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Abstract
Prediction of drought class transitions has been received increasing interest in the field of 
water resource management. Markov chain models are effective prediction tools that are 
widely used to analyse drought class transitions by describing the temporal dependency of 
drought events. However, geophysical events or phenomena (such as drought events) can 
exhibit spatial effects resulting from spatial heterogeneity and/or dependency. This means 
that on the one hand the drought processes may vary over space, and on the other hand the 
state change of a drought event may not only depend on its previous state but also on the 
previous states of its neighbours, and it is thus unreasonable to directly apply Markov chain 
models without considering spatial effects. Therefore, this paper proposes a framework that 
considers spatial effects when employing drought class transition analysis. Three types of 
Markov chain models are introduced (traditional, local and spatial). To test for the exist-
ence of spatial effects, spatial clustering technology is selected to identify spatial hetero-
geneity, and a Q statistic is used to determine the existence of spatial dependency. Based 
on the results of these tests, a corresponding type of Markov chain models is then selected 
to analyse drought class transitions. Monthly rainfall time series data for Southwest China 
from 1951 to 2010 are employed in a case study, and the results show that spatial heteroge-
neity exists for both the 3- and 9-month SPI time series; however, the existence of spatial 
dependency is not confirmed. Forward and backward estimation rules are also obtained for 
drought class transitions using local Markov chain models.
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1 Introduction

Drought is a natural hazard that results from a deficiency in expected or ‘normal’ amounts 
of precipitation that, when extended over a season or longer, are not sufficient to meet the 
demands of human activities and the environment (Dracup et  al. 1980; Whilhite 2005). 
Drought results in disruption to the water supply of natural ecosystems and affects nor-
mal production and daily life; therefore, prediction of drought class transitions has been 
received increasing interest in the field of water resource management (Panu and Sharma 
2002; Nichol and Sawaid 2015).

According different theoretical backgrounds, there are two main approaches used to 
model drought class transitions. One is based on statistical analysis of the climatic record, 
which assumes that the future behaviour of drought will tend to replicate the behaviour 
of drought observed in the past. The other is based on mechanism analysis of the climate, 
which attempts to simulate the process of drought by making computer models of the cli-
mate system (Whilhite 2005). Compared to the development of statistical models, computer 
models representing the entire atmosphere/earth/ocean system are still in their infancy and 
are facing enormous challenges (Stockdale et al. 1998; Vu et al. 2015). Statistical models 
are still commonly used in drought class transitions, and among existing statistical models, 
Markov chain models are popular because they are effective for describing the probability 
of drought class transitions. For example, Markov chain models were used by Lohani et al. 
(1997, 1998) to derive drought characteristics and assess dry spells from long-term records 
of the Palmer Severe Drought Index (PDSI) in two climatic areas of Virginia (USA), and 
Banik et al. (2002) applied Markov chain models to analyse the probability of transitioning 
from a dry week to a non-dry or a dry week, while aiming to develop an index of drought 
proneness for a given area. In addition, Paulo et al. (2005) used the homogeneous and non-
homogeneous formulations of Markov chain models to predict standardized precipitation 
index (SPI) drought class transitions, and Yang et al. (2016) applied Markov chain mod-
els to calculate the expected residence time, return period and transition probabilities of 
drought in the Weihe river basin.

Markov chain models generally assume that future states of drought depend only on the 
current state of drought but do not dependent on the historical state of drought (Isaacson 
and Madsen 1976; Ross 2014). These models are essentially used to describe the tempo-
ral dependency of drought from a statistical perspective. However, geographical events or 
phenomenon (including drought events) exhibit spatial effects resulting from spatial het-
erogeneity and dependency, which are the most critical concepts in the field of spatial data 
analysis or spatial statistics (Yang et  al. 2018). Spatial heterogeneity emphasizes spatial 
differences that geographical events or phenomenon might vary over space rather than 
being constant or the distribution and relationships changes across spatial locations (Brun-
sdon et al. 1998; Deng et al. 2017). Spatial dependency indicates that geographical events 
or phenomenon close together in space tend to be more similar than those which are far-
ther apart (Lloyd 2006), and this principle is also called as the “First Law of Geography” 
that everything is related to everything else, but near things are more related to each other 
(Tobler 1970). It is noteworthy that spatial dependency does not deny the existence of spa-
tial heterogeneity, but it aims at describing the correlation among near different events or 
phenomenon.

Considering that drought is regarded as a typical spatial event or phenomenon, it is thus 
unreasonable to directly apply Markov chain models when analysing drought class transi-
tions without considering spatial heterogeneity and dependency, because a global model 
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without considering spatial heterogeneity only reflects the mean characteristic of the whole 
area and cannot reveal the spatial differences of drought class transitions at different sub-
areas (Deng et al. 2017; Yang et al. 2017). Additionally, spatial dependency indicates that 
the future state change of a drought event may not only depend on its previous states, but 
also on the previous states of its neighbours (Cressie 1993). Obviously, without consider-
ing spatial dependency, it is difficult to identify this pattern. Therefore, this paper presents 
a framework for drought class transitions using Markov chain models while simultaneously 
considering the spatial effects resulting from spatial heterogeneity and/or dependency.

2  Methods

Figure 1 shows the analytical framework for drought class transitions using Markov chain 
models that simultaneously considers spatial effects. In this process, the standardized pre-
cipitation index (SPI) is firstly calculated based on monthly rainfall time series data for a 
given area, and it is then determined whether spatial heterogeneity exists within the SPI 
time series. If spatial heterogeneity does not exist, a global Markov chain model can be 
directly used to analyse drought class transitions. If it does exist, it is necessary to deter-
mine whether spatial dependency of the SPI drought event exists. If spatial dependency 
is found to exist, spatial Markov chain models are then selected to analyse drought class 
transitions, and if it does not exist, local Markov chain models are used. One can find 
that the proposed framework is a complete process to consider spatial heterogeneity and 

Fig. 1  Analytical framework of Markov chain models for drought class transition analysis
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dependency in analysing drought class transitions, but spatial Markov chain is just a model 
which can be applied to handle spatial heterogeneity.

2.1  SPI drought index

The standardized precipitation index (SPI) is a normalized index that presents the prob-
ability of an observed rainfall amount occurring when compared to the rainfall climatol-
ogy over the long-term at a particular geographical location (Mckee et  al. 1993). It can 
be used to represent the probability of abnormal wetness and dryness. Positive (negative) 
SPI values represent a precipitation surplus (deficit). According to the different SPI val-
ues in Table  1, drought events can be divided into four classes: non-drought (0 ≤ SPI), 
mild drought (− 1.0 ≤ SPI < 0), moderate drought (− 1.5 ≤ SPI < − 1.0), and severe or 
extreme drought (SPI < − 1.5). It can be seen that increasingly negative SPI values indi-
cate an increasingly serious event. In addition, SPI values can be calculated for different 
time scales (e.g. 3-, 6-, 9-, or 12-months) and can thus facilitate analysis on the impact of 
drought events on various types of water resource management. For instance, soil mois-
ture conditions respond to precipitation anomalies on a relatively short-scale term, whereas 
groundwater, stream and reservoir storage reflect longer-term precipitation anomalies 
(Moreira et al. 2008; Paulo and Pereira 2007).

Compared with physically-based PSDI, which employs a simple balance model, SPI has 
the following advantages: (a) only monthly precipitation data need to be collected to enable 
computation; (b) standardization of the SPI can be used to determine the rarity of a current 
drought; (c) the SPI value can be compared across areas that have markedly different cli-
mates; (d) the SPI value can be determined on different time scales (Trenberth et al. 2014). 
The Lincoln Declaration on Drought Indices, which was approved by the World Meteoro-
logical Organization in 2009, recommended that ‘the Standardized Precipitation Index be 
used to characterize meteorological droughts around the world’ (Hayes et al. 2011). There-
fore, the SPI was selected to identify drought classes in this research.

2.2  Three types of Markov chain models

A traditional Markov chain is a stochastic process, X, and at any time, t, the probability that 
Xt+1 takes a particular value, j, depends on the value of the current state, Xt, and is condi-
tionally independent from historical states Xt−1,...,X0 (Cinlar 1975). This can be represented 
as

A traditional Markov chain can be characterized by a set of states, S, and the tran-
sition probability, pij of a drought prediction between states i and j. The transition 

(1)P{Xt+1 = j|Xt, ...,X0} = P{Xt+1|Xt = i} ∀i, j ∈ S, t ∈ T

Table 1  Drought class 
classification of SPI

Code Drought classes SPI values

1 Non-drought 0 ≤ SPI
2 Mild drought − 1.0 ≤ SPI < 0
3 Moderate drought − 1.5 ≤ SPI < − 1.0
4 Severe/extreme drought SPI < − 1.5
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probability, pij, represents the probability that the traditional Markov chain is in state j at the 
next time point, when the state is i at the present time point. The transition probability matrix 
P = [pij] = P{Xt+1 = j|Xt = i} can be estimated by counting the number of times, nij, that a 
state series passes from state i to state j, and the estimated value can be described as

The traditional Markov chain model is an effective tool for dealing with the temporal 
dependency of drought events, and it is essentially a global model that has constant parameters 
over the whole study area. As previously mentioned, the process of a drought event changes 
maybe over space and is not constant, and is therefore spatially heterogeneous. The global 
Markov chain model is unable to adequately reveal spatial variations in drought class transi-
tions for the heterogeneous study area, and it is thus necessary to use local Markov chain mod-
els to analyse drought class transitions, whose parameters are dependent on spatial locations or 
areas. The probability condition of a local Markov chain model can be represented as

where loc represents spatial location information. The transition probability matrix 
Ploc = [ploc

ij
] = P{Xloc

t+1
= j|Xloc

t
(loc) = i} can be estimated by first counting the number of 

times, nloc
ij

 , that a state series passes from state i to state j at a spatial location or area, loc, 
which can be written as

However, local Markov chain models can only be applied to deal with spatial heteroge-
neity, and when drought events not only exhibit spatial heterogeneity but also show spatial 
dependency, an extended model of a local Markov chain model, a spatial Markov chain model 
that incorporates spatial dependency needs to be employed.

Spatial Markov chain models were first presented to identify whether overlapping trends 
of regional development existed within a regional economy (Rey 2001). To detect the overall 
convergence of regional income, a spatial Markov matrix was defined based on modification 
of the traditional Markov matrix that conditions a region’s transition probabilities on the initial 
income class of its ‘spatial context’. The ‘spatial context’ is defined as the neighbouring state 
of a region and is used to analyse spatial dependency. As illustrated in Table 2 for a case where 
k is equal to 3, the spatial Markov matrix decomposes the local k × k 2-dimensional transition 
matrix into a k × k × k 3-dimensional transition matrix using the states of spatial context.

In Table 2, the conditional transition probability, ploc
ij
(l) , indicates the transition probability 

that a spatial location or area, loc, is in state j at the next time point, given that at the present 
time it is in state i and its spatial context is in state l. The equation for estimating the value of 
ploc
ij
(l) can be represented as

(2)p̂ij =
nij∑
j nij

(3)P{Xloc
t+1

= j|Xloc
t
, ...,Xloc

0
} = P{Xloc

t+1
|Xloc

t
= i} ∀i, j ∈ S, t ∈ T

(4)p̂loc
ij

=
nloc
ij∑
j n

loc
ij

(5)p̂loc
ij
(l) =

nloc
ij
(l)

∑
j n

loc
ij
(l)



 Natural Hazards

1 3

where nloc
ij
(l) (l = 1,… , k) represents the counts that when area, loc, and its spatial context 

are in states i and l at the present time, respectively, area loc is in state j at the next time 
point.

Table  3 lists the results of a comparison between the three types of Markov chain 
models. Traditional Markov chain models generally assume that drought events are 
spatially stationary and independent, and a global model that only describes temporal 
dependency is thus appropriate for a homogeneous study area. Both local and spatial 
Markov chain models can be applied in a heterogeneous area. If it is determined that 
the drought events in a study area are spatially dependent, then a spatial Markov chain 
model that incorporates spatial context states can be reasonably selected as the analyti-
cal model, otherwise local Markov chain models are required.

Table 2  Spatial and local 
Markov transition matrices

pij(k) indicates the probability of transfer from state i to state j when 
spatial context belongs to state k
pij =

∑k

l=1
pij(l)p(l) ; pij indicates the probability of transfer from state 

i to state j under all conditions and the probability is p(l) when spatial 
context belongs to state l

Spatial 
context

(t + 1)/t 1 2 3

1 1 p
loc

11
(1) p

loc

12
(1) p

loc

13
(1)

2 p
loc

21
(1) p

loc

22
(1) p

loc

23
(1)

3 p
loc

31
(1) p

loc

32
(1) p

loc

33
(1)

2 1 p
loc

32
(2) p

loc

12
(2) p

loc

13
(2)

2 p
loc

21
(2) p

loc

22
(2) p

loc

23
(2)

3 p
loc

31
(2) p

loc

32
(2) p

loc

33
(2)

3 1 p
loc

11
(3) p

loc

12
(3) p

loc

13
(3)

2 p
loc

21
(3) p

loc

22
(3) p

loc

23
(3)

3 p
loc

31
(3) p

loc

32
(3) p

loc

33
(3)

– 1 p
loc

11
p
loc

12
p
loc

13

2 p
loc

21
p
loc

22
p
loc

23

3 p
loc

31
p
loc

32
p
loc

33

Table 3  Comparison between three types of Markov chain models

The symbol √(X) indicates the model can (cannot) handle the corresponding characteristic

Model type Applied area Spatial heterogeneity Spatial 
depend-
ency

Traditional Markov chain models Global X X
Local Markov chain models Local √ X
Spatial Markov chain models Local √ √
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2.3  Test for spatial heterogeneity of SPI drought events

In spatial analysis, a heterogeneous area can be divided into a series of homogenous or 
quasi-homogenous subareas (Wang et al. 2016), and based on this assumption, testing 
for spatial heterogeneity of the SPI time series can be converted into a homogenous 
partition problem. In this respect, we first assume that the study area can be divided into 
a series of subareas based on the similarity of SPI time series, and we then evaluate the 
validity of the partitioning result. An evaluation result that shows the study area can be 
divided shows that drought events are spatially heterogeneous, and vice versa.

Spatial clustering is a widely-used strategy employed with the homogenous partition 
problem, and it aims to group spatial data into several meaningful clusters according to 
their similarity in spatial and temporal domains (Deng et al. 2017). In this respect, time 
series that are in the same cluster are more similar to each other than to those in other 
clusters, and they are more similar when they are located adjacent to each other. Spatial 
clustering can be used to divide the whole study area into several homogenous subareas, 
and spatio-temporal series at the same subareas are with the similar evolution charac-
teristics. Therefore, for SPI-based drought analysis, the SPI spatial clustering algorithm 
can be used to partition the study area into several homogenous subareas.

Although a variety of spatial clustering algorithms have been developed to handle 
spatial data, a hierarchical clustering method known as Regionalization with Dynami-
cally Constrained Agglomerative Clustering and Partitioning (REDCAP) was adopted 
in this study, as this guarantees spatial proximity and attributes similarity within clus-
ters. The REDCAP algorithm is generally implemented in two steps: A hierarchical 
clustering strategy is firstly employed to generate a spatially contiguous tree, and aver-
age linkage is used to define the similarity of two clusters. The spatially contiguous tree 
is then partitioned into several subtrees by optimizing an objective function. A detailed 
introduction to this process can be found in Guo (2008).

When using the REDCAP algorithm, spatial clustering results with different num-
bers of clusters or subareas can be obtained. A clustering validity index, namely the 
Sil index, was selected to identify the validity of the partitioning result in this research. 
The Sil index can be used to measure the over silhouette width, which enables ‘clear-
cut’ clusters to be distinguished from ‘weak’ clusters. A clustering result that corre-
sponds to a larger Sil index is more pronounced. Therefore, if the Sil index monotoni-
cally decreases as the numbers of clusters increase, then the study area is considered 
to be homogenous and does not need to be divided; otherwise, spatial heterogeneity is 
present, and several homogenous or quasi-homogenous subareas can be obtained based 
on the clustering validity evaluation result.

2.4  Test for spatial dependency of SPI drought events

Spatial dependency can be described as the first law of geography where ‘everything is 
related to everything else, but near things are more related than distant things’ (Tobler 
1970); this implies that the state change of drought events in a homogeneous area may 
also depend on the previous state of its spatial neighbours (which are defined as being 
the spatial context). If we assume that there are n neighbours for a homogeneous area, 
loc, then the value of its spatial context, SPIloc

SC
(t) , can be estimated by the following 

formula

User
高亮
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where SPIloc
j
(t) indicates the SPI value of the jth ( j = 1, ..., n ) neighbour of the area, loc, at 

time, t; wloc
j

 indicates the weight of the jth neighbouring area, which is used to reflect the 
strength of spatial dependency between the area, loc, and its jth neighbouring area. In this 
study, we assumed that the weight was obtained by the correlation coefficient of SPI time 
series, which meant that when the correlation coefficient was larger, the weight assigned to 
the neighbouring area was also larger.

If the spatial context is not important for class transition probabilities in an homogene-
ous area, loc, then the null hypothesis can be described as

The likelihood ratio statistic, Q, (Anderson and Goodman 1957; Kullback et al. 1962) 
can be used to test the null hypothesis, the form of which is described as

where k indicates the number of the drought class; ploc
ij

 indicates the transition probability 
without considering the spatial context; ploc

ij
(l) and nloc

ij
(l) indicate spatial transition prob-

ability and numbers when the spatial context is in state i, respectively; and the statistic Q is 
asymptotically distributed as χ with K(K − 1)2 degrees of freedom.

3  Case study

The study area, southwest China, is one of the most significant grain production regions 
(Jia et al. 2018), and in recent decades, drought hazards have occurred frequently in this 
region which resulting in large agricultural losses (Zuo et  al. 2014). Therefore, agricul-
tural security and ecological restoration call for a detailed understanding of spatial effects 
of drought transition rules in this area. The study area comprises Chongqing, Guizhou, 
Sichuan and Yunan provinces in Southwest China and covers a total area of 1.1 × 106 km2. 
Precipitation data for the time period (January 1951 to December 2010) were collected at 
80 meteorological stations (China Meteorological Data Service Center, https ://data.cma.
cn/) in the study area. The distribution of these meteorological stations is shown in Fig. 2.

Considering the scale representation and the distribution diversity of drought classes, 
the 3- and 9-month SPI values were first calculated by the program (SPI_SL_6.exe), which 
can be downloaded from the National Drought Mitigation Center (https ://droug ht.unl.edu/
About Us.aspx). On the basis of 3- and 9-month SPI time series, the REDCAP algorithm 
was applied to divide the study area into several subareas with different cluster numbers. 
(Results of spatial clustering analysis are shown in Fig. 3.) It was found that the Sil index 
values of both 3- and 9-month SPI clustering results did not monotonically decrease with 
an increase in the numbers of clusters, and both of their curves firstly rose and then fell, 

(6)SPIloc
SC
(t) =

n∑
j=1

wloc
j
SPIloc

j
(t)

n∑
j=1

wloc
j

(7)ploc
ij
(1) = ploc

ij
(2) = ploc

ij
(3) = ... = ploc

ij
(k) = ploc

ij
, ∀i, j

(8)Q = −2 log

⎧⎪⎨⎪⎩

k�
l=1

k�
i=1

k�
j=1

�
ploc
ij

ploc
ij
(l)

�nloc
ij
(l)⎫⎪⎬⎪⎭

https://data.cma.cn/
https://data.cma.cn/
https://drought.unl.edu/AboutUs.aspx
https://drought.unl.edu/AboutUs.aspx
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which indicated that spatial heterogeneity existed within the SPI time series. Furthermore, 
for these two time scales SPI, the study area could be divided into 8 and 10 clusters or sub-
areas, respectively, which corresponded to maximum Sil index values.

The clustering results for the 3- and 9-month SPI time series are shown in Fig. 4. A 
comparison of the clustering results between these two scales shows that although there 
are certain changes in local locations, the overall results are relatively similar. As all the 

Fig. 2  Distribution of meteoro-
logical stations used in the study 
area

Fig. 3  Results of clustering validation evaluation for 3- and 9-month SPI time series
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neighbours of cluster C1-7 and C2-8 ({C1-1, C1-2, C1-3, C1-5, C1-8}, {C2-3, C2-4, C2-5, 
C2-7, C2-9}) were contained in clustering analysis results, we focused on the drought class 
transitions of subareas C1-7 and C2-8.

The 3- and 9-month SPI time series of subareas C1-7 and C2-8 and their spatial con-
texts are shown in Fig. 5. The continuous SPI values were converted into drought classes 
based on the information provided in Table  1. Conditional transition probabilities were 
computed using Eqs. (4) and (5), and the spatial and local Markov matrixes of C1-7 and 
C2-8 are listed in Tables 4 and 5. To test spatial dependency, the null hypothesis was that 
drought class transitions of subareas C1-7 and C2-8 were independent from their spatial 
contexts. The statistics, Q, of subareas C1-7 and C2-8 are 3.51 and 0.71, respectively. 
As these values are smaller than χ2(36) = 51.00 when a significance level (α) of 0.05 is 
selected; therefore, the null hypothesis was not rejected because it could not be proven 
that the state change of drought events in subareas C1-7 and C2-7 were dependent on their 
spatial contexts. Therefore, Markov chain models are suitable for use in analysing drought 
class transitions in subareas C1-7 and C2-8.

On the basis of local Markov matrixes, we defined two kinds of estimation rules for ana-
lysing drought class transitions, and these are described as follows:

(1) The forward estimation rule: If state(loc, t) = i, then state(loc, t + 1) = j with the 
possibility of ploc

ij
(l) , where state (loc, t) indicates the drought state of subarea loc at 

Fig. 4  Clustering results of 3- and 9-month SPI time series

Fig. 5.  3- and 9-month SPI time series of clusters C1-7 and C2-8 and their spatial contexts
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time t and ploc
ij
(l) represents forward estimation possibility. This rule can be used to esti-

mate the next unknown state when the present state is known, which can be directly 
obtained from local Markov transition matrixes.

(2) Backward estimation rule: If state (loc, t) = j, then state (loc, t − 1) = i with the 
possibility of ′ploc

ij
 , where ′ploc

ij
 represents backward estimation possibility. This rule was 

can be used to estimate the previous unknown state when the present state is known, and 
is calculated by the following expression

According to the above defined rule, a series of specific rules can be achieved as 
follows:

Rule 1 If state (C1-7, t) = 1, then there is a 61.76% possibility of state(C1-7, t + 1) = 1. 
This means that if the state of cluster C1-7 is non-drought at the present time point, the 
possibility of it continuing to be non-drought at the next time point (for drought with a 
3-month time scale) is 61.76%.
Rule 2 If state(C1-7, t) = 4, then there is a 50% possibility of state(C1-7, t + 1) = 3, which 
means that if the state of subarea C1-7 is severe/extreme drought at the present time 
point, then the possibility of the next state of subarea C1-7 being moderate drought is 
61.76% (for drought with a 3-month time scale).

(9)�p̂loc
ij

=
nloc
ij∑
i n

loc
ij

Table 4  Spatial Markov 
transition probability of cluster 
C1-7

Spatial 
context

(t + 1)/t 1 2 3 4

1 1 0.6429 0.3214 0.0357 0.0000
2 0.3333 0.5556 0.1111 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000

2 1 0.5000 0.3333 0.1667 0.0000
2 0.4000 0.6000 0.0000 0.0000
3 0.3333 0.0000 0.3333 0.3333
4 0.0000 0.0000 1.0000 0.0000

3 1 0.0000 0.0000 0.0000 0.0000
2 1.0000 0.0000 0.0000 0.0000
3 0.5000 0.0000 0.5000 0.0000
4 0.0000 0.0000 0.0000 0.0000

4 1 0.0000 0.0000 0.0000 0.0000
2 0.0000 1.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000

– 1 0.6176 0.3235 0.0588 0.0000
2 0.3846 0.5769 0.0385 0.0000
3 0.4000 0.2000 0.2000 0.2000
4 0.0000 0.0000 0.5000 0.5000
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Rule 3 If state(C2-8, t) = 2, then there is a 5.13% possibility of state(C2-8, t + 1) = 3, 
which means that if the state of subarea C2-8 is mild drought at the present time point, 
then there is a 5.13% possibility of the next state of subarea C2-8 being moderate 
drought (for drought with 9-month time scale).
Rule 4 If state(C1-7, t) = 1, then there is a 6.06% possibility of state(C1-7, t − 1) = 3, 
which means that if the present state of subarea C1-7 is non-drought, then there is a 
6.06% possibility of the previous state of subarea C2-8 being moderate drought (for 
drought on a 3-month time scale).
Rule 5 If state(C2-8, t) = 2, then there is a 82.05% probability of state(C1-7, t − 1) = 2, 
which means that if the present state of subarea C2-8 is mild drought, then there is a 
82.05% possibility of the previous state of subarea C2-8 being mild drought (for drought 
on a 9-month time scale).
Rule 6 If state(C2-8, t) = 3, then there is a 20% probability that state(C1-7, t − 1) = 4, 
which means that if the present state of subarea C2-8 is moderate drought, then there is 
a 20% probability of the previous state of subarea C2-8 being severe/extreme drought 
(for drought on a 9-month time scale).

In addition, forward and backward estimation possibility graphs can be used to express 
all the rules for subareas C1-7 and C2-8, as shown in Figs. 6 and 7. 

Table 5  Spatial Markov 
transition probability of cluster 
C2-8

Spatial 
context

(t + 1)/t 1 2 3 4

1 1 0.8636 0.1364 0.0000 0.0000
2 0.2000 0.7000 0.1000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000

2 1 0.8333 0.1667 0.0000 0.0000
2 0.1765 0.7647 0.0000 0.0588
3 0.0000 0.6667 0.3333 0.0000
4 0.0000 0.0000 0.0000 0.0000

3 1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.5000 0.5000

4 1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 1.0000

– 1 0.7143 0.2857 0.0000 0.0000
2 0.1282 0.8205 0.0513 0.0000
3 0.200 0.2000 0.4000 0.2000
4 0.0000 0.0000 0.5000 0.5000
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4  Conclusions and discussion

This paper presents the use of Markov chain models in drought class transition analy-
sis while considering the results of spatial effects relating to spatial heterogeneity and 
dependency. Our contributions are summarized as follows:

We firstly showed that it is unreasonable to directly apply traditional Markov chain 
models to analyse drought class transitions without considering the spatial effects 
resulting from spatial heterogeneity and dependency. We then proposed a framework for 
Markov chain models that considers spatial effects.

Second, three types of Markov chain models (traditional, local, and spatial) were 
reviewed and their application scopes were discussed. Traditional Markov chain models 
are suitable for analysing drought event that have no spatial effects, local Markov chain 
models can be used to handle spatial heterogeneity, and spatial Markov chain models 
can be employed to deal with spatial heterogeneity and dependency.

Fig. 6  Forward estimation possibility graphs of subareas C1-7 (left) and C2-8 (right)

Fig. 7  Backward estimation possibility graphs for subareas C1-7 (left) and C2-8 (right)
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Third, strategies for testing for the existence of spatial heterogeneity and dependency 
were introduced. To test for spatial heterogeneity, spatial clustering technology was used to 
divide the study area into several homogenous or quasi-homogenous subareas based on the 
SPI time series, and the clustering validation index was then selected to identify whether 
spatial heterogeneity existed for drought in the case study area. To test for spatial depend-
ency, the spatial Markov chain matrix was first constructed, and a statistical test was then 
applied to determine whether the local Markov chain model needed to consider the spatial 
context.

The proposed frameworks were used to analyse drought class transitions in Southwest 
China. The spatial clustering technique was used to confirm spatial heterogeneity based on 
the 3- and 9-month SPI time series, and different division results were obtained. However, 
the test for spatial dependency was unable to prove that drought states in the selected sub-
area depended on their spatial contexts. It is known that the spatial context plays a signifi-
cant role in the test for spatial dependency. Nevertheless, in this research, spatial context 
was defined by the weighting value of its spatial neighbours; this involved use of a smooth-
ing process, and it may not be capable of effectively representing particular situations (such 
as extreme drought in a neighbour). Additionally, a series of models have been developed 
to deal with the nonlinear relationships, such as a hybrid model of a Markov chain model 
and an artificial neural network for drought forecasting (Rezaeianzadeh et al. 2016), and 
a nonlinear multivariate drought index for comprehensive drought characteristic analysis 
(Yang et al. 2017). Nevertheless, these models also lack consideration of spatial effects.

Therefore, future research will focus on the following aspects: exploring whether 
drought class transitions in part by neighbours that have a drought severity or elevation that 
is very different from that of the study subarea; devising an expert system for drought pre-
diction based on forward and backward estimation rules generated by local Markov chain 
models; and extending the proposed framework by integrating nonlinear characteristics and 
other information, such us Mediterranean teleconnection information (Bateni et al. 2018).
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