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• Spatial and temporal differentiation of
COVID-19 epidemic spread in China
and its influencing factors are analyzed.

• The global and local spatial correlation
characteristics of the epidemic distribu-
tion present a positive correlation.

• The population inflow fromWuhan and
strength of economic connection are the
main factors affecting the epidemic
spread.

• The interaction influence of detection
factors on the epidemic spread exceeds
that of the single factor.

• When the average temperature in win-
ter is maintained at 11–16 °C, the epi-
demic spread rate is higher.
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This paper uses the exploratory spatial data analysis and the geodetectormethod to analyze the spatial and tem-
poral differentiation characteristics and the influencing factors of the COVID-19 (corona virus disease 2019) ep-
idemic spread in mainland China based on the cumulative confirmed cases, average temperature, and socio-
economic data. The results show that: (1) the epidemic spread rapidly from January 24 to February 20, 2020,
and the distribution of the epidemic areas tended to be stable over time. The epidemic spread rate in Hubei prov-
ince, in its surrounding, and in some economically developed cities was higher, while that in western part of
China and in remote areas of central and eastern China was lower. (2) The global and local spatial correlation
characteristics of the epidemic distribution present a positive correlation. Specifically, the global spatial correla-
tion characteristics experienced a change process from agglomeration to decentralization. The local spatial corre-
lation characteristicsweremainly composed of the‘high-high’ and ‘low-low’ clustering types, and the situation of
the contiguous layout was very significant. (3) The population inflow fromWuhan and the strength of economic
connectionwere themain factors affecting the epidemic spread, togetherwith the population distribution, trans-
port accessibility, average temperature, and medical facilities, which affected the epidemic spread to varying de-
grees. (4) The detection factors interactedmainly through themutual enhancement and nonlinear enhancement,
and their influence on the epidemic spread rate exceeded that of single factors. Besides, each detection factor has
an interval range that is conducive to the epidemic spread.
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1. Introduction

OnDecember 30, 2019, theWuhanMunicipalHealth Commission is-
sued an urgent notice on the treatment of pneumonia due to unknown
causes, claiming that in the previous days some medical institutions
have seen patients with unknown etiology, and requiringmedical insti-
tutions to make statistics and report on the treatment on time (http://
wjw.wuhan.gov.cn/). On January 8, 2020, the expert group of China
Health Commission initially determined the cause of the outbreak as a
novel coronavirus, which was identified by gene sequencing and
named as COVID-19. This virus has a similar transmission route with
the SARS (Severe Acute Respiratory Syndrome) virus, and may have
been originally circulating in wild animals (Zhao et al., 2020). On Janu-
ary 12, the World Health Organization (WHO) officially named the
novel coronavirus “2019-ncov” (2019 novel coronavirus), and esti-
mated its incubation period to be about 2 to 10 days. Since then, the
novel coronavirus gradually entered into the public view, and became
the hot topic of the whole society. According to the novel coronavirus
pneumonia protocol (4th edition) published by the National Health
Commission of the People's Republic of China, the symptoms of
COVID-19 include mainly fever, fatigue and dry cough, accompanied
by nasal congestion, runny nose, and diarrhea in some patients. By the
end of theMarch 13, a total of 116 countries or regions in the world ap-
peared to be hit by the COVID-19 epidemic, andmore than130,000 peo-
ple have been diagnosed. With the continuous spread of the COVID-19
epidemic, several countries or regions of the world have been forced
to take emergencymeasures such as closing cities, stopping production,
suspending school classes, and restricting population movement, caus-
ing great harm to economic development and residents' health (An
and Jia, 2020). Therefore, it has become an urgent scientific problem
to grasp the spatial and temporal changes of the COVID-19 epidemic
spread, and clarify the driving mechanism.

Since the outbreak of COVID-19 epidemic, scholars have carried out
abundant studies on the epidemic spread and achieved fruitful research
results, which are of great guiding significance for the prevention and
control of the epidemic. Joseph et al. (2020) estimated the size of the ep-
idemic by using a mathematical model based on the data of confirmed
cases of COVID-19 and residents' travel (including via trains, planes,
and roads), and concluded that about 75,815 people were infected in
the Wuhan city during the early outbreak stage of the epidemic. David
et al. (2020) compared COVID-19 with other viruses, claiming that a
sustained epidemic would pose a serious threat to global health, and
proposing that the goal of sustainable development could be achieved
by building a human-environment-animal health alliance. Liu et al.
(2020a) used the exponential growth andmaximum likelihood estima-
tion method to determine the transmission dynamics of COVID-19 in
Wuhan, and found that the average incubation period of the virus was
4.8 days, and the basic regeneration index reached 2.90 (95% Confi-
dence Interval (CI): 2.32–3.63) and 2.92 (95% CI: 2.28–3.67). Ai et al.
(2020) used the statistical analysis method to investigate the impact
of lockdown measures in Wuhan (January 23, 2020) on the COVID-19
epidemic spread in other parts of China. They claim that if the closure
measures were implemented 2 days in advance, it could have been pos-
sible to effectively prevent frombeing infected of 1420 people, if the city
was closed 2 days later, there would have been 1462 more infections.
Bai et al. (2020) used the transmission dynamics model to describe
the evolution rule of the epidemic based on the data of confirmed
COVID-19 cases in the Shaanxi province, revealed that the high inci-
dence areas were mainly located in Xi 'an, Ankang, and Hanzhong, and
that the outbreak peak period was in early February 2020, with the
basic regeneration index of the epidemic spread reaching 2.95. Wang
et al. (2020a) used the Spearman correlation analysis method to find
the relationship between the incidence of COVID-19 and the Baidu mi-
gration index in Guangdong province, and found that there was a posi-
tive correlation between the daily incidence and the 3-day migration
index.Wang et al. (2020b) used the complex networkmodel to explore
the impact of resuming work in surrounding cities on the epidemic sit-
uation in Hubei province on February 17, February 24, andMarch 2, and
came to a conclusion that resumingwork onMarch 2would not cause a
second outbreak of the epidemic. Yan et al. (2020) predicted the trend
of the COVID-19 epidemic by building a time-delay dynamics model,
and claimed that the epidemic could be controlled in the short period
if the prevention and control efforts were kept unchanged. Chen and
Cao (2020) made an epidemiological analysis of the daily confirmed
cases in China, affirming that the situation of epidemic prevention and
control in China was severe, and that targeted control measures should
be formulated for the returning of enterprises and personnel in the fu-
ture. Liu et al. (2020b) analyzed the spatial and temporal characteristics
of the epidemic spread in Guangdong province, and found that the pre-
vention and control measures adopted were effective, and high-risk
areas were located in economically developed areas. Liu et al. (2020c)
used the statistical analysis method to analyze the temporal and spatial
characteristics and the transmission path of the COVID-19 epidemic in
Zhuhai, revealing that the input from the epidemic area and family
gatherings were the causes of epidemic spread. The research report
published by theYellowRiver Civilization and Sustainable Development
Research Center of theHenan University presented detailed statistics on
single case in Henan province, summarizing the epidemic spread into
four modes, and providing control strategies (http://skc.henu.edu.cn/
info/1047/4673.htm).

By combing the relevant literature, it was found that current studies
on the COVID-19 epidemic spread have the following deficiencies:
(1) The majority of existing studies explore the changes of the virus re-
generation index from the perspectives of pathology, epidemiology,
clinical medicine, molecular biology, and mathematics, so as to deter-
mine the epidemic stage of the disease and predict the development
trend of the epidemic (Ai et al., 2020; Wang et al., 2020b). Although
some scholars try to reveal the epidemic spread rules from a geograph-
ical perspective, they mainly focus on the spatial and temporal evolu-
tion characteristics of the epidemic, and seldom discuss the driving
causes of the epidemic spread (Liu et al., 2020c). (2) In terms of research
methods, current studies employ mainly the correlation analyses and
regression analyses method, while the application of modern informa-
tion technology and spatial analysis method are relatively limited
(Wang et al., 2020a). (3) In terms of research scale, scholars generally
investigate the epidemic spread characteristics at the city or regional
scale, and there are few studies at the national level (Liu et al., 2020b;
Liu et al., 2020b). (4) In relation to data sources, the data of COVID-19
cases can be obtained very easily; however, there are great difficulties
in obtaining environmental and socio-economic data related to the ep-
idemic spread, which is why current researches lag behind in the driv-
ing mechanism of epidemic spread. In this paper, the number of
confirmed COVID-19 cases in mainland China was taken as the mea-
surement index, and the spatial and temporal differentiation of the ep-
idemic spread were described by the exploratory spatial data analysis
method. Then, the key factors affecting the COVID-19 epidemic spread
were identified by using the geodetectormethod, so as to provide refer-
ences for clarifying the epidemic spread rule, formulating some protec-
tion policies, and promoting the resumption of work and production.

2. Data and methods

2.1. Data sources

The basic research objects of this paper are the administrative
units at prefecture-level and above in mainland China, excluding
Hong Kong, Macao, and Taiwan, and including Jiyuan, Tianmen,
Xiantao, Qianjiang, the Shennongjia forest district, counties, and
cities directly administered by the Hainan province and Xinjiang
Uygur autonomous region. In order to maintain the integrity of
the data, 366 units (excluding Sansha) were finally selected. The
cumulative number of COVID-19 cases on January 24, February 6,

http://wjw.wuhan.gov.cn/
http://wjw.wuhan.gov.cn/
http://skc.henu.edu.cn/info/1047/4673.htm
http://skc.henu.edu.cn/info/1047/4673.htm
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and February 20, 2020 comes from the epidemic announcements
issued by each provincial (province-level municipality or autono-
mous region) health commission, while the first confirmation of
COVID-19 in each region is taken from news reports. The spatial
and temporal distance of each geographical unit arriving in
Wuhan comes from the travel navigation service provided by
Baidu map (http://lbsyun.baidu.com). Through the data interface,
developers can calculate the route planning distance and driving
time under different travel modes according to the starting and
destination points. This paper took Wuhan as the starting point
and other regions as the destination point to calculate the OD
(Origination Destination) driving distance and time in self-
driving mode. The proportion of inflow population from Wuhan is
taken from the migration big data of Baidu map (http://qianxi.
baidu.com/). These data allow to analyze the location information
of mobile phone users through an LBS (Location Based Services)
open platform, and to map their migration trajectory, so as to ob-
serve the population migration status. The acquisition period of
Baidu migration data in the paper is from January 11 to 23, 2020,
specifically referring to the top 100 cities toward which people
move out of Wuhan every day. The winter average temperature
data for each unit are from the weather network (https://www.
tianqi.com). In addition, since it is impossible to obtain data on
the population, gross domestic product, and number of beds in
medical institutions for each region during the COVID-19 epidemic
period, this paper employs the corresponding data in 2018, which
is derived from the 2019 provincial statistical yearbooks or the
2018 statistical bulletins.

2.2. Research methods

2.2.1. Formula of epidemic spread rate
Using the cumulative number of COVID-19 cases as an indicator to

measure the epidemic spread rate is biased due to the large differences
in base population for different regions of mainland China. Therefore,
the cumulative number of COVID-19 cases was divided by the number
of days to calculate the epidemic spread rate, using the following
formula:

Vi ¼
Si

M−Ni
ð1Þ

where Vi represents the epidemic spread rate in region i; Si represents
the cumulative number of COVID-19 cases in region i by February 20;
M represents February 20; and Ni represents the date of the first con-
firmed case in region i.

2.2.2. Exploratory spatial data analysis method
The exploratory spatial data analysis method was used to verify

whether the observed value of a unit has spatial correlationwith the ob-
served values of its neighboring units (Li et al., 2018). The global
Moran's I index is used to measure the global spatial correlation, while
the local Moran's I index in LISA (local indicators of spatial association)
was used to measure the local spatial correlation (Rong et al., 2016).
Their formulas (Anselin, 1995; Gallo and Ertur, 2003) are as follows:

I ¼
∑
K

i¼1
∑
K

j¼1
Xi−

−x
� �

Xj−
−x

� �

S2 ∑
K

i¼1
∑
K

j¼1
Wij

I∗ ¼ ∑
m

p≠q
WpqZpZq

8>>>>>>>>><
>>>>>>>>>:

ð2Þ

where I is the globalMoran's I index;Xi and Xj are the observed values of
unit i and j;Wij is the spatial weightmatrix (with 1 as adjacent, and 0 as
non-adjacent), S2 represents the variance; K represents the number of
observation units; I* is the local Moran's I index; Wpq is the normalized
form of the spatial weightmatrix; and Zp, Zq are the normalized forms of
the observed values in unit p and q.

2.2.3. Geodetector method
Spatial differentiation is a basic characteristic of geographical phe-

nomena, the Geodetector method can measure the degree of spatial
stratified heterogeneity and test its significance, through the within-
strata variance less than the between strata variance (Xu et al., 2018).
The Geodetector method comprises four modules: factor detection, in-
teraction detection, risk detection and ecological detection. The factor
detection is expressed by q value (Wang and Xu, 2017), its formulas
are as follows:

q ¼ 1−
∑L

h¼1Nhσh
2

Nσ2 ¼ 1−
SSW
SST

ð3Þ

SSW ¼ ∑L
h¼1Nhσh

2, SST ¼ Nσ2 ð4Þ

where q represents the explanatory power of detect factor X on the spa-
tial distribution of detected factor Y, the value of q ranges from 0 to 1;
h = 1, …, L, which represents the stratification of the detect factor X
and detected factor Y; Nh and N are the number of samples for the layer
h and thewhole study area;σh

2 and σ2 are the variance of Y value for the
layer h and thewhole study area; SSW and SST are the sumof intra-layer
variances and the total variance of the whole study area.

The interaction detection can identify the explanatory power of the
detect factors X1 and X2 to the detected factor Y, whose operation
steps are as follows: first, we calculate the q values of X1 and X2, respec-
tively. Second, a new layer X1∩X2 can be obtained by stacking the layer
X1 andX2, on this basis, the q (X1∩X2) value can be calculated. Third, the
interaction type between X1 and X2 can be determined by comparing q
(X1), q (X2), and q (X1∩X2) values.

The risk detection is used to determinewhether there exists a signif-
icant difference in the mean value of an attribute between the two sub-
regions, which is tested by the t-statistic. Its formula is as follows (Yang
et al., 2018):

t
Yh¼1−Yh¼2¼

Yh¼1−Yh¼2

Var Yh¼1
� �
Nh¼1

þ Var Yh¼2
� �
Nh¼2

" #1=2
ð5Þ

whereYh represents the average value of epidemic spread rate in the
layer h, Nh is the number of samples in the layer h, Var represents the
variance.

We can compare whether there are significant differences in the in-
fluence of any detect factors X1 and X2 on the spatial distribution of the
detected factor Y by using the ecological detection, which is measured
by the F-statistic.

F ¼ NX1 NX2−1
� �� SSWX1

NX2 NX1−1
� �� SSWX2

ð6Þ

SSWX1 ¼ ∑L1
h¼1Nhσh

2 ð7Þ

SSWX2 ¼ ∑L2
h¼1Nhσh

2 ð8Þ

whereNX1
andNX2

represent the sample sizes of the detect factors X1
and X2; SSWX 1

and SSWX 2
are the sum of the variances in the layers

formed by X1 and X2; and L1 and L2 are the number of layers of X1 and
X2. The null hypothesis H0 is: SSWX1

= SSWX2
. If H0 is rejected at the sig-

nificance level of α, which indicates that X1 and X2 have significantly
different effects on the spatial distribution of Y.

http://lbsyun.baidu.com
http://qianxi.baidu.com/
http://qianxi.baidu.com/
https://www.tianqi.com
https://www.tianqi.com
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3. Results and analysis

3.1. Spatial and temporal differentiation of epidemic spread

3.1.1. Spatial distribution characteristics
The ArcGIS software was used to classify the cumulative number of

COVID-19 cases in the following categories: 0; 1–50; 51–100; 101–300;
and N300 persons. The epidemic spread rate was classified into the fol-
lowing categories: b1; 1–3; 3–5; 5–7; and N7 persons/day (Fig. 1).

As can be seen from Fig. 1, the number of administrative units with a
cumulative number of COVID-19 cases in the range of 0, 1–50, 51–100,
101–300 and N300 persons on January 24 were 197, 166, 2, 0, and 1, re-
spectively. This indicated that there were 169 regional units hit by the
COVID-19 epidemic by that date in mainland China, accounting for
46.17% of the total number of research units, and which reflected the
wide spread of the epidemic. More into detail, the cities or regions
with a cumulative number of confirmed cases in the range of 1–50 per-
sons accounted for 98.22% of the total of regional units affected, and the
number of cities with a cumulative number of confirmed cases of more
than 50 persons was only 3, indicating that as of January 24, the epi-
demic was in the primary development stage. Several infected people
could not be identified in a timely and effective way, because the
COVID-19 has the incubation period. In terms of the cumulative number
of confirmed cases in the epidemic areas, the largest number of
Fig. 1. Spatial distribution of the cumulative numbe
confirmed cases (572) was recorded inWuhan, while other regions re-
corded a number of confirmed cases of only 1 person, indicating that the
COVID-19 epidemic had a significantly different spread across the vari-
ous regions of China. In terms of spatial distribution, the areas with a
high number of confirmed cases were scattered in a few cities such as
Wuhan, Chongqing, and Huanggang. On February 6, there were 45 re-
gional administrative units with 0 cases, 263 with 1–50 cases, 24 with
51–100 cases, 18 with 101–300 cases, and 16 with more than 300
cases. This indicates that a total of 321 regional units in mainland
China were by COVID-19 epidemic by that date, accounting for 87.70%,
with an increase of 41.53% comparedwith January 24, thereby reflecting
a significant expansion of the geographical range of the epidemic.
Among the 321 regional units with an epidemic situation, the cities or
regions with a cumulative number of confirmed cases in the range of
1–50 persons accounted for 81.93%, in the range of 51–100 persons
accounted for 7.48%, in the range of 101–300 persons accounted for
5.61%, and in the range of more than 300 persons accounted for 4.98%.
Compared with the number of regional units included in each interval
on January 24, it was found that the proportion of cities in the other in-
tervals showed an increasing trend for all intervals except for the 1–50
persons interval, indicating that the epidemic reached the outbreak
stage. The cumulative number of confirmed cases was still the highest
inWuhan city, reaching 11,618, while the lowest numbers of confirmed
cases in some areas were still 1, indicating that the difference across
r of COVID-19 cases and epidemic spread rate.
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regionswas increasing. In terms of spatial distribution, there was an ev-
ident trend of continuous distribution in the areas with the highest cu-
mulative number of confirmed patients, while the areas with a low
number of patients continued to narrow, and were mainly located in
some parts of Inner Mongolia, Qinghai, Tibet and Xinjiang Uygur. On
February 20, the number of regions with a total cumulative number of
COVID-19 cases in the range of 0, 1–50, 51–100, 101–300, and N300per-
sons were 40, 245, 35, 26 and 20, respectively, indicating that by that
date therewere 326 administrative units hit by the COVID-19 epidemic,
accounting for 89.07% of the total number of research units. As such,
there was an increase of only 1.37% compared with February 6, indicat-
ing a slowdown fromprevious increases, and implying that the diffusion
trend of the epidemic spread has been initially contained. Among the
326 regional units with an epidemic situation, the cities or regions
with a cumulative number of confirmed cases in the range of 1–50 per-
sons accounted for 75.15%, in the range of 51–100persons accounted for
10.74%, in the range of 101–300 persons accounted for 7.98%, and in the
range of more than 300 persons accounted for 6.13%. The variation
trend of the number of regional units in each interval was the same as
that from January 24 to February 6; this means that the epidemic situa-
tion in a few cities has deteriorated rapidly during this period, while the
areas affected by the epidemic were basically unchanged. In terms of
spatial distribution, the coverage of the areas with a high cumulative
number of confirmed cases continued to expand, being located mainly
around Wuhan and economically developed cities, while the coverage
of the areaswith a low cumulative number of confirmed cases remained
relatively stable. In terms of epidemic spread rate, therewere 26 admin-
istrative units with an epidemic spread rate greater than 7 persons/day,
11within the range of 5–7 persons/day, 15within the range of 3–5 per-
sons/day, and 90 within the range of 1–3 persons/day, while the re-
maining units had an epidemic spread rate lower than 1 person/day.
In summary, the COVID-19 epidemic spread rate generally decreased
toward the periphery with the city of Wuhan as the center, with high
values in some economically developed cities, while the areas with
lower values were located in the northwest, southwest, and northeast
of China.

3.1.2. Spatial correlation characteristics

(1) Global spatial correlation characteristics

In this paper, the cumulative number of confirmed COVID-19 cases
and the epidemic spread ratewere taken as variables, the spatial weight
matrix based on geographical adjacency was selected, and the global
Moran's I index, the P test value and the Z statistic score of the cumula-
tive number of confirmed COVID-19 cases and the epidemic spread rate
were calculated by using the GeoDa software, so as to clarify the global
spatial correlation characteristics (Table 1).

Table 1 shows that the global Moran's I indexes of the cumulative
number of cases on January 24, February 6, and February 20 were
0.05, 0.18, and 0.08, respectively, passing the significance test at the
1% threshold level. Above values reflect the positive correlation, indicat-
ing that the spatial distribution of the cumulative number of confirmed
COVID-19 cases in China at three time nodes shows an agglomeration
trend. By observing the global Moran's I indexes at different time
nodes, we can also find that this index first increased and then de-
creased. This indicates that the clustering development trend of the
Table 1
Global Moran's I index of the cumulative number of cases and epidemic spread rate.

Variable January 24 February 6 February 20 Spread rate

Moran's I 0.05 0.18 0.08 0.15
P value b0.01 b0.01 b0.01 b0.01
Z-Score 7.57 21.08 19.61 22.81
cumulative number of confirmed COVID-19 cases increased from Janu-
ary 24 to February 6. The global Moran's I index decreased by 0.10 units
on February 20 comparedwith February 6,meaning that the global spa-
tial correlation during this period was still dominated by clustering
characteristics, although the clustering degree was lower than before,
and the spatial distribution of the cumulative number of confirmed
COVID-19 cases showed a decentralized development trend. The global
Moran's I index, P test value and Z statistic score of the epidemic spread
ratewere 0.15, 0.01, and 22.81 respectively, passing the significance test
at the 1% level, implying that the spatial pattern of the epidemic spread
rate was also characterized by a clustering distribution.

(2) Local spatial correlation characteristics

The Global Moran's I index has the defect of ignoring the instability
of local spatial processes. Therefore, it is necessary to draw a LISA cluster
map to analyze the local spatial correlation characteristics of COVID-19
epidemic (Fig. 2).

According to Fig. 2, the total number of administrative units
belonged to the high-high, high-low, low-high and low-low cluster
areas on January 24 were 11, 4, 21, and 22. Specifically, the ‘high-high’
cluster areas were located in Wuhan, Shiyan, Xiaogan, Jingzhou,
Huanggang, Enshi, Xiantao, Xinyang, Anqing, Ningbo, and Shaoxing;
the ‘high-low’ cluster areas were located in Shijiazhuang, Yangjiang,
Sanya, and Wanning; the ‘low-high’ cluster areas were located in
Langfang, Jinhua, Lu'an, Jiujiang, Huangshi, Ezhou, Xianning, Qianjiang,
Tianmen, Shennongjia forest area, Xiangxi, Dongguan, Zhongshan,
Luzhou, Suining, Neijiang, Guang'an, Dazhou, Ziyang, and Tongren;
and the ‘low-low’ cluster areas were located in Hohhot, Ordos, Alxa,
Ganzi, Kunming, Lijiang, Linzhi, Nagqu, Yan'an, Jiuquan, Longnan,
Guoluo, Yushu, Haixi, Bayingoleng, Aksu, Yili, Tacheng, Alar,
Tiemenguan, and Kirkdala. On February 6, the number of administrative
units in four clusters was 16, 1, 5 and 74. The ‘high-high’ cluster areas
were located inWuhan, Huangshi, Yichang, Xiangyang, Ezhou, Jingmen,
Xiaogan, Jingzhou, Huanggang, Xianning, Suizhou, Xiantao, Tianmen,
Xinyang, Nanyang, and Jiujiang; the ‘high-low’ cluster area was only lo-
cated in Chengdu; and the ‘low-high’ cluster areas were located in An-
qing, Lu'an, Qianjiang, Shennongjia forest region, and Changde. The
‘low-low’ cluster areas were mainly located in Inner Mongolia, Gansu,
Ningxia, Qinghai, Tibet and Xinjiang. On February 20, the total number
of administrative units belonged to the each of the cluster areas reached
14, 0, 7, and 76. The ‘high-high’ cluster areas were located in Wuhan,
Huangshi, Yichang, Xiangyang, Ezhou, Jingmen, Xiaogan, Jingzhou,
Huanggang, Xianning, Suizhou, Xiantao, Tianmen and Xinyang; the
‘low-high’ cluster areas were located in Anqing, Lu'an, Jiujiang,
Nanyang, Qianjiang, Shennongjia forest region, and Changde; and the
range of ‘low-low’ cluster was basically consistent with that of February
6. In terms of quantity change, the number of units classified in the
‘high-high’ cluster first increased and then decreased; the number of
units included in the ‘high-low’ cluster continued to decrease until
they disappeared; that in the ‘low-high’ cluster experienced a process
of initial decline and then rose again; and the number of units belonged
to the ‘low-low’ cluster showed an increasing trend. Therefore, it is not
difficult to see that the layout trend of the cumulative number of con-
firmed COVID-19 cases at the time nodes has not changed fundamen-
tally, and was dominated by the ‘high-high’ and ‘low-low’ type. This
indicates that the local spatial correlation characteristics of the con-
firmed COVID-19 cases were also dominated by a positive correlation,
although the clustering trend was weakened. Overall, the ‘high-high’
cluster areas showed a layout trend from centralization to decentraliza-
tion, which tended to be stable over time, especially for Wuhan and its
surrounding areas. There was a contiguous layout trend of the ‘low-
low’ cluster areas, which were mainly located in Inner Mongolia,
Gansu, Ningxia, Qinghai, Tibet, and Xinjiang. As for the epidemic spread
rate, there were 16 administrative units in the ‘high-high’ cluster, 0 in
the ‘high-low’ cluster, 5 in the ‘low-high’ cluster, and 75 in the ‘low-



Fig. 2. Local spatial correlation characteristics of the cumulative number of cases and epidemic spread rate.
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low’ cluster. The high-high cluster areas were located in Wuhan,
Huangshi, Yichang, Xiangyang, Ezhou, Jingmen, Xiaogan, Jingzhou,
Huanggang, Xianning, Suizhou, Xiantao, Qianjiang, Tianmen, Nanyang,
and Xinyang; the ‘low-high’ cluster areas were located in Anqing,
Lu'an, Jiujiang, Shennongjia forest region, and Changde; and the ‘low-
low’ cluster areas were located in western China.
3.2. Influencing factors of the epidemic spread

3.2.1. Selection of evaluation indicators
The COVID-19 epidemic first occurred inWuhan, and then spread to

other parts of China. Therefore, people have been the carrier, the trans-
portation network has been the channel, and the social and economic
connections have been the internal driving force in the process of the
epidemic spread. Thus, we selected the indicators reflecting the popula-
tion distribution, population inflow from Wuhan, traffic accessibility,
economic connection intensity, average temperature, andmedical facil-
ities conditions as the detection factors (Table 2), and the epidemic
spread rate as the detected factor to assess the formation mechanism
for the spatial pattern of COVID-19 epidemic.

Firstly, the classification method of natural discontinuities in
ArcGIS10.2 software was used to divide detection factors into 6 catego-
ries, the classifiedmaps of the detection factors were drawn (Fig. 3). Ac-
cording to formulas (3)–(8), the determination ability of detection
factors was calculated by using the geodetector software to analyze
the influencing factors of epidemic spread.
3.2.2. Analysis of the influencing factors

(1) Factor detection analysis

The q values of all the detection factors passed the significance test at
the 5% level, indicating that these factors have a significant determina-
tion ability of the spatial distribution of the COVID-19 epidemic spread.
Specifically, the q (p) values of X1, X2, X3, X4, X5 and X6 were equal to
0.060 (0.003), 0.504 (0.000), 0.041 (0.000), 0.404 (0.000), 0.021 (0.028)
and 0.078 (0.000), respectively. According to the size of q value, the in-
flow of population fromWuhanwas the primary factor affecting the ep-
idemic spread, and its explanatory power reached 50.4%. The economic
connection intensity was the secondary determinant factor, and its ex-
planatory power was 40.4%. The availability of medical facilities was
the third determinant factor, which accounted for a 7.8% of explanation
power. The determination ability of population distribution was 6%,
while the traffic accessibility and average temperature were both rela-
tivelyweak, below 5%. It isworth noting that the differentiation and fac-
tor detection analysis discussed only the determination ability of single
factor on the epidemic spread rate, and did not consider the interaction
effect of factors.



Table 2
Detection indicator of the COVID-19 epidemic spread.

Factor
code

Detection factor Specific indicator Treatment method

X1 Population distribution Population density(persons/km2) Total population/land area
X2 Population inflow from

Wuhan
Proportion of incoming population in Wuhan
(%)

Map migration data

X3 Traffic accessibility Distance from Wuhan (km) Determined by means of map navigation
X4 Economic connection

intensity
Strength of economic connection with Wuhan Using the gravity model

X5 Average temperature Average temperature in winter (°C) (mean maximum temperature in winter + mean minimum temperature in
winter)/2

X6 Medical facilities conditions Number of hospital beds per 1000 persons Using statistical yearbooks or bulletins

Note: The gravity model was used to calculate the intensity of economic contact between each region andWuhan, and the distancewas the time reachable distance (Meng and Lu, 2011).
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(2) Interaction detection analysis

The interaction detector analysis is used to identify the interactions
between any two factors. Table 3 shows the interactions detection re-
sults between factors.

It can be seen from Table 3 that the q values of X1∩X2, X1∩X3,
X1∩X5, X1∩X6, X2∩X6, X2∩X6, X4∩X6 and X5∩X6 were greater than
the q values of single factors, indicating that the interaction probe of de-
tection factors had a significant impact on the epidemic spread rate.
More detail, the population inflow fromWuhan and traffic accessibility,
economic connection intensity, and average temperature interacted
with each other, and produced mutually reinforcing effects. The traffic
accessibility interacted with the economic connection intensity and av-
erage temperature to producemutual reinforcing effects. The economic
connection intensity interacted with the average temperature, which
produced mutual reinforcing effects. The interaction between the
Fig. 3. Categorized spatial distribu
population distribution and the traffic accessibility, population inflow
from Wuhan, economic connection intensity, average temperature
andmedical facilities conditions produced a nonlinear enhancement ef-
fect. The interaction between the population inflow from Wuhan and
medical facility conditions produced a nonlinear enhancement effect.
The interaction between the medical facilities conditions and the traffic
accessibility, economic connection intensity and average temperature
produced a nonlinear enhancement effect. In summary, the influence
of detection factors on the epidemic spread rate was not independent,
but showed a type of mutual or nonlinear enhancement.

(3) Ecological detection analysis

According to Table 4, it could be found that the differences among the
detection factorswere statistically significant. Specifically, the influence of
the population distribution (X1) on the spatial distribution of the
tion of the detection factors.



Table 4
Ecological detector results (95% confidence level).

Factor code X1 X2 X3 X4 X5 X6

X1
X2 Y
X3 N Y
X4 Y Y Y
X5 Y Y N Y
X6 N Y N Y N

Note: Ymeans the difference of the influence of the two factors is significantwith the con-
fidence of 95%, while N means no significant difference.

Table 3
Interactive detection results.

A∩B A+B Interaction probes A∩B A+B Interaction probes

X1∩X2 = 0.998 N0.564 = X1 + X2 ↑ X2∩X6 = 0.999 N0.581 = X2 + X6 ↑
X1∩X3 = 0.199 N0.101 = X1 + X3 ↑ X3∩X4 = 0.406 b0.445 = X3 + X4 ↑↑
X1∩X4 = 0.993 b0.464 = X1 + X4 ↑ X3∩X5 = 0.054 b0.061 = X3 + X5 ↑↑
X1∩X5 = 0.124 N0.080 = X1 + X5 ↑ X3∩X6 = 0.332 b0.524 = X3 + X6 ↑
X1∩X6 = 0.329 N0.138 = X1 + X6 ↑ X4∩X5 = 0.406 b0.424 = X4 + X5 ↑↑
X2∩X3 = 0.505 b0.541 = X2 + X3 ↑↑ X4∩X6 = 0.993 N0.482 = X4 + X6 ↑
X2∩X4 = 0.506 b0.908 = X2 + X4 ↑↑ X5∩X6 = 0.247 N0.098 = X5 + X6 ↑
X2∩X5 = 0.505 b0.524 = X2 + X5 ↑↑

Note: “↑” means that factors A and B reinforce each other; “↑” indicates the nonlinear enhancement of factors A and B.
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epidemic spread rate was significantly different from the population in-
flow fromWuhan (X2), economic connection intensity (X4), and average
temperature (X5), but not different from the traffic accessibility (X3) and
medical facility conditions (X6). The influence of the population inflow
fromWuhan (X2)was significantly different from that of the traffic acces-
sibility (X3), economic connection intensity (X4), average temperature
(X5), andmedical facilities conditions (X6). Therewas a significant differ-
ence between the influence of traffic accessibility (X3) and that of eco-
nomic connection intensity (X4), but there were no significant
difference with the average temperature (X5) and medical facilities con-
ditions (X6). The influence of economic connection intensity (X4) was
different from that of the average temperature (X5) and medical facility
condition (X6). There was no significant difference between the average
temperature (X5) and the medical facilities conditions (X6). Generally
speaking, the detection factors selected in this paper are reasonable, and
the differences among them are statistically significant.

(4) Risk detection analysis

Table 5 showed that the epidemic had the fastest spread ratewhen the
population densitywas 1162–2564 persons/km2.When the proportion of
population inflow from Wuhan was maintained at 6.94–14.25%, the epi-
demic spread rate was fastest. When the economic contact intensity
with Wuhan was kept in the range of 598,158.64-1,524,023.05, the epi-
demic spread rate was fastest. When the geographical distance from
Wuhan was 68.38–540.98 km, the spread rate was fastest. When the av-
erage temperature in winter was maintained at 11–16 °C, the epidemic
spread rate was higher. The epidemic spread rate was higher when
there were between 9.58 and 14.49 beds for 1000 persons. It can also be
found that the population distribution, population inflow from Wuhan,
economic connection intensity,medical facilities, and the epidemic spread
Table 5
Most favorable range of epidemic spread (95% confidence level).

Factor code Favorable range

X1 1162-2564(persons/km2)
X2 6.94–14.25(%)
X3 68.38–540.98(km)
rate were significantly positively correlated, while the traffic accessibility
was negatively correlated with the epidemic spread rate.

4. Discussions

This paper studied the spatial and temporal variation and the influenc-
ing factors of the COVID-19 epidemic spread in mainland China, which
can provide references for formulating the public health policies and pro-
moting the resumption of production. However, there exist the following
problems. In terms of data sources, although many countries or regions
have published the epidemic announcements of COVID-19 in real time,
and the epidemic data was very convenient, virtually most of countries
or regions had more people infected than registered, which could affect
the accuracy of the evaluation results. Then, the population density data
in 2018 was used as a replacement due to a fact that the population den-
sity for the each administrative unit in mainland China during the epi-
demic period was unavailable. The treatment method hid the drastic
changes in the data because the COVID-19 epidemic happened during
the Chinese Spring Festival period, which had a characteristic that the
scale and frequency of population movements were intensified. It's
worth noting that the population density is an important indicator to ex-
plain the epidemic spread rate, so the alternative data inevitably weak-
ened the explanatory power of current research from this perspective.
In addition, the factors affecting the epidemic spread were complex, and
involved both the quantitative and the non-quantitative indicators. This
paper constructed an indicator system of the multiple factors influencing
the epidemic spread based on the principle of data availability; the other
non-quantitative indicators might be ignored, which increased the
uncertainty of evaluation results.

For the research method, the formula of epidemic spread rate was
applicable to compare the epidemic spread rate of different administra-
tive units at three time nodes, which actually did not conform to the ex-
ponential growth rule of infectious diseases (such as the COVID-19,
SARS, and MERS (Middle East Respiratory Syndrome)) in the exposed
population. How to accurately measure the actual spread rate of the ep-
idemic in each region was the direction of future research. Second, the
exploratory spatial data analysis method investigated the spatial clus-
tering characteristics of COVID-19 epidemic in administrative units at
prefectural level and above, and did not consider the agglomeration de-
velopment situation at a finer spatial scale, which inevitably weakened
the application value of the research results. Third, the geodetector
method was adopted to obtain the most favorable range of the COVID-
19 epidemic spread in this paper, which was developed from the per-
spective of statistics. The sample data directly affected the final
Factor code Favorable range

X4 598,158.64-1,524,023.05
X5 11–16(°C)
X6 9.58–14.49(beds/1000 persons)
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evaluation result, and no epidemiological investigation on the residents'
health status was implemented, so the conclusions drawn from current
research were uncertain to some extent. Finally, there might have
multicollinearity between the strength of economic connection eco-
nomic and other factors in this paper, and the geodetector method
was not used to deal with it, which would weaken the persuasiveness
of the research results.

5. Conclusions

(1) The temporal changes of the COVID-19 epidemic in mainland
China are clear, and the epidemic spread rate has an evident spa-
tial variation. In terms of temporal change, the epidemic quickly
spread to most regions from January 24 to February 6. The epi-
demic spread rate slowed down from February 6 to February
20, although the epidemic situation in some cities worsened
sharply. The areas where the epidemic spread quickly were
mainly located in the Hubei province, its surrounding areas,
and some economically developed cities. The western part of
China, as well as the remote areas of central and eastern China
experienced a slow epidemic spread.

(2) The global and local spatial correlation characteristics of the
COVID-19 epidemic were dominated by clustering situations.
Specifically, the global spatial correlation characteristics initially
increased and then decreased, while the local spatial correlation
characteristics tended to be stable with the passage of time, and
were mainly composed of the ‘high-high’ and ‘low-low’ cluster
types. The ‘high-high’ cluster areas were located in Wuhan,
Huangshi, Yichang, Xiangyang, Ezhou, Jingmen, Xiaogan,
Jingzhou, Huanggang, Xianning, Suizhou, Xiantao, Qianjiang,
Tianmen, Nanyang and Xinyang. The ‘low-low’ cluster areas
were located in parts of InnerMongolia, Gansu, Ningxia, Qinghai,
Tibet, and Xinjiang.

(3) The population distribution, population inflow from Wuhan,
traffic accessibility, economic connection intensity, average
temperature and medical facilities conditions had significant
effects on the epidemic spread rate. The population inflow
from Wuhan was the primary factor affecting the epidemic
spread, followed by the economic connection intensity, and
the medical facilities conditions. The population distribution,
traffic accessibility, and average temperature also had differ-
ent degrees of influence on the epidemic spread. From the
perspective of action direction, the population distribution,
population inflow from Wuhan, economic connection inten-
sity and medical facilities conditions played a positive role
in the process of epidemic spread, while the traffic accessibil-
ity played a negative role.

(4) Detection factors interacted through mutual enhancement
and nonlinear enhancement, and their influence on the epi-
demic spread rate exceeded that of single detection factors.
The interaction between the population inflow from Wuhan
and medical facilities conditions, as well as that between
the population distribution and population inflow from
Wuhan, that between the population distribution and eco-
nomic connection intensity, and that between the economic
connection intensity and medical facilities conditions had a
great influence on the epidemic spread. The interaction be-
tween the population distribution and traffic accessibility,
as well as that between the population distribution and aver-
age temperature, that between the traffic accessibility and
average temperature, and that between the average temper-
ature and medical facilities conditions had little impact on
the epidemic spread.
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