-
ble land use are still obvious, but the PCAA value of each province has been reduced. 
Moreover, HAI values are still high in various provinces, and the negative correlation still 

Fig. 3  The change of arable land use pattern under the influence of human activities at entire-area scale

User
高亮



Is there a regularity: the change of arable land use pattern under…

1 3

exist between the two variables. The average correlation coefficient value is − 0.73. The 
largest deceased in PCAA between 1990 and 2015 was in Inner Mongolia Autonomous 
Region, with the value decreased from 28.05  (hm2/person) in 1990 to 20.78  (hm2/person) 
in 2015 (25.93%), followed by Shanxi Province 23.31%. The smallest decreased was in 
Henan Province (12.66%). We sort it in decreasing order as: Inner Mongolia Autonomous 
Region > Shanxi Province > Qinghai Province > Shaanxi Province > Ningxia Hui Autono-
mous Region > Gansu Province > Henan Province. The largest increase in HAI between 
1990 and 2015 was in Ningxia Hui Autonomous Region, which increased from 12.85% 
in 1990 to 14.73% in 2015, followed by Inner Mongolia Autonomous Region, with an 
increasing rate of 9.62%. The smallest increase was in Qinghai Province, with the value of 
2.68%. We sort it in decreasing order as: Inner Mongolia Autonomous Region > Ningxia 
Hui Autonomous Region > Shanxi Province > Shaanxi Province > Gansu Province > Henan 
Province > Qinghai Province. The largest negative correlation is in Qinghai Province, with 
a correlation coefficient value of − 0.92, and the smallest is Henan Province with a correla-
tion coefficient value of − 0.37.

3.3  City scale spatial overlap analysis

With the support of the ArcGIS software, we conducted the GIS spatial superposition anal-
ysis on the inter-annual variations of PCAA and HAI at the municipal scale and edited the 
associated attribute table. The corresponding situation of the two grades is characterized, 
that is, the corresponding situation of the inter-annual variations of PCAA and the HAI in 
each city, as shown in Fig. 4. Then, by summarizing the attribute table according to “clas-
sification” field in ArcGIS software, we classified the number of cities (autonomous pre-
fectures) into the different categories.

According to Fig. 4 and Table 2, there is a negative correlation between the change of 
PCAA and the change of HAI in 26 cities (autonomous prefectures) in the Loess Plateau, 
whose coefficient is − 0.63. As the green color shown in Fig. 3 and the values in first block 
and the fourth block in Table 2, which includes 60.5% of the 43 cities (autonomous prefec-
tures) in the Loess Plateau, the intensity of human activities in these cities (autonomous 
prefectures) has increased, and the PCAA has decreased, that is, the 23 cities (autono-
mous prefectures) corresponding to the first block in Table 2. The increase in the intensity 
of human activity is reduced, and the reduction in per capita arable land area is reduced, 
that is, the 3 cities corresponding to the fourth block in Table 2, indicating that the human 
activities of these cities (autonomous prefectures) in the Loess Plateau region are arable, 
which has a larger negative impact on the pattern of land use. There is a strong positive 
correlation between the changes in PCAA and HAI in 15 cities (autonomous prefectures) 
in the Loess Plateau, and the correlation coefficient is 0.68, which is shown in red in Fig. 3 
and in Block 2 and Block 3 of Table 2, representing 34.9% of the 43 cities (autonomous 
prefectures) in the Loess Plateau. This shows that the intensity of human activities in these 
cities (autonomous prefectures) has increased, with the PCAA decreased, that is, the 6 cit-
ies corresponding to the second block in Table 2. Or the increase in the HAI decreased, 
with the PCAA decreasing, that is, the corresponding 9 cities in Block 3 in Table 2, indi-
cating that human activities in these cities (autonomous prefectures) in the Loess Plateau 
have a greater impact on the pattern of arable land use, and they are positive. Only 2 cities 
(Hohhot City and Lvliang City) do not show significant relationship between the change of 
PCAA and HAI, indicating that the per capita arable land area and human activity intensity 
of these two cities are basically unchanged.
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In general, at the municipal scale, there is a large internal spatial imbalance in the 
characteristics of arable land use patterns under the influence of human activities. About 
60% of the cities (autonomous prefectures) are characterized by an increase in the inten-
sity of human activities, resulting in a decrease in PCAA. Nearly 40% of counties (cit-
ies, districts) showed the opposite pattern.

Fig. 4  Changes in arable land use pattern under the influence of human activities at city-area scale. Note: 
The meaning of the two digits in the legend is that the number on the ten digits indicates the changing rate 
of the HAI, and the number on the digit indicates the changing rate of the PCAA, and the corresponding 
values are as follows: the rate of change in HAI is 1: 4.1 to 51.4%; 2: 0.1 to 4.1%; 3: − 0.1 to 0.1%; 4: − 2.2 
to − 0.1%; 5: − 5.9 to − 2.2%; the rates of change in PCAA, 1: − 3.2 to − 1.3%; 2: − 1.3 to − 0.1%: 3: − 0.1 
to 0.1%: 4: 0.1 to 1%: 5: 1 to 2.8%. Green color indicates negative correlation and red indicates positive 
correlation

Table 2  Summarizing the changes in arable land use pattern under the influence of human activities at city-
area scale
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3.4  County scale spatial overlap analysis

This analysis method is the same as the method in analyzing the characteristics of the city. 
With the support of ArcGIS software, the result layer can be obtained. The same method 
can be used to obtain the inter-annual variations of PCAA and the inter-annual variations 
of HAI in the Loess Plateau. In order to visualize the correspondence of each other, we 
made the map (Fig.  5). By summarizing the attribute table according to “classification” 
field in ArcGIS software, we get the number of counties (cities, districts) at the different 
classification.

Through the observation shown in Fig. 5, counting of its attribute table, and the anal-
ysis of Table 3, it can be concluded that there is a certain negative correlation between 
the change of PCAA and the change of HAI in 167 counties (cities, districts). The cor-
relation coefficient is − 0.34, which is shown in green in Fig. 4, and in Table 3 as the 
block 1 and block 4, accounting for 57.2% of the total 292 counties (cities, districts). 
While the intensity of human activities in these counties (cities, districts) increased sig-
nificantly, the PCAA decreased greatly that is, the 151 counties (cities, districts) cor-
responding to block 1 in Table 3. While the intensity of human activities decreases, the 
PCAA decreases slowly, that is, the 16 counties (cities, districts) corresponding to the 
block 4 in Table 3, indicating that human activities have a great impact on the arable 

Fig. 5  The change of arable land use pattern under the influence of human activities at county-area scale. 
Note: The meaning of the two digits in the legend is that the number on the ten digits indicates the rate of 
change of the intensity of human activity, and the number on the digit indicates the rate of change of the per 
capita arable area, and the corresponding values are as follows: the rates of change in HAI, 1: 6.6 to 60.3%; 
2: 0.1 to 6.6%; 3: − 0.1 to 0.1%; 4: − 6.9 to − 0.1%; 5: − 23.1 to − 6.9%; the rates of change in PCAA, 1: 
− 8.5 to − 3.2%; 2: − 3.2 to − 0.1%; 3: − 0.1 to 0.1%; 4: 0.1 to 4.8%; 5: 4.8 to 11.5%. Green indicates nega-
tive correlation and red indicates positive correlation
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land use pattern. Among them, 95 counties (cities, districts) have strong negative cor-
relations (correlation coefficient is − 0.67). According to the data of the inspection, 
in addition to one county (Huachi County) in which the HAI and PCAA are basically 
unchanged, the remaining 94 counties (cities, districts) have the same result: the HAI 
is continuously increasing, resulting in a continuous decrease in the PCAA. This result 
shows that human activities in these counties (cities, districts) have a great and negative 
impact on the pattern of arable land use. While human activities are strengthening, the 
PCAA decreased sharply. The reason for this phenomenon is obvious. In the process 
of urbanization, the population flows from the countryside to the city. In addition, the 
natural growth factors of the population and the pursuit of high-quality material and 
cultural life lead to the continuous expansion of urban land use, which makes the sub-
urbs arable. There is a positive correlation between the changes of PCAA and HAI in 
115 counties (cities, districts) in the Loess Plateau (correlation coefficient is 0.4), which 
is represented by red in Fig. 4, and in Table 3 Blocks 2 and 3, representing 39.4% of the 
292 counties (cities, districts) in the whole region. While the intensity of human activi-
ties in these (municipal and district) increases largely, the PCAA decreases by a small 
amount, that is, the 62 counties (cities, districts) corresponding to block 2 in Table 3. Or 
with the small increase in the HAI, the PCAA decreased greatly, that is, the 53 counties 
(cities, districts) corresponding to block 3 in Table 3, indicating that the human activi-
ties of these counties (cities, districts) have a great impact on the arable land use pat-
tern, but they are positive. At present, the academic community recognizes that climate 
change and human activities will have an impact on the pattern of arable land use. It is 
concluded that the changes in the pattern of arable land use in these counties (cities, 
districts) may be greatly affected by climate change, which will be further explored in 
future research. Among them, only three counties (cities, districts) have strong positive 
correlations (correlation coefficient is 0.99), they are Wuxiang County, Jincheng City, 
and Daning County. According to the data of the inspection results, the intensity of 
human activities in Wuxiang County increased significantly, but the PCAA decreased 
less, while the HAI in Jincheng City and Daning County increased slowly, but the 
PCAA decreased greatly. The relationship between the changes in HAI and PCAA in 
only 10 counties (cities, districts) is not obvious, that is, whether the HAI in the county 
(city, district) is increased or decreased, the PCAA changes independently.

In general, at the county scale, there are still large internal spatial heterogeneity in 
the characteristics of arable land use patterns under the influence of human activities. 
About 60% of counties (cities, districts) are in line with the increase in the intensity of 

Table 3  Summarizing the change of arable land use pattern under the influence of human activities at 
county-area scale
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human activities, resulting in a decrease in PCAA. Nearly 40% of counties (cities, dis-
tricts) show the opposite patterns.

3.5  Correlation analysis of different spatial scales

Firstly, spatial autocorrelation analysis is carried out for the rate of change of HAI and 
PCAA on the three spatial scales of provincial, municipal and county scales. The results 
are shown in Table 4.

It can be seen from Table 4 that on the same spatial scale, the Moran’s I index expecta-
tion (E(I)) of the rate of change of HAI and PCAA is the same, and except for the negative 
value on the provincial scale, the others are positive. Besides, all of the actual Moran’s I 
indexes are larger than the corresponding expectation values (E(I)), indicating that they 
have a spatial negative correlation on the provincial scale, and a spatial positive correla-
tion at the city and county scales, that is, the change of HAI and PCAA between prov-
inces (autonomous regions). Larger, the difference in the HAI and the PCAA between cit-
ies (autonomous prefectures) and counties (cities, districts) is small. A significant test was 
performed on the above results, and for the rate of change of HAI and the rate of change of 
PCAA at county scale, the corresponding p-values of them were less than 1%, indicating 
that the 99% significance scale test was passed, but the rates of them at provincial scale 
and city scale did not pass the significance scale of ordinary 95% confidence scale. This 
indicated that at the two scales, although the rate of change of HAI and the rate of change 
of PCAA have spatial correlations, they are non-significant. That is, at county scale, for the 
rate of change of HAI and the rate of change of PCAA, the significance was most signifi-
cant on the provincial scale and city scale. All the above-mentioned made clear that down-
scaling study can contribute to reveal the spatial features of the rate of change of HAI and 
the rate of change of PCAA.

Secondly, on the county scale, this study selected 10 factors with weight not zero as 
dynamics explanatory variables from the 25 factors of land use/cover-type construction 
land equivalent conversion and conducted Moran’s I-test. The test results (Table  5) dis-
closed various scales of spatial nonstationary for both the response and 10 explanatory var-
iables and 7 out of 10 variables had less than a 1% chance of occurring randomly, and also 
these 7 variables had highly significant characteristics, because their P-values were less 
than 0.01. The remaining 3 variables (HAI on medium coverage grass, HAI on low cover-
age grass, HAI on river channel) and the response variable (PCAA) had significant char-
acteristics, whose P-values were less than 0.1, although these values are relatively large. 
Specifically, for the 10 dynamics variables of HAI on different type of land use, Global 
Moran’s I index scores ranged from 0.03 to 0.21 and z-scores from 1.75 to 9.72. The 

Table 4  Moran’s I analysis for HAI and PACC at different scales

HAI PACC 

Provincial scale City scale County scale Provincial scale City scale County scale

Moran’s I − 0.1495 0.0559 0.0135 − 0.2365 0.0596 0.0478
E(I) − 0.1667 − 0.0222 − 0.0034 − 0.1667 − 0.0222 − 0.0034
z Score 0.0659 0.7980 0.7456 − 0.2971 0.7917 2.2791
P value 0.9475 0.4249 0.4559 0.7664 0.4286 0.0227
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dependent variable, PCAA, recorded a Global Moran’s I score of 0.048 and z-score = 2.279 
at an optional distance threshold (90 km). The greater the z-score deviates from zero, the 
more systematically dispersed (negative) or clustered (positive) the variable under inves-
tigation becomes. All these indicated that they had obvious clustering characteristics, 
because z-scores were more than 1.65, which is the lowest critical value with significant 
characteristics. It can be inferred from this that adjacent human activities within 90 km of 
each other have similar arable land pattern change. This distance is approximately equal 
to the average distance between urban districts in Loess Plateau, which is about 92 km. A 
positive aspect of this nonstationarity (spatial autocorrelation) is that it can provide statisti-
cally significant meaning to geographical patterns of arable land use. The ESDA confirmed 
the necessity for a spatial autoregressive technique to support findings from the nonspatial 
analysis (Shaker 2018).

Thirdly, on the county scale, this study still selected the above-mentioned 10 factors 
with weight not zero as dynamics explanatory variables. Statistically significant bivari-
ate associations between- PCAA as the response variable- and 10 dynamics explanatory 
variables were found using Pearson’s Product-Moment Correlation test (r) (P < 0.05, 
Table  5). There is no predictor entered into the categories of either “very positive” or 
“very negative”. Only two predictors grouped into the “medium negative” category, with 
HAI on urban land (r = −0.63, P < 0.001) and HAI on other construction land (r = −0.61, 
P < 0.001) both being HAI on construction lands variables and negatively associated to 
PCAA. Only two predictors grouped into the “positive” category, with HAI on dry land 
(r = 0.434, P < 0.001) and HAI on paddy land (r = 0.41, P = 0.008 < 0.01) both being HAI 
on arable lands variables and positively associated to PCAA. The remaining six explana-
tory metrics fell into the “neutral” category.

From the correlation coefficient analysis, it can be construed that the changes in arable 
land pattern changes are highly contingent on both HAI on urban land and HAI on other 
construction land in Loess Plateau. From 1990 to 2015, the area of urban land increased 
2078  km2, whose rate of increase was 89.5%, and the area of other construction land 

Table 5  Global spatial autocorrelations for all study variables using Global Moran’s I-test; Pearson product-
moment correlation coefficients (two-tailed) between Loess Plateau’s PACC and all independent measures 
of HAI (n = 292)

A Pearson’s correlation coefficient in bold depicts a statistically significant relationship above the 95% con-
fidence level

Global Moran’s I z-score P-value Pearson’s r P-value

PCAA 0.048 2.279 0.023
HAI on paddy field 0.086 5.600 < 0.001 0.410 0.016
HAI on dry land 0.108 4.932 < 0.001 0.434 < 0.001
HAI on other woodland 0.201 9.342 < 0.001 − 0.175 < 0.001
HAI on medium coverage grass 0.038 1.898 0.058 0.212 0.006
HAI on low coverage grass 0.030 1.749 0.080 0.105 0.032
HAI on river channel 0.045 2.418 0.016 0.070 0.057
HAI on reservoir pit 0.176 8.433 < 0.001 − 0.069 < 0.001
HAI on urban land 0.124 5.778 < 0.001 − 0.629 < 0.001
HAI on rural settlement 0.120 5.440 < 0.001 − 0.060 < 0.001
HAI on other construction land 0.208 9.720 < 0.001 − 0.610 < 0.001
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increased 3213 km2, whose rate of increase was 315%. And the change of arable land use 
pattern is the result of many factors’ comprehensive effects. So, it is necessary to make an 
analysis of factor driving.

3.6  Analysis of driving factors

Geographical detectors are used to identify factors affecting the spatial heterogeneity of 
PCAA, including the above-mentioned ten explanatory variables.

(1) Factor detection

The factor detector method was used to identify the influence of each factor on spatial het-
erogeneity of PCAA, and the q value of each impact factor is presented in Table 6. The 
explanatory powers of each factor to the spatial heterogeneity of arable land use pattern 
change are listed in a descending order: HAI on urban land (0.083), HAI on other con-
struction land (0.057), HAI on dry land (0.05), HAI on rural settlement (0.047), HAI on 
paddy field (0.041), HAI on medium coverage grass (0.038), HAI on low coverage grass 
(0.025), HAI on other woodland (0.022), HAI on reservoir pit (0.031), HAI on river chan-
nel (0.016).

These results reveal that HAI on paddy field, HAI on dry land, HAI on urban land, HAI 
on rural settlement and HAI on other construction land have a strong influence on the spa-
tial heterogeneity of arable land use pattern change (greater than 0.04 of q-value average). 
Moreover, HAI on paddy field, HAI on other woodland, HAI on medium coverage grass, 
HAI on low coverage grass, HAI on river channel and HAI on reservoir pit have less influ-
ence on the spatial heterogeneity of arable land use pattern changes among all the factors 
used in this study. What’s more, HAI on urban land has the strongest influence on spatial 
heterogeneity of arable land use pattern change. The main reasons are: first, with the rapid 
development of urbanization, more urban lands are needed, which intensifies human activi-
ties and some outskirt arable lands are occupied; second, more and more people crowd into 
big cities, which results in a sharply increase of populations in cities and intensifying of 
human activities. Certainly, the increasing of city population and the spatial distribution 
imbalance of population accelerate to decline the PCAA of the cities sharply as well. All 
these have changed the arable land use pattern.

(2) Interaction detection

Table 6  Intensity of action of each factor (geographic detector’s p statistic and q value)

The items indicate the human activities intensity on the different type of land use. F11: HAI on paddy field; 
F12: HAI on dry land; F24: HAI on other woodland; F32: HAI on medium coverage grass; F33: HAI on 
low coverage grass; F41: HAI on river channel; F43: HAI on reservoir pit; F51: HAI on urban land; F52: 
HAI on rural settlement; F53: HAI on other construction land

F11 F12 F24 F32 F33 F41 F43 F51 F52 F53

q statistic 0.041 0.050 0.022 0.038 0.025 0.016 0.031 0.083 0.047 0.057
P value 0.053 0.022 0.193 0.064 0.156 0.367 0.103 0.000 0.070 0.065
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By identifying each factor with the interaction detector, the influence of the interaction 
between two factors on the spatial heterogeneity of arable land use pattern is presented 
in Fig. 6.

Generally, the effects of two-factor interaction are greater than the respective effects 
of the corresponding two factors. In Fig.  6, the numbers in light color are the major-
ity types, which takes about 38 numbers. The numbers in dark color are the minority 
types, which only has 7 numbers. The numbers in red color on diagonal are q-values. It 
is obvious that the nonlinear enhancement is dominant on the spatial heterogeneity of 
arable land use pattern. Specifically, it is worth mentioning that the interaction between 
HAI on urban land (F51) and HAI on other construction land (F53) has a nonlinear 
enhancement effect on the spatial heterogeneity of the changes in arable land use pat-
tern, which indicates that there is a superimposed effect [q-value = 0.199 > (0.083 + 0.05
7), i.e., (q-value of F51 + q-value of F53)] on human activities on these two construction 
lands for arable land use pattern change. From the perspective of HAI on paddy field 
(F11), the separate interaction between HAI on paddy field (F11) and HAI on urban 
land (F51) has a two-factor enhancement effect, which indicates that there is an imposed 
effect [q-value = 0.090 > Max(0.041, 0.083), i.e., (q-value of F11, q-value of F51)] 
on human activities on the paddy lands and the urban land for arable land use pattern 
change. In all, it is proved that the changes in arable land use pattern are comprehensive 
effects involving many factors.

Fig. 6  Effects of two-factor interaction on spatial differentiation of arable land use pattern
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4  Discussion

4.1  Selection of the method in quantifying the influence of human activities

For the study on the changes in arable land use pattern under the influence of human 
activities, it is very important to quantify the influence of human activities. HAI is pre-
sented as a conception and is used as a quantitative index in representing the influence 
of human activities. At present, there are five commonly used quantification indexes 
of HAI from the perspective of land transformation and landscape change, which are 
Human Activity Intensity of Land Surface (HAILS), Human Activity Index (HAI), 
Degree of hemeroby (M), Human Activity Intensity Index (HAII), Landscape Devel-
opment Intensity (LDI), respectively. These indexes have their own advantages and 
shortcomings for different problems (Liu et al. 2018a, b).

In this study, the land use data are derived from remote sensing interpretation. In 
terms of methods in quantifying the intensity of human activities, we created a fine-
tuned table including the weights of land use from existing research results as a refer-
ence. Due to the reference, the weight setting would directly affect the results and the 
measurement of the intensity of human activities. Researchers of different professional 
backgrounds to explore from their respective perspectives may have different results. 
Thus, further quantitative research on the intensity of human activities is still needed 
to have better estimates of the weight values.

4.2  Representing the arable land use pattern

Analyzing the changes in spatial and temporal patterns of arable land use is helpful to 
provide important insights for regional food security problem and ecological environ-
ment monitoring. Some research analyzed the changes in the spatial–temporal patterns 
of global arable land area and land use intensification during 2000–2010 by using eight 
statistical indicators, i.e., arable land area, changed area, standard deviation of changed 
area, percentage change of area, arable land area per capita, multiple cropping index, 
change and percentage change of multiple cropping index at three statistical scales, 
i.e., continent, country and 1° × 1° grid (Hu et al. 2018; Chen et al. 2018). The meth-
ods of these researches are acceptable, but due to their relatively large scales, and they 
are not suitable for smaller scale studies. Now, further study about how to effectively 
represent the arable land use pattern and comprehensively analyze the results of repre-
senting is still needed.

In this study, only one indicator, PCAA, is used to represent the arable land use pat-
tern. Although it is relatively simple, the relevant data are easy to get when downscal-
ing due to its simple computational process. Of course, the changes in arable land use 
pattern involves natural factors, locational factors, and socio-economic factors. Previ-
ous researchers found that the role of socioeconomic factors in promoting the arable 
land transition has been strengthened during the process of urbanization, and there 
were obvious differences in the driving mechanism for arable land transition in differ-
ent stages (Ge et al. 2018a, b). This study conducted the comprehensive analysis of the 
arable land use pattern with the HAI only on different types of land.
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4.3  Limitations

All phenomena have their characters with the changes in spatial and temporal scales. This 
study mainly aimed to the 4 spatial scales including the whole regional scale, provincial 
scale, city scale, county scale, but town scale and grid scale are not included. However, it 
is vital for the study to do some analysis on town scale and grid scale, and more valuable 
information may be acquired from them. Meanwhile, due to the limitation of data source, 
this study lacks the investigation on the different temporal scales.

China’s administrative divisions are adjusted every year, including administrative region 
and administrative level, which brings major difficulties to the study with the problem in 
temporal scales. In order to reduce this effect, this study unified the use of administrative 
division data in 2015. Although this is inconsistent with the actual region, it will not affect 
the overall results of this study, and time series analysis on the grid scale will be tried in 
future studies.

In short, there are still some problems in the multi-scale research on the changes in 
arable land use pattern under the influence of human activities, which are worthy of further 
exploration. Future investigation not only the above-mentioned problems, but also research 
methods, current status-quo, change process, and influence mechanism.

5  Conclusion

The changes in arable land use pattern are substantially influenced by human activities. 
To well determine a regularity on the change in arable land use pattern under the influ-
ence of human activities, especially at the different spatial scale, the quantitative research 
is needed. This study quantified the regularity of arable land use under the influence of 
human activities in Loess Plateau of China in several ways by analyzing at multi-spatial 
scales and multi-perspectives. Firstly, the pattern of arable land use in the Loess Plateau 
has different characteristics at different spatial–temporal scales. On the whole and provin-
cial scales, the Per Capita Arable land Area (PCAA) decreased significantly. On the city 
scale and county scale, the changing rates of PCAA in most cities and counties also show 
increasing trend. However, there are some cities and the county have shown decreasing 
trend in PCAA. Secondly, the intensity of human activities in the Loess Plateau has differ-
ent variations at different spatial–temporal scales. It has an increasing trend at both whole 
region scale and the provincial scale. At the municipal and county scales, the overall inter-
annual rate of change of human activity intensity in most cities and counties is also increas-
ing. However, there are some cities and counties showing that the inter-annual variations of 
human activity intensity are weakened. Thirdly, on the whole and provincial scales, the 
changes in arable land use pattern in the Loess Plateau are dominant due to human activi-
ties, but on the city scale and county scale, the spatial heterogeneity is large, which exists 
in about 60% of the cities (autonomous prefectures) and county (city, district) showed a 
dominant influence. Lastly, the changes in arable land use pattern are the synergy effects 
of many factors. Among these factors, HAI on urban land and HAI on other construction 
land play the most important role and they can make a superimposed effect on the change 
of arable land use pattern.

Acknowledgements The authors would like to express special thanks to the anonymous reviewers for their 
constructive suggestions and comments.



Is there a regularity: the change of arable land use pattern under…

1 3

Funding This research is funded by the Research project of the Social Science Foundation of Shaanxi Prov-
ince under Grant 2017G008 and Fundamental Research Funds for the Central Universities under Grant 
GK201803051.

Compliance with Ethical Standards 

Conflict of interest The authors declare no conflict of interest.

References

Chen, D., Wu, W. B., Zhou, Q. B., et  al. (2018). Changes of cultivated land utilization pattern in Asia 
from 2000 to 2010. Scientia Agricultura Sinica, 51(6), 1106–1120. https ://doi.org/10.3864/j.
issn.0578-1752.2018.06.010.

Ge, D. Z., Long, H. L., & Yang, R. (2018a). The pattern and mechanism of farmland transition in China 
from the perspective of per capita farmland area. Resources Science, 40(2), 273–283.

Ge, D., Long, H., Zhang, Y., et al. (2018b). Farmland transition and its influences on grain production in 
China. Land Use Policy, 70, 94–105.

Halpern, B. S., Frazier, M., Potapenko, J., et al. (2015). Spatial and temporal changes in cumulative human 
impacts on the world’s ocean. Nature Communications, 6, 7615.

Hu, Q., Wu, W. B., Xiang, M. T., et  al. (2018). Spatio–temporal changes in global cultivated land 
over 2000–2010. Scientia Agricultura Sinica, 51(6), 1091–1105. https ://doi.org/10.3864/j.
issn.0578-1752.2018.06.009.

Huang, Y. H., Zhao, C. P., Yang, H. J., et al. (2016). Spatial distribution and aggregation analysis of human 
activity in national key ecological function regions in China. Resources Science, 38(8), 1423–1433.

Li, Q. F., Hu, S. G., & Zhai, S. J. (2017a). Spatio–temporal characteristics of cultivated land use transition 
in the Middle Yangtze River from 1990 to 2015. Geographical Research, 36(8), 1489–1502.

Li, S., Liang, W., Fu, B. J., et al. (2016). Vegetation changes in recent large-scale ecological restoration pro-
jects and subsequent impact on water resources in China’s loess plateau. Science of the Total Environ-
ment, 569–570, 1032–1039. https ://doi.org/10.1016/j.scito tenv.2016.06.141.

Li, T., Long, H., Liu, Y., et al. (2015). Multi-scale analysis of rural housing land transition under China’s 
rapid urbanization: the case of Bohai Rim. Habitat International, 48, 227–238.

Li, J. J., Peng, S. Z., & Li, Z. (2017b). Detecting and attributing vegetation changes on China’s Loess Pla-
teau. Agricultural and Forest Meteorology, 247, 260–270.

Li, S. C., Zhang, Y. L., Wang, Z. F., et al. (2018). Mapping human influence intensity in the Tibetan Pla-
teau for conservation of ecological service functions. Ecosystem Services, 30, 276–286. https ://doi.
org/10.1016/j.ecose r.2017.10.003.

Liu, S. L., Liu, L. M., Wu, X., et  al. (2018a). Quantitative evaluation of human activity intensity on the 
regional ecological impact studies. Acta Ecologica Sinica, 38(19), 6797–6809.

Liu, B. J., Yang, R. C., Wei, J. C., et al. (2018b). A new phase of earth history: Anthropocene. Journal of 
Shandong University of Science and Technology (Natural Science), 37(1), 1–9.

Liu, J. Y., Zhang, Z. X., Xu, X. L., et al. (2009). Spatial patterns and driving forces of land use change in 
China in the early 21st century. Acta Geographica Sinica, 64(12), 1411–1420.

Liu, X., Zhang, Z. Q., Zheng, J. W., et  al. (2014). Discussion on the anthropocene research. Advance in 
Earth Science, 29(5), 640–649. https ://doi.org/10.11867 /j.issn.1001-8166.2014.05.0640.

Newman, M. E., McLaren, K. P., & Wilson, B. S. (2014). Long-term socio-economic and spatial pattern 
drivers of land cover change in a Caribbean tropical moist forest, the Cockpit Country, Jamaica. Agri-
culture. Ecosystems & Environment, 186, 185–200.

Rutten, M., van Dijk, M., van Rooij, W., et al. (2014). Land use dynamics, climate change, and food security 
in Vietnam: a global-to-local modeling approach. World Development, 59, 29–46.

Schweizer, P. E., & Matlack, G. R. (2014). Factors driving land use change and forest distribution on the 
coastal plain of Mississippi, USA. Landscape and Urban Planning, 121, 55–64.

Shaker, R. R. (2018). Examining sustainable landscape function across the Republic of Moldova. Habitat 
International, 72, 77–91.

Shi, X. L., & Shi, W. J. (2015). Identifying contributions of climate change and human activities to spatial-
temporal cropland changes: a review. Acta Geographica Sinica, 70(09), 1463–1476.

https://doi.org/10.3864/j.issn.0578-1752.2018.06.010
https://doi.org/10.3864/j.issn.0578-1752.2018.06.010
https://doi.org/10.3864/j.issn.0578-1752.2018.06.009
https://doi.org/10.3864/j.issn.0578-1752.2018.06.009
https://doi.org/10.1016/j.scitotenv.2016.06.141
https://doi.org/10.1016/j.ecoser.2017.10.003
https://doi.org/10.1016/j.ecoser.2017.10.003
https://doi.org/10.11867/j.issn.1001-8166.2014.05.0640


 J. Zhang et al.

1 3

Shi, P. J., Song, C. Q., & Cheng, C. X. (2019). Geographical synergetics: from understanding human-envi-
ronment relationship to designing human-environment synergy. Acta Geographica Sinica, 74(1), 3–15. 
https ://doi.org/10.11821 /dlxb2 01901 001.

Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015). The trajectory of the Anthropo-
cene: the great acceleration. The Anthropocene Review, 2(1), 81–98.

Wang, J. F., & Xu, C. D. (2017). Geodetector: Principle and prospective. Acta Geographica Sinica, 72(01), 
116–134.

Xin, Z. B., Xu, J. X., & Zheng, W. (2007). Effects on climate change and human activities to vegetation 
cover in Loess Plateau. Science in China, 11, 1504–1514.

Xu, L. L., Li, B. L., Yuan, Y. C., et al. (2015a). Changes in China’s cultivated land and the evaluation of land 
requisition compensation balance policy from 2000 to 2010. Resources Science, 37(8), 1543–1551.

Xu, Y., Sun, X. Y., & Tang, Q. (2015b). Human activity intensity of land surface: Concept, method and 
application in China. Acta Geographica Sinica, 70(07), 1068–1079.

Xu, X. R., & Xu, Y. (2017). Analysis of spatial-temporal variation of human activity intensity in Loess Pla-
teau region. Geographical Research, 36(4), 661–672.

Zhang, Z., Gao, J., & Gao, Y. (2015). The influences of land use changes on the value of ecosystem services 
in Chaohu Lake Basin, China. Environmental Earth Sciences, 74(1), 385–395.

Zhao, H. F., He, H. M., Bai, C. Y., & Zhang, C. J. (2018). Spatial–temporal characteristics of land use 
change in the loess plateau and its environmental effects. China Land Science, 32(7), 49–57. https ://
doi.org/10.11994 /zgtdk x.20180 622.10494 2.

Zhao, A. Z., Zhang, A. B., Lu, C. Y., et al. (2017). Spatio–temporal variation of vegetation coverage before 
and after implementation of Grain for Green Program in Loess Plateau, China. Ecological Engineer-
ing, 104, 13–22.

Zhu, X. W., Ma, N. W., Hu, P. F., & He, P. X. (2019). Farmland abandonment on the Loess Plateau of Long-
dong Region during the past 20 years and its driving force: a case study of Kongtong District, Pingli-
ang City, Gansu Province. Chinese Agricultural Science Bulletin, 35(9), 95–101.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Affiliations

Jun Zhang1,2 · Junping Yan1 · Liang Xue1  · Yuanzhi Yao3 · Xin Shu4

 Jun Zhang 
 zhangjun@xaufe.edu.cn

 Junping Yan 
 yanjp@snnu.edu.cn

 Yuanzhi Yao 
 yaoyuanzhi@auburn.edu

 Xin Shu 
 shu.xin@northeastern.edu

1 School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
2 School of Management, Xi’an University of Finance and Economics, Xi’an 710110, China
3 International Center for Climate and Global Change Research, School of Forestry and Wildlife 

Sciences, Auburn University, Auburn, AL 36832, USA
4 School of Public Policy and Urban Affairs, Northeastern University, Boston, MA 02115, USA

https://doi.org/10.11821/dlxb201901001
https://doi.org/10.11994/zgtdkx.20180622.104942
https://doi.org/10.11994/zgtdkx.20180622.104942
http://orcid.org/0000-0002-9076-2820
User
高亮


	Is there a regularity: the change of arable land use pattern under the influence of human activities in the Loess Plateau of China?
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Research area overview
	2.2 Data sources and pre-processing
	2.3 Analysis methods

	3 Results and analysis
	3.1 Whole region scale correlation analysis
	3.2 Provincial scale correlation analysis
	3.3 City scale spatial overlap analysis
	3.4 County scale spatial overlap analysis
	3.5 Correlation analysis of different spatial scales
	3.6 Analysis of driving factors

	4 Discussion
	4.1 Selection of the method in quantifying the influence of human activities
	4.2 Representing the arable land use pattern
	4.3 Limitations

	5 Conclusion
	Acknowledgements 
	References




