
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

A Spatial Heterogeneity-Based Segmentation Model
for Analyzing Road Deterioration Network Data in

Multi-Scale Infrastructure Systems
Yongze Song , Member, IEEE, Peng Wu , Daniel Gilmore, and Qindong Li

Abstract— Road network conditions and road quality are
directly linked with the performance of an entire infrastructure
system. As sensor monitoring of road deteriorations has rapidly
increased, road infrastructure performance can now be assessed
using multiple measures. However, more effective and accurate
quantitative analysis methods are increasingly required. This
research explores road infrastructure performance using road
deterioration network data in the Mid West Gascoyne region,
Australia. A spatial heterogeneity-based segmentation (SHS)
model is developed for redefining road segments across the
network in terms of sensor monitoring data, and for both project-
level and network-level infrastructure systems management.
To evaluate the model effectiveness and accuracy, an evalua-
tion system is proposed from four aspects: segment number,
homogeneity within segments, heterogeneity among segments,
and segment morphology. The SHS model is compared with two
widely used road network segmentation methods. The results
show that the SHS model can use fewer segments to ensure
higher homogeneity within segments and heterogeneity among
segments across the network. Meanwhile, the segment lengths are
more uniformly distributed as compared with results from other
methods. The developed model and findings from this research
can significantly improve the utilization of sensor monitoring
network data and support multi-scale infrastructure systems
management.

Index Terms— Smart infrastructure management, road net-
work, road deterioration, spatial heterogeneity, GIS, spatial
analysis.

I. INTRODUCTION

AROAD network is one of the core components of an
infrastructure system [1], [2]. A critical function of the

road network is to link buildings, transport facilities, and
other facilities of the infrastructure system, such as energy,
water, health, and waste facilities [3], [4]. Therefore, the road
network conditions and effectiveness have essential impacts
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on the performance of the entire infrastructure system. Sensor
monitoring data has been increasingly accumulated for road
performance assessment [5], [6]. However, the methods are
still limited insofar as effective, accurate, and large spatial
scale infrastructure data analysis.

In general, a road surface condition can be measured using
the traffic burden, pavement service life, and deterioration. The
traffic burden is computed as the sum weight of all types
of vehicles, where heavy and light vehicles are the primary
types. Studies in various nations show that light vehicles
are much more common than heavy vehicles, but more than
80% of the traffic burden on the road surface comes from
heavy vehicles [7]. In addition, the pavement service life is a
widely used indicator for practical road design, construction,
maintenance, and decision-making [8]–[10]. The pavement
service life is associated with the design life, variations of
traffic flows, and local environmental conditions, so it is
usually not significantly correlated with real conditions. Road
deterioration includes various movements, wear and tear, and
structural and physical damage [11]. The rapidly increased
usage of sensor monitoring data for road deterioration brings
more opportunities to quantitatively assess road surface condi-
tions [12]–[14]. In this study, road conditions are investigated
using sensor monitoring deterioration network data.

Road infrastructure data analysis methods generally come
from three categories of current and practically urgent require-
ments. First, network-level management has become as impor-
tant as project-level management. Owing to the high accuracy
of sensors, road condition data has been widely used in local
road construction and maintenance projects, and in project-
level management. For instance, the spatial distribution of
road deterioration has been predicted for roads in New York,
USA [15], and road condition future scenarios have been
predicted for fifteen low-volume roads in Kerala, India [16].
With the accumulation of data, data-driven investigations,
especially large spatial scale data analysis methods, have
become more important for network-level infrastructure man-
agement, such as state, regional, and national level decision-
making [17]–[19]. Another concern is providing in-depth data
analysis for simultaneously satisfying different road users’
requirements. In practice, raw observations generally reveal the
exact and local conditions within a short road, but segment-
based data are more practical for real construction works
and management [20]. For instance, project-level summaries
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can indicate the requirements or effects of construction and
maintenance activities, and network-level summaries can be
used in strategic road infrastructure investment and manage-
ment. Therefore, there is great practical potential in devel-
oping data analysis methods for multi-scale infrastructure
systems. Finally, the improvement of data accuracy requires
improvements in modeling accuracy and effectiveness. At the
same time, the question of how to quantitatively evaluate the
accuracy and effectiveness of different methods remains an
open issue.

Spatial heterogeneity models have advantages in flexibly
segmenting spatial data in both large and local spatial scales.
For instance, in terms of spatial heterogeneity within geo-
graphical image data, landscape products and remote sensing
data can be segmented in multiple scales [21]–[23]. Among
the models, the spatial stratified heterogeneity approach is
widely utilized for assessing spatial heterogeneity among
strata defined by spatial explanatory variables in geo-
sciences [24]–[26]. However, few knowledges are available
about integrating spatial heterogeneity and characteristics of
line segments on road network to address road deterioration
issues.

This study develops a spatial heterogeneity-based segmen-
tation (SHS) model for investigating road performance from
both project and network levels for multi-scale infrastructure
systems. High-resolution road deterioration data, including
curvature and deflection data, are collected across the entire
network in the Mid-West Gascoyne region of Australia. The
SHS model is developed and utilized for the homogeneous seg-
mentation of deterioration network data. In addition, an eval-
uation system is proposed to compare the effectiveness of the
SHS model and other two homogeneous segmentation meth-
ods, i.e., the cumulative difference approach (CDA) and the
minimization coefficient of variation (MCV) method. Finally,
the segmentation results are applied to a risk evolution for
road infrastructure systems.

II. RELATED WORKS

Methods related to this study are reviewed in this section,
including methods for road segment definition and homoge-
neous segmentation.

A. Road Segment Definitions

In construction works and network management, a road
segment is generally defined in three ways. First, a road
segment can be a specific part of a road located between two
intersections [27], [28]. In this way, the road segments are
determined by road number, name, direction, and intersection
locations in a road network. Another approach for defining a
road segment is to find a part of a road with uniform properties,
such as an identical number of lanes, width, pavement surfac-
ing type, construction material, or soil type. In practice and in
data analysis, road segments are identified using categorical
variables. The final definition considers that a road segment
usually has similar or approximate characteristics, including
traffic flows, road deteriorations, and local environmental con-
ditions [29], [30]. Road deteriorations are reflected in sensor

monitoring data, including curvature, deflection, roughness,
and rutting. Local environmental conditions, such as temper-
ature, precipitation, and soil moisture, can be measured with
ground sensors and satellite remote sensing. This definition
presents road segments using continuous observations of road
or traffic variables. The rapidly increased multi-source sensor
data provides more opportunities and potential for using the
last definition in data analysis, traffic flow prediction, and
road infrastructure management. The above three definitions
have their respective advantages. Thus, there is great potential
for defining road segments in a more comprehensive way by
merging the three definitions.

B. Homogeneous Segmentation Methods

The primary objective of homogeneous segmentation is
to derive road segments where observations tend to be
homogeneous, similar, or approximate. Most studies utilize
homogeneous segmentation methods in road deterioration data
analysis. The coefficient of variation (CV)-based method and
the CDA are two typical homogeneous segmentation methods.

The CV is a fundamental statistical indicator for measuring
the closeness of a group of data [31]–[33]. It is computed
as the ratio between the standard deviation and mean value.
The MCV method aims at identifying road segments with the
minimum CV. The MCV and relevant methods have been
widely used in signal processing [34], image classification
and reconstruction [33], [35], [36], and system reliability
analysis [37]. The major advantage of the MCV method is that
it can effectively detect data groups with high homogeneity.

The CDA segments road data by detecting locations of
change points using a cumulative area function and its slope
function [38]–[40]. In addition to road data, the CDA has
also been applied in the segmentation and classification of
images [41]. In general, the CDA includes three steps. First,
a cumulative area function is constructed with observations
along a road. Then, the cumulative difference between the
cumulative area function and cumulative mean values is com-
puted to reveal observation variations. Finally, the change point
locations are determined as the algebraic sign changes of
the slope of the cumulative difference function. In practice,
owing to the sensitivity of the CDA to suddenly changed
observations and outliers, the CDA requires modifications with
data smoothing, removing outliers, setting a minimum segment
length, and setting iterations [42]. The modification steps are
selected based on observations and practical requirements.

III. MATERIAL AND METHODS

A. Study Area and Data

The road network in the Mid West Gascoyne region is a
critical exemplar for Australian road infrastructure systems,
and for the world-wide spatial statistical analysis of road
infrastructure performance. The first factor in its importance
relates to essential locations and the diverse and comprehen-
sive functions of roads. Fig. 1 shows that the road network
links in Perth, the capital city of Western Australia (WA),
which includes a densely distributed population, major ports,
outer grain production areas, and remote mining regions. Thus,
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Fig. 1. Location and distribution of road network in the Mid West Gascoyne
region in Western Australia, Australia.

the road network covers both urban passenger transport and
heavy vehicle freight transportation, such as port logistics and
mining and agricultural supply chains.

In addition, this road network is typical for evaluation of
“Traffic Speed Deflectometer” (TSD)-based road deterioration
data in Australia. The TSD is a heavy vehicle-based road
deterioration monitoring system consisting of Doppler lasers,
3D sensors, GPS, cameras, and temperature probes [43].
Table I lists a summary of the road deterioration data collected
by the TSD system in this study. In total, 364,901 observations
of road deteriorations within an interval of 10 m are collected
on 19 highways with a total length of 3649.01 km in the Mid
West Gascoyne road network. The Great Northern Highway
(H006) and the North West Coastal Highway (H007) are
the two longest roads, and their lengths account for 40% of
the entire road network length. Road deterioration variables
include curvature and deflection. Curvature presents asphalt
fatigue with a shape variation of the pavement surface under
certain loads. Deflection indicates the pavement strength, and
is monitored as the maximum depression of a pavement
surface under a standard load. Curvature can be computed
as the maximum deflection for a load position minus the
deflection at this position when the load is 200 mm away.
The mean curvature and deflection of the road network are
152.79 μm and 341.34 μm, respectively. In general, when the
curvature is higher than 300 μm or the deflection is higher than
700 μm, the road surface conditions are poor, and maintenance
and reconstruction are required. In the study, 6.3% and 5.1%
of the road lengths are above the high-risk thresholds for
curvature and deflection, respectively.

B. Methods

This study develops a SHS-based homogeneous segmenta-
tion model for road deterioration network data analysis and
multi-scale road infrastructure system management. Mean-
while, an evaluation system is proposed to compare the
effectiveness of different homogeneous segmentation methods.

Fig. 2. Steps of spatial network data segmentation, flow chart of the spatial
heterogeneity-based segmentation (SHS) method, and the evaluation system
for comparing homogeneous segmentation methods, including cumulative
difference approach (CDA) and the minimization coefficient of variation
(MCV).

The methods in this study include four steps (Fig. 2): data
pre-processing, segmentation by categorical variables, homo-
geneous segmentation by continuous variables, and model val-
idation. The steps are introduced in the following subsections.

1) Data Pre-Processing and Spatial Analysis: The aim of
data pre-processing is to ensure that the road deterioration
network data is organized in a logical way. The data pre-
processing includes four parts. The first part is to remove
or fill missing data. Missing data is common in raw sensor
monitoring data. In this study, curvature and deflection are
monitored at a 10 m interval using an updated TSD system
across the network, without missing data. The second part
is computing road lengths of observations. Each observation
represents 10 m of road surface conditions in the study.
Third, the spatial locations of observations should be sorted to
be along roads. Finally, geographically separated roads with
identical road numbers and names should be identified and
regarded as two roads.

To further explore the spatial variations of road deteri-
orations, a one-dimensional spatial variogram is estimated
for deterioration data along the spatial line of each road.
The coefficients of the variograms are fitted using weighted
least squares functions from the R “gstat” package, which
can perform multivariate geostatistical modeling [44]. The
fitted coefficients of the variograms are then summarized
using a road length-weighted mean approach, to describe the
general scales of the spatial variations of the spatial line-based
curvature and deflection.

2) Road Segmentation by Variables: In this study, road
segments are determined by both categorical and continuous
variables, as consistent with practical needs in road construc-
tion projects and network management. In this study, the
categorical variables for homogeneous segmentation include
road number and name. Optionally, categorical variables can
also include carriage way (left road, right road, or single
road), administrative region, pavement surfacing type, etc.
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TABLE I

A SUMMARY OF ROAD DETERIORATION OBSERVATIONS DATA

The continuous variables include the curvature and deflection
sensor monitoring data.

3) Spatial Heterogeneity-Based Segmentation (SHS) Model:
The SHS model is developed by integrating the homoge-
neous segmentation of network data and a spatial stratified
heterogeneity analysis. The computation of the SHS model
includes two steps. The first step is to compare the length
of a spatial line segment data with the required threshold
of road segment length. If the length of the spatial line
segment data is shorter than the required minimum segment
length, the data is regarded as a segment. If the length of
the data is longer than the required maximum segment length,
the data should be segmented using the segmentation approach
described in the second step. In this study, three segment
length thresholds are set for the multi-scale road infrastructure
system: 100–500 m for project-level segmentation, and 1–5 km
and 10–50 km for network-level segmentation.

The second step is to divide the data into two segments
by selecting a change point that meets two criteria: the
data between the two segments has the highest spatial
heterogeneity, and the lengths of both segments are within
the required threshold for segment length. The heterogeneity
(Qs ) of the data in the two segments is quantified using a
factor detector model from the spatial stratified heterogeneity
method [45], [46]:

Qs = 1 − Naσ 2
a + Nbσ

2
b

N2
σ

(1)

where Ni (i = a or i = b) and σi are the number and
standard deviation of the observations of the segment a
or segment b, respectively, and N and σ are the number
and standard deviation of all observations, respectively.
The spatial stratified heterogeneity is widely used for
evaluating spatial heterogeneity among strata defined by
spatial explanatory variables [24]–[26]. In this study, it is
applied for quantifying the heterogeneity of the segment-

based data. If the segmented data are longer than required
maximum segment length, the segmentation process will be
repeated until all segment lengths are within the required
length threshold. If two or more continuous variables are
used in the homogenous segmentation, a mean Qs value of
the multiple variables is computed during each iteration.

4) Segmentation Method Evaluation System for Spatial Line
Data: This study proposes a segmentation method evaluation
system for spatial line data. The evaluation system examines
four aspects: the number of segments, homogeneity within
segments, heterogeneity among segments, and morphological
characteristics of segments. First, the number of segments indi-
cates the effectiveness of the methods in segmenting spatial
line data. From this aspect, fewer segments means the method
can more effectively segment the line data as compared with
other methods.

Second, the homogeneity of the data within segments
reveals whether the data within segments tends to be similar
and has a uniform data structure. In this study, the homogene-
ity within segments is computed as:

H = 1
∑

i ci
· N

100
(2)

where N is the number of observations, ci (i = 1, . . . , s) is
the CV of segment i , and s is the number of segments. The
CV is the standard deviation divided by the mean value [47].
A higher value of the homogeneity within segments means
that observations within the segments are more similar, and
have a more uniform data structure. In practice, the percentage
of lengths of road segments with CV values lower than
0.25 ( p0.25) is generally used to indicate the effectiveness of
segmentation methods.

Third, the heterogeneity among segments highlights the
spatial disparities of data among different segments. It is
quantified using a factor detector model of the spatial stratified

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 04,2020 at 01:11:04 UTC from IEEE Xplore.  Restrictions apply. 

User
高亮

User
高亮



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG et al.: SHS MODEL FOR ANALYZING ROAD DETERIORATION NETWORK DATA 5

Fig. 3. Variogram coefficients and lines modeled with one-dimensional
spatial variograms for road-based curvature (a and b) and deflection (c and d).

heterogeneity method:

Q = 1 −
∑s

i=1 Ni σ
2
i

Nσ 2 (3)

where Ni and σi are the number and standard deviation of the
observations of segment i , respectively, and σ is the standard
deviation of all observations.

Finally, the morphological characteristics of segments are
computed using morphological indicators, to identify the dis-
tribution patterns of segment lengths. The segment length
distribution is compared with two common statistical dis-
tributions, the normal distribution and uniform distribution.
The closeness between the segment length distribution and
one of the statistical distributions is calculated using the chi
square test [48], [49], where the chi square statistical value
is used to assess the relative closeness derived from different
segmentation methods. A lower value of the chi square statistic
indicates a higher relative closeness.

IV. RESULTS

A. Statistics and Geostatistics of Road Deteriorations
Network Data

The road deterioration network data, including curvature
and deflection, are pre-processed for the following analysis
and homogenous segmentation. In total, 219 parts of roads
are identified on 19 highways. The minimum, mean, and
maximum lengths of the road parts are 0.11 km, 16.66 km,
and 170.45 km, respectively. For reliable geostatistical analy-
sis, deterioration data are selected for spatial variograms
estimation from 184 (84.02%) roads where the numbers of
observations are higher than 50. The sum of the lengths
of the selected roads accounts for 96.96% of all roads.
In this study, exponential models are fitted to deterioration

TABLE II

ROAD LENGTH-WEIGHTED COEFFICIENTS OF DETERIORATION
VARIOGRAMS

variograms. The coefficients of the variograms include nugget,
sill, and range. The nugget-sill ratio is calculated to reveal the
unsolved variation at scales finer than the sensor-monitoring
resolution of the deteriorations (10 m). A practical range is
computed as the three times the range in the exponential
model [50]. Fig. 3 shows the summary of the variogram
coefficients for spatial line-based curvature and deflection,
and corresponding variogram lines fitted with road length-
weighted mean coefficients of the variograms. The weighted
estimated coefficients of the deterioration variogram lines are
summarized in Table II. The nugget-sill ratios of the curvature
on 62.35% of the roads are lower than 20%, and the nugget-
sill ratios of deflection on 44.02% of the roads are lower
than 20%. The road length-weighted mean nugget-sill ratios of
curvature and deflection are 14.54% and 40.77%, respectively.
Thus, the current sensor monitoring resolution can satisfy the
requirements for accurate analysis of deteriorations, especially
for curvature analysis. The practical ranges of the spatial vari-
ations of curvature and deflection are 1.43 km and 14.33 km,
respectively. The relatively short correlation distance of the
curvature distribution and the long correlation distance of the
deflection distribution indicate that curvature and deflection
have distinct spatial structures.

B. SHS-Based Segmentations

Road deterioration maps (Fig. 4) demonstrate both
the project- and network-level segment-based curvature
and deflection distributions identified by the SHS
approach. According to practices of road construction
projects and decision-making experience of road network
management and road maintenance strategies in WA, the
project-level segments range from 100 m to 500 m, and the
network-level segments range from 1 km to 5 km and from
10 km to 50 km. For instance, a majority of road construction
projects deal with roads of a few hundred meters, such
as maintenance for various types of local defects, so the
project-level segments are defined as 100 - 500 m. When
longer roads are damaged and need to be resurfaced, they
will be regarded as network-level segments ranging from
1 to 5 km in the study. Then, resurfacing or rehabilitation
activities may be required for road maintenance. For road
authority, such Main Roads WA, continuous and regular road
construction and maintenance plans are proposed from the
perspective of the whole network management. Therefore,
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Fig. 4. Spatial distributions of project- and network-level segments across
the network. Curvature: (a) project-level, (b) network-level (1–5 km), and
(c) network-level (10–50 km). Deflection: (d) project-level, (e) network-level
(1–5 km), and (f) network-level (10–50 km).

10 - 50 km road segments are applicable for effective road
construction design and maintenance strategies.

By using the sensor monitoring deterioration data, the SHS
model identifies 12,594 project-level segments, 1,271 network-
level (1–5 km) segments, and 134 network-level (10–50 km)
segments. The deterioration values within segments are sum-
marized using mean values to present spatial scale effects
on maps. Three parts of the segment-based deterioration data
selected from the North West Coastal Highway (H007) are
used as examples for the comparison of project- and network-
level homogenous segmentations. The first example is the
segment-based data from 253.48 km to 368.20 km, where
deteriorations in the northern part are relatively higher than
in the southern part. The other two examples are segment-
based data from 321.94 km to 335.13 km, where deteriorations
are generally high, and segment-based data from 272.26 km
to 281.70 km, where deteriorations are relatively low. The
segment-based deteriorations on the three examples and the
entire road network indicate that the project-level segments
can effectively summarize deterioration observations, and can
be widely used for local construction and road maintenance
projects. The network-level segments are a summary of
project-level segment data. They are essential for regional
construction and maintenance allocation and road network
asset management.

In addition, the observed and segment-based deterioration
data on the example roads are visualized with statistical sum-
maries (Fig. 5). The statistical summaries of the segment-based
data include mean, median, and 75% quantile values, where
the 75% quantile values reveal patterns of relatively high
deteriorations within segments. The visualization demonstrates
that the SHS model can effectively segment road data while
ensuring high homogeneity of data within segments, and high
heterogeneity of data among different segments.

Fig. 5. Statistical comparison of project- and network-level segments derived
by the SHS method.

Fig. 6. Comparison of high deterioration risk roads. High-curvature-risk
roads: (a) observations, (b) project-level segments, (c) network-level (1–5 km)
segments, and (d) network-level (10–50 km) segments. High-deflection-risk
roads: (e) observations, (f) project-level segments, (g) network-level (1–5 km)
segments, and (h) network-level (10–50 km) segments.

Finally, the distributions of roads with a high deterioration
risk identified at the project and network levels are compared
for curvature and deflection (Fig. 6). In general, if the road
surface curvature is higher than 300 μm or the deflection
is higher than 700 μm, the road is in poor condition, and
requires extensive maintenance activities, and perhaps even
reconstruction. In the study, both the sensor monitoring obser-
vations and the segment-based data are compared with the
high deterioration risk thresholds to identify high-risk roads.
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TABLE III

SUMMARY OF HIGH DETERIORATION RISK ROADS OF THE NETWORK

The high deterioration risk roads across the whole network are
summarized in Table III. The comparison of high deterioration
risk roads reveals three aspects. First, high-curvature-risk roads
are longer than high-deflection-risk roads. Second, the spatial
patterns of project-level high-risk roads are consistent with
high-risk observation patterns. The top three high-curvature-
risk roads are the North West Coastal Highway (H007),
Great Northern Highway (H006), and Minilya Exmouth Road
(H048), and the top three high-deflection-risk roads are the
North West Coastal Highway, Great Northern Highway, and
Midlands Roads (M028). In total, 76.08 km of high-curvature-
risk roads and 46.02 km of high-deflection-risk roads are
distributed in the North West Coastal Highway. Third, owing
to the coarse resolution of network-level segments, the spatial
patterns of network-level deteriorations are significantly differ-
ent from project-level deterioration patterns. The North West
Coastal Highway is still the road with the longest segments of
high curvature and deflection risks, but the following high-risk
roads are varied. In the network-level (1–5 km) results, in addi-
tion to the North West Coastal Highway, the length of the high-
curvature-risk roads on the Minilya Exmouth Road reaches
19.85 km. The network-level (10–50 km) results also reveal
that the entire Carnarvon Road (H044) is at high deterioration
risk. The identification of roads above a high deterioration risk
at different spatial scales can be flexibly used for practical road
maintenance decision-making and construction projects.

C. Model Validation

The effectiveness of the SHS model for road deteriora-
tion network data is comprehensively assessed in this study.
Fig. 7 shows a visualization for comparison of the observa-
tions and segment-based data of the SHS, CDA, and MCV
approaches. The results show that the SHS model has a
stronger ability in grouping roads with similar deteriorations,
and in differentiating neighbor roads with significant differ-
ences. To further quantitatively validate the performance of the
homogeneous segmentation methods, this study proposes an
evaluation system. The model performance is evaluated from
four aspects: segment numbers, homogeneity within segments,
heterogeneity among segments, and segment morphology.
In the model validation, the SHS model is compared with
the CDA and MCV approaches. The data are pre-processed
with identical steps for the segmentations of the three models.
The statistical evaluations of the three segmentation methods
at both project and network levels are listed in Table IV.

Fig. 7. Visualization comparison of three homogeneous segmentation
methods: SHS, CDA, and MCV, for project-level (100–500 m) segments ((a)
curvature segments, and (b) deflection) and network-level (1–5 km) segments
((c) curvature and (d) deflection) in parts of the road network.

The statistical evaluations in regard to the four aspects are
presented in the following paragraphs.

For the segment numbers, both the project- and network-
level segmentations indicate that the SHS model can use
the fewest number of segments to define the deterioration
network data. The number of segments derived from CDA is
less than that from the MCV approach. As compared with
CDA, 11.4% and 22.4% of the numbers of segments can
be reduced by the SHS model in the project- and network-
level (1–5 km) segmentations, respectively. Thus, the segment
number comparison demonstrates the effectiveness of the SHS
model in segmentation.

The homogeneity of the data within segments is quantified
using two indicators, the homogeneity index, and the per-
centage of the length of the road segment with CV values
lower than 0.25 ( p0.25 ). The statistical evaluation shows that
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TABLE IV

STATISTICAL EVALUATION OF DIFFERENT SEGMENTATION METHODS AT PROJECT AND NETWORK LEVELS

Fig. 8. Comparisons between heterogeneity among segments and homo-
geneity within segments for project-level (100–500 m) (a) and network-level
(1–5 km) (b) results.

the project- and network-level results of the SHS model have
the highest homogeneity within segments. In the project-level
results, the CV values of 65.78% of the lengths of SHS-based
road segments are lower than 0.25. The results of the SHS
model have more segments with relatively low CV values as
compared with the other two methods. In the network-level
(1–5 km) results, the p0.25 values of the SHS-based segments
are higher than those of the CDA-based results, indicating the
relatively higher segmentation effectiveness of the SHS model.

The p0.25 values of the SHS-based segments are also lower
than those of the MCV-based results, because the MCV-based
results contain more segments, and especially more short roads
with homogeneous values.

The heterogeneity of data among different segments across
the network is quantified using a factor detector value. Both
the project- and network-level results show that the SHS-based
segments have the highest heterogeneity among segments.
To further investigate the segmentation results, Fig. 8 compares
the relationships among segment length, homogeneity within
segments, and heterogeneity among segments at the project
and network (1–5 km) levels. In general, data of relatively
long segments have higher heterogeneity among segments than
short segments, but the homogeneity within segments is not

Fig. 9. Statistical distributions of segment lengths of SHS, CDA, and MCV
methods at project-level (100–500 m) (a), network level (1–5 km) (b), and
network-level (10–50 km) (c), and distributions of differences from normal
and uniform distributions at project-level (100–500 m) (d) and network level
(1–5 km) (e).

closely related to segment length. The road length weighted
mean values reveal that the SHS-based segments have both
the highest homogeneity within segments, and heterogene-
ity among segments for curvature, deflection, and the mean
indicators as compared with the CDA and MCV approaches.
In the project-level results, the CDA-based segments have
higher homogeneity within segments than the MCV-based
results, but they have lower heterogeneity among segments.
In the network-level results, the indicators of the CDA-based
segments at both dimensions are higher than the indicators of
the MCV-based results.

Finally, the segment morphology is assessed, using the
distribution pattern of segment length. The segment length
distribution is compared with two common statistical distri-
butions, the normal distribution and uniform distribution. The
assumption is that if the experimental distribution is close to
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one of the two distributions, the segment length is normally
distributed or uniformly distributed, instead of biased distrib-
uted. Fig. 9 shows the distribution patterns of the segment-
based data identified by the SHS, CDA, and MCV methods,
and their differences from normal and uniform distributions.
In the project-level results, the length distribution of the SHS-
based segments is closer to a uniform distribution, and that
of the CDA-based segments is closer to a normal distribution.
The lengths of the MCV-based segments are biased distributed.
In the network-level (1–5 km) results, the length distributions
of the three methods appear to be bimodal, with a main peak at
approximately 1.5 km and a lower peak at approximately 4 km.
The length distribution of the SHS-based segments is closer
to a uniform distribution. Owing to the biased distributions of
the CDA- and MCV-based segment lengths, the distribution
of the SHS-based segment lengths is also closer to a normal
distribution as compared with the results of other two methods.
In the network-level results at 10–50 km, the distributions
of the three methods are similar, and appear to be bimodal.
However, the chi-square test indicates that the result of the
SHS model is the best, and is closer to a uniform distribution.
Therefore, the segment morphology evaluation indicates that
results of the SHS model are generally closer to uniform
distributions, and the distribution bias is much lower than that
from the other two methods.

V. DISCUSSION

The proposed spatial heterogeneity-based homogeneous
segmentation model is applied in multi-scale road infrastruc-
ture management and for investigating high deterioration risk
roads across the network. The findings and explanations of the
project- and network-level analysis are respectively presented
in following paragraphs.

The project-level analysis aims at supporting the life cycle
of road engineering, including the design of new roads, con-
struction, operation, maintenance, and reconstruction. In the
study, the spatial distribution patterns of deterioration data
of project-level segments are consistent with the patterns
from sensor monitoring observations. The consistent patterns
indicate that the quantity of deterioration data is significantly
reduced to 3.45% (12,594/ 364,901), and simultaneously,
the key information of the deteriorations remains. For example,
the high curvature and high-deflection-risk roads identified by
the SHS model are approximately identical to the observed
high-risk roads. In the study, the high deterioration risks
mainly appear on the North West Coastal Highway, Great
Northern Highway, Minilya Exmouth Road, and Midlands
Road. Distance is a major factor in the freight transporta-
tion mode [51], meaning that roads near certain types of
freight suppliers or needs may be responsible for more supply
chains, and are associated with dense freight transportation and
port, mining, and agricultural logistics. In addition, accurate
project-level segments are critical for practical engineering
works. One of the primary tasks of the project-level road
infrastructure performance investigation is to optimize life-
cycle solutions to satisfy stakeholders’ requirements [52]. In
general, the requirements consist of improving quality and

productivity, reducing road user cost, real-time tracking of
on-site construction progress, decreasing safety and environ-
mental risks, and improving information management capa-
bilities [53]–[55]. The project-level segments can significantly
improve the accuracy and efficiency of decision making in the
life cycle of road engineering, and can better satisfy users’
requirements.

The network-level analysis is equally important as the
project-level analysis, but they have different objectives and
applications. First, the network-level analysis is desired for
macro and large-spatial-scale decision making, instead of
for single-construction projects. The network-level decision
making includes statistics of road surface conditions across
the network, strategic network investment for construction and
maintenance, optimizing categories of deterioration risks, and
network asset management. In addition, the spatial patterns of
network-level deteriorations tend to be similar to project-level
deterioration patterns, but they can present distinct regional
information. In this study, the high-risk roads are varied at
the project and network levels, owing to the different length
percentages of high-risk observations within segments at the
two levels. From the perspective of network-level manage-
ment, extensive maintenance is required for roads where the
overall deterioration is severe, or where most parts of the roads
are in poor condition.

VI. CONCLUSION

Defining road segments based on sensor monitoring and
continuous deterioration data is a fundamental and critical
issue for intelligent transportation systems, and smart and
sustainable infrastructure systems. Homogeneous segmenta-
tion approaches provide effective solutions for investigating
road deterioration network data. This study proposes a spa-
tial heterogeneity-based homogeneous segmentation model
for more effectively defining road segments using sensor
data. In addition, an innovative model evaluation system is
proposed in the study for comprehensive model validation.
The primary advantage of the SHS model is that the opti-
mal segment-based information can be identified with fewer
segments. The optimal segment-based information includes a
relatively high homogeneity of data within segments, and a
high heterogeneity of data among different segments. Both
the project- and network-level segmentation results indicate
that the deterioration data within SHS-based segments tends
to be approximately similar, and the data among neighbor
SHS-based segments are significantly varied. Meanwhile, the
SHS model can generate more uniformly distributed lengths of
segments. The morphological characteristics of the SHS-based
segments can significantly reduce the impacts of massive short
segments on practical works and are identified to ensure higher
segmentation effectiveness. As such, the SHS model and
concepts and knowledge of the model evaluation system can be
potentially utilized in broader research regarding network data
segmentation and spatial model evaluations in transportation
and road infrastructure. The multi-scale spatial analysis for
segment-based road deteriorations can be flexibly utilized in
various project- and network-level studies, construction, and
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road infrastructure management. Therefore, a data-driven road
segment definition is not only essential for understanding and
applying sensor monitoring big data, but is also practical for
road construction works and network asset management.
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choice in freight transport,” Eur. Transp. Res. Rev., vol. 11, no. 1, p. 10,
Dec. 2019.

[52] J. Santos and A. Ferreira, “Life-cycle cost analysis system for pavement
management at project level,” Int. J. Pavement Eng., vol. 14, no. 1,
pp. 71–84, Jan. 2013.

[53] A. Ferreira and J. Santos, “Life-cycle cost analysis system for pavement
management at project level: Sensitivity analysis to the discount rate,”
Int. J. Pavement Eng., vol. 14, no. 7, pp. 655–673, Oct. 2013.

[54] G. Vadakpat, S. Stoffels, and K. Dixon, “Road user cost models for
network-level pavement management,” Transp. Res. Rec., J. Transp. Res.
Board, vol. 1699, no. 1, pp. 49–57, Jan. 2000.

[55] J. B. Odoki, A. Di Graziano, and R. Akena, “A multi-criteria method-
ology for optimising road investments,” Proc. Inst. Civil Eng.-Transp.,
vol. 168, no. 1, pp. 34–47, 2015.

Yongze Song (Member, IEEE) received the B.S. and M.S. degrees in
surveying and mapping from the China University of Geosciences, Beijing,
China, in 2012 and 2015, respectively, and the Ph.D. degree in construction
management from Curtin University, Perth, WA, Australia, in 2019.

He is currently a Research Fellow with Curtin University. His research
interests include geographic information science, spatial statistics and mod-
elling, and sustainable infrastructure.

He was a recipient of the Global Peer Review Awards by Publons, for
being on the top 1% of peer reviewers in Geosciences and Cross-Field.

Peng Wu received the B.S. degree in project management from Tsinghua
University, China, in 2006, the M.S. degree in construction management from
Loughborough University, U.K., in 2007, and the Ph.D. degree in project
management from the National University of Singapore, Singapore, in 2012.

He is currently a Professor with the Department of Construction Manage-
ment, and an Associate Director with the Australasian Joint Research Centre
for Building Information Modeling, Curtin University. His research areas
include sustainable construction, lean production and construction, production
and operations management, and life cycle assessment.

In 2016, he received the Discovery Early Career Research Award from the
Australian Research Council, which is a prestigious award to support excellent
basic and applied research by early career researchers.

Daniel Gilmore received the B.S. and M.P.E. (Civil) degrees from the
University of Western Australia, Australia, in 2018.

He is currently working for Jacobs Engineering Group under the Asset
Management Support Services contract for Main Roads Western Australia. In
his final year of study, his thesis is the Optimization of Road Maintenance
Scheduling Using Genetic Algorithms. His current works involve the applica-
tion and improvement of asset management systems within the organization
of Main Roads Western Australia. He is currently pursuing the integration of
civil engineering practice within the asset management space.

He is a Recent Member of the Asset Management Council and Engineers
Australia. He is invested in enhancing his career early to achieve Chartered
Engineer status in Australia.

Qindong Li received the B.S. degree in civil engineering from Sichuan
University, China, in 1992, and the M.E. degree in civil engineering from
RMIT University, Australia, in 2003.

He has over 18 years’ experience in design, construction and research
of road transport infrastructures. He is currently the Asset Management
Modeling and Analytics Manager of Main Roads Western Australia, Perth,
WA, Australia. His research interests include pavement deterioration, whole
of life costing, and the use of business intelligence in asset management.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 04,2020 at 01:11:04 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1080/15481603.2020.1760434
User
高亮


