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Abstract 
The distribution and the affecting factors of the artificial oasis and inartificial 
oasis have become a serious and widespread problem in arid lands. Under-
standing its controlling factors is vital for environmental governance, im-
provement, and optimization. The study aimed to identify the crucial factors 
affecting the distribution of artificial oasis and inartificial oasis in arid land 
through the NDTG (the union of deep learning method, the modified a 
three-band maximal gradient method, Geodetector method) Model. Envi-
ronmental factors include meteorological factors, chemical compositions, sa-
linities, groundwater depth and time-series of Landsat images. The results 
show that Salinity factor was the dominant factor which explained 32.95% of 
the spatial variation of the artificial oasis distribution. Nonlinear enhance-
ments were observed for the interactions between salt content and Evapora-
tion (q = 0.93), salt content and Precipitation (q = 0.78). It indicated that 
Meteorological factors, and Salinity were the main factors determining the 
spatial pattern of the artificial oasis distribution. Salt, precipitation, evapora-
tion, Mg, Cl, Na explained 37%, 26%, 25%, 24%, 23%, 20% of the spatial pat-
tern of the inartificial oasis in arid lands, respectively. The results indicated 
that salinity, meteorological factors and chemical composition were the main 
factors determining the spatial distribution of inartificial oasis in arid lands. 
Moreover, the NDTG Model provided evidence to explore the factors controlling 
spatial patterns of the distribution of artificial oasis and inartificial oasis in 
arid lands. 
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1. Introduction 

The arid inland plain of northwest China has rare rainfall, dry climate, strong 
surface evaporation, extremely weak recharge of groundwater by atmospheric 
precipitation, shortage of water resources, serious soil erosion and extremely 
fragile ecological environment (Yang et al., 2018; Akiyama et al., 2018). The in-
creasingly prominent contradiction between human-water-land and ecological 
environment has intensified the deterioration of ecological environment, and 
affected the sustainable development of social economy in northwest China. The 
changes of oasis in arid lands are the most common and dangerous natural fac-
tors in ecologically fragile areas, which leads to serious damage to people’s lives 
and property (Petley, 2012). In the arid regions of northwest of China, desertifi-
cation is becoming more and more serious. Especially in the remote areas of arid 
regions, oasis distribution and the problem of water resources distribution is 
very prominent. The distribution of oasis and environmental factors has become 
the biggest constraints to socio-economic development. Therefore, it is of great 
significance for the protection and development of artificial oasis, oasis and brack-
ish water resources to understand accurately and in detail the spatial distribution. 

Generally, the identification and detection of oasis area in arid area of desert 
and the evaluation of main factors affecting oasis area in arid area are of great 
significance to local social and economic development. However, there is no 
systematical model to search for the main factors controlling the spatial distribu-
tion of artificial oasis and inartificial oasis in the arid area. Previous studies pay 
more attention to the accuracy of one single algorithm. We choose some studies 
showed that the classification method of deep learning is fairly effective when 
classifying artificial oasis (Petley, 2012; Semwal et al., 2017; Yabuki et al., 2018; 
Garg et al., 2018; Wang et al., 2019; Yu et al., 2017; Fawaz et al., 2019; Tyr et al., 
2018). The classification method of Modified a three-band maximal gradient 
difference Algorithm (TGDVI) originating from the field of band math is more 
effective when we classified the inartificial oasis (Gutman & Ignalov 1998; Tang 
et al., 2003; Jiapaer et al., 2011). Remote sensing images are often used to gener-
ate oasis indexes (Huo et al., 2010; Wilford et al., 2016). Moreover, land-use and 
vegetation indexes change over time, especially in rapidly changing semi-arid 
and arid lands. Using images from a specific time may not reflect the effects of 
temporal variation in these factors on the accumulation of the distribution of ar-
tificial oasis and natural oasis. Therefore, the Landsat series provides image 
records of the Earth’s surface for more than 5 years, and these images are suita-
ble for extracting long term artificial vegetation indexes and land-use informa-
tion. Principal component analysis (PCA) and cluster analysis (CA) are applied 
to assist in the identification of environmental factors controlling oasis accumu-
lation (Shi et al., 2018; Chen et al., 1997; Guo et al., 2012; Lee et al., 2006; Li et 
al., 2004; Ordonez et al., 2003; Sun et al., 2013; Lin et al., 2002; Navas & Machin 
2002; Luo et al., 2015). A geographical detector method, namely geodetector, 
may be a better choice for exploring the factors controlling artificial oasis and 
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inartificial oasis accumulation in arid lands. Geodetector is based on the spa-
tial stratified heterogeneity of geographical phenomena; its key underlying as-
sumption is that if a geographical factor A is controlled by another geographi-
cal factor B, then B will exhibit a spatial distribution similar to that of A 
(Wang et al., 2010; Wang et al., 2016; Li et al., 2013). Geodetector has been ap-
plied to analyze the factors controlling the spatial patterns of various geo-
graphical phenomena. For instance, Luo et al. (2015) employed geodetector to 
identify the dominant factors of dissection density over the entire contermin-
ous United States (Wang et al., 2010), and Li et al. (2004) applied geodetector 
to investigate the spatial relationship between planting patterns and residual 
fluoroquinolones in soil. 

In our study, it can be found that oasis is divided into two parts: artificial oasis 
and inartificial oasis. An artificial oasis is defined as human cropland and other 
oasis places that are made by humans. Except artificial oasis, we define other ve-
getation land as natural oasis. Given the importance of Water to Oasis in Arid 
lands, this study aimed to identify the factors controlling Oasis using the NDTG 
Model, especially time-series of remotely sensed data. The results of this study 
are expected to reveal the internal regularities affecting the spatial pattern of ar-
tificial oasis and natural oasis in Arid lands, and to provide a geo-statistical way 
to explore their factors controlling these spatial patterns by combining geo-
graphical information science and remote sensing methods. 

2. Materials and Methods 
2.1. Study Area 

The Alar Basin is located in the Tarim River watershed, Alar County, XinJiang 
Province, China (Figure 1). Its geographic coverage is approximately 40˚22' - 
40˚57'N and 80˚30' - 81˚58'E, with an area of 4161 km2, including Alar City (9th  
 

 
Figure 1. Study area and sampling locations. 
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Regiment, 7th Regiment, 8th Regiment, 10th Regiment, 11th Regiment, 12th Re-
giment, 13th Regiment, 14th Regiment, 15th Regiment and 16th Regiment). The 
distribution diagram of the study area is shown in the figure. 

2.2. Water Sampling 

This study concentrated on the 8, 9, 10, 11, 12, 13, 14, 15 and 16 regiments in the 
Alar region on the upper reaches of the Tarim River. The study area was divided 
into regular grids of 2 × 2 km for sampling, and a sampling site was randomly 
selected in each grid. The geographical coordinates of sampling sites were rec-
orded using a global positioning system receiver, and information on land-use, 
oasis cover, and landform were also recorded. A total of 163 underground soil 
samples and underground water samples were collected in September 2017 
(Figure 1), and artificial deposits, such as rubbles, concrete debris, and wastes, 
were avoided. Approximately 1.0 litre of water in wells were collected during two 
sampling campaigns(Tang et al., 2003) after removing plant residues, roots, and 
stones. The collected soil samples were kept in polyethylene bags and brought to 
a laboratory for Chemical Composition and Salinity content analysis. 

2.3. Data Source and Processing 

The main data used in this research include Landsat 8 image data of Alar region 
from 2013 to 2018, the groundwater quality and quantity, the vector map of Alar 
administrative boundary and other spatial data. Using remote sensing image da-
ta carry out supervised classification with deep learning law and Modified a 
three-band maximal gradient difference model (TGDVI), spatial registration 
and mosaic with reference to topographic map, and using ENIV carry out image 
interpretation to obtain the land use classification map of artificial oasis and in-
artificial oasis from 1990 to 2015. Combined with the correct measured data and 
the actual sampling point data, the image interpretation accuracy of the six years 
is above 85%, which can meet the analyzing requirements with the domain fac-
tors including Chemical Composition (sodium ion, magnesium ion, calcium ion, 
potassium ion, sulfate radical, chloride ion, bicarbonate radical), Salinity (salt 
content and mineralization degree), Groundwater (groundwater depth) (Table 
1). 
 
Table 1. Environmental factors for analyzing controlling factors of soil heavy metals. 

Environmental factors Data source 

Meteorological data Evaporation, Precipitation https://www.ecmwf.int/ 

Chemical 
Composition 

sodium ion, magnesium ion, 
calcium ion, potassium ion, sulfate radical, 

chloride ion, bicarbonate radical 
Measured data 

Salinity salt content and mineralization degree 

Groundwater groundwater depth 
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Due to the fact that evaporation data were not collected easily during the ac-
tual sampling process. Relevant research found that ERA-interim data was used 
to replace the measured rainfall and evaporation in this study. Rainfall and eva-
poration data can well reflect the measured rainfall and evaporation data, as 
shown above. Scholars have verified the usability of the small areas by analyzing 
the small areas of the data (Hodges et al., 2010; Sylla et al., 2010; Weedon et al., 
2015), so this paper also chooses them as the parameter input items. 

Meteorological stations in catchments are fairly few in arid regions like Tarim 
River basin due to the high and steep terrain, backward economic and technolo-
gical situations. Besides, most of the stations are located in the mountain-passes. 
Even in the irrigation districts, meteorological stations observing temperature 
and precipitation for more than 30 years are few. Therefore, the ERA-Interim 
reanalysis dataset was selected as the substitution due to its good performance 
(Hodges et al., 2010; Sylla et al., 2010; Weedon et al., 2015). Its spatial and tem-
poral resolution is 0.125˚ × 0.125˚. 

2.3.1. The NDTG Model Construction 
In this paper, the NDTG model (Figure 2) was constructed according to the 
deep learning method, the modified a three-band maximal gradient method. 
Then the mathematical model of NDTG was generalized as follows. 

1) Extraction of Artificial Oasis by Deep Learning Algorithm 
The deep learning Algorithm selected in this paper is built based on Tensor 

Flow framework. Through the sample set construction of data, the identification 
and testing of test set and verification set based on depth learning, and through 
the selection and testing of classifiers, the activation function with the best seg-
mentation effect for artificial oasis vegetation in arid areas is found. The optimal 
model is obtained through several trainings by modifying parameters (i.e. layer 
number, epoch and other parameters) of the training model (Figure 3). 

2) Extraction of Inartificial oasis by modified a three-band maximal gradient 
difference Algorithm (TGDVI) 
 

 
Figure 2. The NDTG model construction. 
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Figure 3. The deep learning algorithm construction. 

 
The difference between oasis and non-oasis is most significant in the wave-

lengths SWIR 1650 nm and SWIR 2220 nm, NIR 830 nm and red 660 nm, sug-
gesting that green wavelengths can be replaced by shortwave infrared wave-
lengths of 1650 nm or 2220 nm. The TGDVI is adjusted as follows: 

max

, if 0, 0r gir r

ir r r g

R RR RdA d A A
d γ γ γ γ

−−
= = − < =

− −
           (1) 

where Rir, Rr and Rswir are defined as the reflectivity in the NIR, red and SWIR 
bands, respectively, and ir, r and swir are the wavelengths of the NIR, red and 
SWIR bands, dveg stands for the d of highly dense oasis. 

3) The geographical detector 
The geographical detector method was developed to measure the spatially 

stratified heterogeneity of geographic variable Y (for example the Normalized 
Difference Oasis Index (NDVI) of Artificial Oasis and Inartificial oasis in this 
study) and to explore how factor X explains the spatial pattern of Y. Formally, Y 
is composed of N samples, and X is stratified into L strata; stratum [ ]1,2, ,h L∈ …  
is composed of Nh samples; yi is the value of sample i in the whole sample popu-
lation; and yhi denotes the value of sample i in stratum h. The concept of spatially 
stratified heterogeneity is the q-statistic, which is defined as follows (Li et al., 
2013): 
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2SST Nσ=                          (4) 

where: 1,...,h L=  is the Strata of variable Y or factor X, and so on. Which may 
be classification or partition; Nh and N are the unit numbers of layer H and the 
whole region, respectively; 2

hσ  and σ2 are the variances of the whole region (Y) 
and values of layer h, respectively. SSW and SST are the sum of intra-layer va-
riances (Within Sum of Squares) and Total Sum of Squares, respectively. q has a 
range of [0, 1]. 

The larger the value, the more obvious the spatial difference of Y is. If the 
stratification is generated by the independent variable X. the larger the q value, 
the stronger the explanatory power of the independent variable X to the attribute 
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Y, and the weaker the other way round. In extreme cases, The q value of 1 indi-
cates that factor X completely controls the spatial distribution of Y, the q value 
of 0 indicates that factor X has no relationship with X, and the q value indicates 
that X explains 100 × q% of Y. A simple transformation of Q value satisfies 
non-central F distribution. 

~ ( 1, ; )
1 1

N L qF F L N L
L q

γ−
= − −

− −
               (5) 

~ ( 1, ; )
1 1

N L qF F L N L
L q

γ−
= − −

− −
               (6) 

where: λ is a non-central parameter; Y−h is the average of layer H, According to 
Equation (2), it is possible to check whether the Q value is significant by looking 
up the table or using the geographic detector software. 

Furthermore, an “interaction detector” was defined to assess the interaction 
between two different factors, namely X1 and X2, by comparing 1 2( )q X X  
with q(X1) and q(X2). 1 2X X  indicates a new stratum created by overlaying 
factors X1 and X2. 

2.3.2. The NDTG Model Solution 
In this paper, A complete model in Python was selected to solve the NDTG. The 
Artificial Oasis was Extracted by Deep Learning Algorithm. The Inartificial oasis 
was extracted by Modified a three-band maximal gradient difference Algorithm. 
The result was measured by geographical detector, and the NDTG model was fi-
nished. 

3. Results 
3.1. The Extraction of Artificial Oasis by Deep Learning Algorithm 

As shown in the following Figure 4, artificial vegetation was extracted through 
deep learning Algorithm. This paper selected the time series images from 1990 
to 2015 to get the artificial vegetation area. 
 

 
Figure 4. Time-series normalized difference oasis index (NDVI) of study area. 
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It shows that the square of artificial vegetation increased evidently. In the Alar 
region, the area of cultivated land in each regiment can be obtained by consult-
ing the Alar yearbook of Agricultural First Division, and the area accuracy can 
be acquired. The accuracy of the area of cultivated land in each regiment of the 
Alar can be obtained by consulting the Alar yearbook of Agricultural First Divi-
sion. 

According to the existing Alar Yearbook (1990-2015) of Agricultural First Di-
vision, the oasis area in 1990, 1995, 2000, 2005, 2010 was calculated. The accu-
racy was verified through deep learning Algorithm, which can meet the data ac-
curacy in our study (Table 2). 

3.2. Modified a Three-Band Maximal Gradient Difference  
Algorithm (TGDVI) 

Compared with extracting artificial oasis using deep learning Algorithm. Be-
cause the non-artificial vegetation in arid areas is sparse, the deep learning me-
thod cannot extract the non-artificial vegetation in arid areas effectively and effi-
ciently. According to the previous research (Jiapaer et al., 2011), the modified 
three-band gradient method is more adopted to extract the non-artificial oasis 
(especially spare forest, grassland and desert vegetation), so in this study, we 
chose this Algorithm to extract inartificial oasis (Figure 5). 

All the measured points were collected in August and visually interpreted 
through the 1990-2015 high-resolution images in Google Earth’s research area. 
The interpretation results were corrected in combination with the actual inves-
tigation of field samples and compared with the measured values (Table 3). 
 
Table 2. The accuracy using deep learning algorithm. 

year Statistical data/km2 Extract data/km2 Accuracy 

1990 419.33 444.52 94.33% 

1995 601.4 527.49 87% 

2000 1110.4 1246.78 88% 

2005 1120.4 1245.13 89% 

2010 915.4 1235.98 74% 

2015 1895 1911 99.16% 

 
Table 3. The accuracy of oasis using TGDVI. 

Year Actual sampling points Classification error point Accuracy 

1990 100 10 90 

1995 100 12 88 

2000 100 8 92 

2005 100 11 89 

2010 100 8 92 

2015 100 7 93 
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Figure 5. Time-series normalized difference oasis index (NDVI) of study area. 

 
At 100 points of actual sampling, the accuracy range from 1990 to 2015 is 88% 

- 93%, which basically meet the classification accuracy requirements. In the later 
period of actual investigation, it was found that the classification error points 
were mostly distributed beside rivers, lakes and canals, which may involve inac-
curate longitude and latitude positioning during sample collection and may be 
the cause of inaccurate classification. 

3.3. The Analysis of Vegetation Growth 

In the Section 3.1 and 3.2 we have known that deep learning and TGDVI can 
meet the requirements of extracting vegetation area. There are differences in in-
dex calculation due to different data types (for example, the processing of land-
sat 7 ETM strips). When calculating the normalized difference vegetation index, 
the June-August partly cloudy or cloudless data of unified lands at 8 from 2013 
to 2018 are used. In this article, we always use Normalized Difference Vegetation 
Index (NDVI) to analysis the vegetation growth. According to the former ex-
traction of artificial oasis and inartificial oasis, we can divide this area NDVI 
with two different parts: artificial oasis and inartificial oasis using artificial oasis 
and inartificial oasis border. 

3.3.1. The Artificial Vegetation Growth 
The normalized difference vegetation oasis index (NDVI) of artificial oasis (cul-
tivated land) is obtained through band calculation, and the NDVI of artificial 
oasis (cultivated land) from 2013 to 2018 is proposed. 

As can be seen from the Figure 6, the maximum value in 2013 is 0.64, mainly 
distributed around the 9th and 12th regiments, and the minimum value is 0, 
mainly scattered in non-oasis areas. In 2014, the maximum value was 0.62, 
mainly distributed in 9 regiments and the minimum value was 0, mainly scat-
tered in the vicinity of non-oasis areas. The maximum value in 2015 is 0.53,  
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Figure 6. Time-series normalized difference vegetation index (NDVI) of study area. 

 
mainly distributed in the 9th and 16th regiments, and the minimum value is 0, 
mainly scattered in the vicinity of non-vegetation areas. The maximum value in 
2016 is 0.64, mainly distributed in the 12th and 13th regiments, and the mini-
mum value is 0, mainly scattered in the vicinity of non-vegetation areas; the 
maximum value in 2017 is 0.56, mainly distributed in the 7th, 8th and 10th re-
giments, and the minimum value is 0, mainly scattered in the vicinity of 
non-vegetation areas. The maximum value in 2018 is 0.55, mainly distributed in 
the 9th and 10th regiments, and the minimum value is 0, mainly scattered in the 
vicinity of non-vegetation areas. 

3.3.2. The Inartificial Vegetation Growth 
The normalized difference vegetation index (NDVI) of inartificial oasis is ob-
tained through band calculation, and the NDVI of artificial oasis from 2013 to 
2018 is proposed. 

As can be seen from Figure 7, the maximum value in 2013 is 0.45, mainly dis-
tributed in the 9th, 16th and 5th regiments, and the minimum value is 0, mainly 
distributed in the 14th and 15th regiments of non-vegetation areas. In 2014, the 
maximum value was 0.61, mainly distributed in the 9th and 16th regiments, and 
the minimum value was 0, mainly scattered in the 14th and 15th regiments. The 
maximum value in 2015 is 0.49, mainly distributed in the 8th and 16th regi-
ments, and the minimum value is 0, mainly distributed in the 14th and 15th re-
giments. The maximum value in 2016 is 0.63, mainly distributed in the 15th and 
16th regiments, and the minimum value is 0, mainly distributed in the 14th and 
15th regiments. The maximum value in 2017 is 0.55, mainly distributed in the 
7th and 8th regiments, and the minimum value is 0, mainly distributed in the 
14th and 15th regiments. In 2018, the maximum value was 0.54, mainly distri-
buted in the 12th regiment, the minimum value was 0, mainly scattered in the 
14th regiment and the 15th regiment. 
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Figure 7. The Time-series normalized difference vegetation index (NDVI) of study area. 

3.3.3. The Normalized Difference Vegetation Index (NDVI) of Artificial  
Oasis and Inartificial Oasis (Figure 8 and Table 4) 

The descriptive statistics for Normalized Difference Vegetation Index (NDVI) of 
Artificial Oasis and Inartificial oasis are shown in Table 2. Normalized Differ-
ence Vegetation Index (NDVI) of Artificial Oasis and Inartificial vegetation 
contents varied in the ranges of 0 - 0.64 and 0- 0.54 with average values of 0.4 
and 0.12, respectively. This suggests the differences in the study area of Artificial 
Oasis and Inartificial oasis in terms of Normalized Difference Vegetation Index 
(NDVI). 

3.3.4. The Environmental Factors 
From the remote sensing image extraction of long-time series, it can be seen that 
the distribution area and range of artificial oasis and natural oasis change greatly 
with the extension of time, and the relevant image factors affect the distribution 
area. Here, we consider the climate, salinity, Chemical ion, groundwater as the 
main influencing factors, and analyze which factor has the highest degree of in-
fluence. For long-time series data, except climate data is easier to obtain, the rest 
of the measured data is hard to obtain, so 2017 with sufficient data is chosen as 
the representative year for research. 

Ten major lon types were diagnosed from actual selection and measurement, 
including SO4 ion, K ion, Na ion, Ca ion, CL ion, Mg ion, HCO3 ion. The relief 
factors, including underground water depth, water type. 

From the above figure, it can be seen that the groundwater depth (the first 
picture) in the study area ranges from 0.32 to 14.99 meters. The TDS in the 
study area ranges from 0.3 to 25.8 g/kg. The salt content in the study area ranges 
from 0.23 g/kg to 2.85 g/kg. 

The SO2− 
4  content in the study area is in the range of 0.53 - 30.13 g/kg. The K 

content in the study area ranges from 0.02 to 7.8g/kg. The Na content in the  
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Figure 8. Frequency distributions of artificial Oasis and Inartificial oasis; S.D. is standard 
deviation. 
 
Table 4. Descriptive statistics of Normalized Difference Vegetation Index (NDVI) of Ar-
tificial Vegetation and Inartificial vegetation. 

type Minimum Maximum Mean Median S.D 

Artificial Vegetation 0 0.64 0.4 0.5 0.11 

Inartificial vegetation 0 0.54 0.12 0.31 0.1 

S.D. is standard deviation. 

 
study area ranges from 0.21 g/kg to 46.2 g/kg. The Ca content in the study area 
ranges from 0.008 g/kg to 2.01 g/kg. The Cl content in the study area ranges 
from 0.29 g/kg to 39.98g/ kg. The Mg content in the study area ranges from 0.02 
to 1.07 g/kg. The HCO− 

3  content in the study area ranges from 0.23 g/kg to 2.85 
g/kg.  

From all the images in Figure 9, we can see the volume of precipitation and 
evaporation, the precipitation content in the study area ranges from 52 mm to 
186 mm. The evaporation content in the study area ranges from 74 mm to 344 
mm, which indicates that the climatic characteristics of arid areas are large eva-
poration and low precipitation. 
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Figure 9. The environmental factors. 

3.4. q Statistics 

All environmental factors in Table 1 and their interactions were considered in q 
statistics for the distribution of artificial oasis and inartificial oasis. For the dis-
tribution of artificial oasis, dominant factors, including sodium ion, magnesium 
ion, calcium ion, potassium ion, sulfate radical, chloride ion, bicarbonate radical 
aspect did not pass the significance test at a significance level of 0.05.  

It can be seen from Table 5 that salt has the greatest explanation to artifi-
cial vegetation. The q statistic results indicated that the Salinity factor was the 
dominant factor for the distribution in the study area, and it explained 33% of 
the spatial variation in the distribution of artificial oasis. The second is evapora-
tion, which can explain the spatial distribution of 21% artificial vegetation. Ar-
tificial vegetation is considered to be greatly affected. Therefore, precipitation 
does not explain it very well. The size of salt content mainly depends on the 
amount of ions, so this study also tested the relationship between salt ions and 
artificial vegetation, so it is convenient to analyze its mechanism, as shown be-
low. 
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Table 5. The Environmental factors and factor interactions with q values in artificial oa-
sis. 

NDVI Component q/% 

Artificial oasis Salt content 33% 

 Evaporation 21% 

 Precipitation 13% 

 Tds 11% 

 Underwater 1% 

 Salt content ∩ Evaporation 93% 

 
This paper re-established the relationship between ions and artificial vegeta-

tion. As shown in Figure 10, it is found that Na, K, Cl and SO4 have higher in-
terpretation of artificial vegetation, accounting for 19%, 19%, 17% and 17% re-
spectively. Among them, Na and K ions have higher significance on vegetation, 
which reflect the role of Na and K ions in artificial vegetation. Na, Cl and SO4 
ions will combine into salt ions, which will inhibit the respiration of artificial 
vegetation and reflect the influence of water resources on the distribution of ar-
tificial vegetation in arid areas. The data shows that the remaining ions are low 
which do not affect the vegetation of the oasis, thus no further analysis is 
needed. 

It can be seen from the table above that salt has the greatest explanation to 
natural vegetation. The q statistic results indicated that the Salinity factor was 
the dominant factor for the distribution in the study area, and it explained 33% 
of the spatial variation in the distribution of artificial oasis (Table 6).The second 
is rainfall and evaporation, which can explain the spatial distribution of 26% and 
25% natural vegetation. Due to the small relationship between natural vegetation 
and man-made, besides salt content, rainfall and evaporation can explain the 
distribution of natural vegetation to the greatest extent. The size of salt content 
mainly depends on the amount of ions, so this study also tested the relationship 
between salt ions and natural vegetation, so it is convenient to analyze its me-
chanism, as shown below. 

The relationship between the ion distribution and the natural vegetation dis-
tribution is re-established. As shown in Figure 11, it is found that Mg, Cl, Na 
and SO4 have higher degree of explanation for natural vegetation, 24%, 22%, 
20% and 17% respectively. Among them, Mg and Cl ions have the highest degree 
of explanation to vegetation, reflecting the role of Mg and Cl ions in natural ve-
getation in the growth of natural vegetation. Mg ions play a positive role in the 
growth of vegetation. Magnesium is an essential nutrient element of plants and 
plays an important role in the physiological and biochemical processes of plants. 
The interpretation of the remaining ions to vegetation are low and are not the 
main factor, so no further analysis is needed. 
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Figure 10. The environmental factors and factor interactions with q val-
ues in artificial oasis. 

 

 
Figure 11. The environmental factors and factor interactions with q val-
ues in inartificial oasis. 

 
Table 6. The Environmental factors and factor interactions with q values in inartificial 
oasis. 

NDVI Component q statistic/% 

Inartificial oasis Salt 37% 

 Precipitation 26% 

 Evaporation 25% 

 Tds 11% 

 underwater 4% 

 Salt ∩ Precipitation 85% 

4. Discussion 
4.1. The Extraction of Artificial Oasis 

Many researchers found that the accuracy of using deep learning classification to 
classify the remote sensing data to get the criterion are over 88% (Garg et al., 
2018; Wang et al., 2019; Yu et al., 2017; Fawaz, 2019). So through comparing 
with other algorithm, we choose deep learning algorithm to classify remote 
sensing data into artificial vegetation (Goodrich et al., 2009). 

From the Table 2, it can be seen that the accuracy has been rising. Although 
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our data only test and certify the 3 years data. When we find this question, 
through the analysis of deep learning, we can find the using deep learning algo-
rithm every samples have renewed, so the accuracy has been approved.  

In the previous part, we have extracted artificial oasis and inartificial oasis. 
Firstly, Landsat data has a good effect on the extraction of artificial oases into 
small and medium-sized regions (Zhang et al., 2005; Dee et al., 2011). The reso-
lution of 30m can fully reflect the extraction of artificial oasis in small and me-
dium-sized regions. The deep learning algorithm has a high accuracy on the ex-
traction of artificial oasis, which can meet the time scale and spatial scale of the 
study. In this paper, the extraction accuracy of artificial oasis is more than 85%. 
Secondly, the deep learning algorithm can adapt to the extraction of artificial oa-
sis in arid area, especially the extraction of artificial oases on the edge of deserts, 
which were not available in previous studies. In addition, for the extraction of 
artificial oasis in Alar region, the areas of artificial oases from 2013 to 2018 were 
1846.33, 2018.59, 1911.84, 1708.38, 2073.492 and 2024.03 km2 respectively, 
showing that the area of artificial oasis was in minor dynamic and stable change 
from 2013 to 2018, basically consistent with the area of the existing yearbooks, 
and there was no significant change as a whole. 

4.2. Modified a Three-Band Maximal Gradient Difference  
Algorithm (TGDVI) 

According to the modified a three-band maximal gradient difference Algorithm 
(TGDVI), the inartificial oasis growth area is extracted using Landsat8 data. The 
results show that, Landsat data has a good extraction effect on natural oases in 
small and medium-sized regions. The resolution of 30 meters can fully reflect 
the extraction of inartificial oasis in small and medium-sized regions. TGDVI 
has a high extraction accuracy on artificial oasis, which can meet the time scale 
and spatial scale of the study. In this paper, the extraction accuracy of natural 
oasis is more than 85%. Secondly, TGDVI can adapt to the extraction of artificial 
oasis in arid lands. In addition, the extraction of inartificial oasis in Alar region 
shows that the area of artificial oasis is in a dynamic and stable change from 
2013 to 2018, and there is no significant change as a whole. 

4.3. Geodetector 
4.3.1. Analysis of Applicability of the Model 
In this study, geodetector was employed to explore the factors controlling Oasis 
distribution of artificial oasis and non-artificial oasis accumulation in arid lands. 
Compared with PCA and CA, geodetector provided more convincing evidence 
to explain controlling factors by measuring the consistency of their spatially 
stratified heterogeneity with Oasis distribution of artificial oasis and non-artificial 
oasis. Wang declared that the consistency of spatial distribution between two 
geographic variables was more difficult to obtain than linear correlation of the 
two variables (Wang et al., 2017). Therefore, compared with Pearson correlation 
analysis, geodetector offered stronger statistics to reveal the causal relationship 
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between independent and dependent variables. Moreover, geodetector is de-
signed for processing categorical variables, such as the geological type in this 
study, whereas Pearson correlation analysis is not suitable for processing this 
kind of data. 

4.3.2. Analysis of Model Result 
Through analysis, we can see that the main factors affecting the artificial oasis 
area in arid lands are salinity and evaporation. Q values are 32.95% and 21.74% 
respectively. As this area is located in a dry area and at the edge of the desert, 
which is dry all year round, salt content and evaporation are the main factors 
that affect the growth trend of artificial oasis. The main reason why precipitation 
has not become the main factor is that the water supply source of artificial oasis 
area is river basin and artificial reservoir. The study area is located near the con-
fluence of the three rivers in the upper reaches of Tarim River, and the main 
reason for the small proportion of soil ion influencing factors is artificial. 

The distribution of sodium ions can explain the distribution of 21.47% artifi-
cial oases. As shown in Figure 9, the maximum sodium ion content is 46.22 g/kg 
and the minimum is 0.39 g/kg. The more sodium ions in the soil, the greater the 
possibility of soil hardening. Soil hardening will lead to a decrease in air per-
meability, which will reduce the oxygen absorbed by the roots. The direct result 
is that the aerobic respiration of the roots is weakened or even anaerobic respira-
tion is carried out, and then the energy provided by the roots is reduced, which 
is very unfavorable to the growth of plants. Therefore, too much sodium ion can 
inhibit vegetation. All other factors are below 20%, so we will not discuss them 
here. 

Compared with artificial oases, it can be seen that there are many factors af-
fecting natural oases in arid lands, with salt, evaporation, rainfall, magnesium 
ions, chloride ions and sodium ions accounting for the main influencing factors. 
q values are 36.9%, 26.27%, 25.96%, 24%, 22.72% and 20.26% respectively. 
Compared with artificial oases, there is no reservoir water supply in natural oas-
es. As this area is located in arid lands and the edge of deserts, it is dry all the 
year round. Salt content and evaporation are the main factors influencing the 
growth trend of artificial oasis. The main reason why rainfall has not become the 
main factor is that the water supply source in artificial oasis areas is artificial re-
servoir water supply (Ye et al., 2010; Chen et al., 2004; Chen et al., 2009). How-
ever, the water supply of natural oasis mainly comes from rainfall and alkali 
drainage channels, so one of the main factors affecting the growth of natural oa-
sis is rainfall, which also shows that this analysing model is very suitable for arid 
lands. However, magnesium ion, chloride ion and sodium ion, as the main other 
major influencing factors, can reflect the actual situation of the natural oasis re-
gion and also reflect the characteristics of the natural oasis region according to 
the relevant literature (Wang et al., 2017; Tokola, 2015). 

In relation to salt content, magnesium ion can explain 24% of artificial oasis 
distribution. As shown in Figure 9, magnesium ion content is 0.97 g/kg at the 
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maximum and 0.05 g/kg at the minimum. Magnesium is one of the essential 
elements for plant growth. It is not only a component of chlorophyll, but also an 
activator of various enzymes in plants. According to its required amount, mag-
nesium, calcium, sulfur and silicon are collectively referred to as medium ele-
ments. In recent years, many scholars have even listed magnesium as the fourth 
most essential element of plants after n, p and k. This shows the importance of 
magnesium ion to natural plant growth. The second is chloride ion and sodium 
ion, which can explain 22.72% and 20.26% respectively. All other factors are be-
low 20%, so we will not discuss them here. 

5. Conclusions 

This study explored the factors controlling the distribution of artificial oasis and 
inartificial oasis accumulation in arid lands using a geographical detector me-
thod and multiple data sources. The most important conclusions were as fol-
lows. 

1) By using Deep Learning algorithm and Modified a three-band maximal 
gradient difference Algorithm (TGDVI) to extract artificial oasis and natural oa-
sis respectively, the accuracy meets the requirements, which can offer the signif-
icant Reference to other places in arid area. 

2) Geodetector provided evidence to explore the factors controlling the spatial 
patterns of the distribution of artificial oasis and inartificial oasis accumulation 
in arid lands. 

3) The NDTG model can offer a complete vision to get the main factors con-
trolling the spatial distribution of artificial oasis and inartificial oasis in arid area. 

4) Through the analysis, the main factors affecting the artificial oasis area in 
arid lands are salinity and evaporation; the main factors affecting the desert oasis 
area in arid lands are salinity, evaporation, rainfall, magnesium ions, chloride 
ions and sodium ions. 
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