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Abstract: Studying the impacts of climate change and human activities on vegetation is of great 

significance to the sustainable development of terrestrial ecosystems. However, most studies focus on 

the overall impact over a period of time and only a very few studies have examined the time-lag effect 

of vegetation’s response to climate factors when determining the driving mechanisms of vegetation 

dynamics. In this study, we identified key areas driven by either positive or negative human activities 

and climate change. Taking the three karst provinces of southwest China as study area, a Leaf Area 

Index (LAI) - climate model was constructed by quantifying the time-lag effect. Subsequently the 

associated residual threshold was calculated to identify the vegetation change areas dominated by 

human activities and climate change. The results show that, during the implementation period of 
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ecological restoration projects from 1999 to 2015, dominant impact areas of human activities present 

a spatial clustering. Positive impact areas of human activities are mainly distributed among the 

implementation areas of ecological restoration projects, accounting for 5.61% of the total area, while 

decreasing since 2012. For another, the negative impact areas are mainly distributed across the 

mountainous area of Yunnan province, accounting for 1.30% of the total area. Karst landforms are 

having the greatest influence on the areas dominated by positive human activities, whereas both 

topography and karst landform both affect significantly the areas dominated by negative human 

activities. The degree of urban development has the greatest impact on the regions dominated by 

climate change. In the present study we were able to delineate vegetation dynamics zones. Moreover, 

by assessing the importance of different factors, the influences of social and natural factors on the 

zoning were determined. Hence, the outcome of this study provides scientific support for the 

sustainable development of ecological restoration projects. 

Keywords: Vegetation dynamics; Dominant impact factors; Climate change; Human activities; Karst 

region; Residual threshold 

1 Introduction 

Vegetation, as an important part of terrestrial ecosystems and the natural link between soil, water 

and the environment, is very sensitive to global environmental change (Lunetta et al., 2006; Solomon 

and Shugart, 1993). Vegetation dynamics are not only representing the dynamic characteristics of 

terrestrial ecosystem, but also reflect the change of the environment (Reed et al., 1993). Hence, 

changes in environmental factors such as climate and human activities can both affect vegetation 

dynamics (Brandt et al., 2017; Mendoza-Ponce et al., 2018). This is particular true as many recent 

studies underline the importance of climate change affecting, the structure and function of vegetation 
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(Gottfried et al., 2012; Kruhlov et al., 2018; Zeng et al., 2018). Moreover, intensified human activities 

are also having a crucial impact on vegetation dynamics, including large-scale artificial surface 

construction on the urban scale and the change in ecosystem structure at the regional scale, which 

threatening the regional ecological security (Hao et al., 2018; Pricope et al., 2013). Many countries 

around the world have implemented ecological restoration projects, which have made great 

contributions towards vegetation restoration (Peng et al., 2019; Heilmayr et al., 2020). As a 

consequence, many studies have focused on the impacts of these projects and climate change (Chen et 

al., 2014; Robinson et al., 2018) and made an attempt to separate the impacts of both key factors 

(Jiang et al., 2020; Zhou et al., 2018). 

Although many studies have explored the separation of the two factors, the methods used have 

some limitations. For one thing, the commonly used residual trend analysis method, which represent 

the impacts of factors other than climate change by analyzing residuals’ trend in vegetation dynamics 

(Evans and Geerken, 2004; Jiang et al., 2017; Li et al., 2012), can only identify the overall residual 

trend within the study period, and cannot identify the inter-annual fluctuation of the impact of human 

activities on vegetation dynamics. In order to solve this problem, we propose a new method in this 

study. For another, an increasing number of studies have found that the response of vegetation to 

climate has a time-lag effect (Davis, 1989; Vicente-Serrano et al., 2013), because the water and heat 

conditions will not only affect the current but also the future vegetation dynamics (Chen et al., 2014; 

Kuzyakov and Gavrichkova, 2010). However, few studies have considered the time-lag effect of 

vegetation’s response to climate change, which increases the uncertainty of the associated research 

outcomes (Peng et al., 2013; Zhang et al., 2016). Therefore, we take time-lag effect into account when 

constructing LAI-climate model to obtain a more accurate model. 
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Yunnan, Guizhou and Guangxi Provinces have received a lot of attention since eighty-two percent 

of China’s karst landforms are located here, which are all characterized by fragile environment, 

broken high topographical complexity (including steep mountain topography) and poor soil conditions 

(Jiang et al., 2014). As a consequence of early agricultural activities, serious land degradation and 

extensive ecological problems have occurred in this region (Qiu et al., 2020; Wang et al., 2004). To 

tackle this problem China has undertaken large-scale ecological restoration projects, contributing to 

the greening of China (Chen et al., 2019; Deng et al., 2017; Tong et al., 2017). In order to reverse the 

ecological degradation across the karst region of southwest China, the government has set-up projects 

to control rocky desertification. This has improved the vegetation coverage and alleviated the 

deterioration of ecological environments through measures such as the Grain-to-Green Program and 

the Natural Forest Protection (Brandt et al., 2018; Liu et al., 2014). At the same time, rapid 

urbanization (since 2000) of large areas of vegetation have been transformed into construction land, 

which had a negative impact on the regional vegetation growth. Hence, as a consequence of the 

combined impacts of climate change, urbanization and ecological restoration projects, vegetation 

dynamics in the karst region of southwest China showed significant spatial differences (Tong et al., 

2018). Although it is crucial to explore the dominant factors driving these vegetation dynamics, 

ecological restoration projects are rarely based on the identification of these dominant factors, either 

caused by human activities or climate change (Zheng et al., 2019). 

LAI (Leaf Area Index) has been widely considered as an important indicator in order to quantify 

the effectiveness of ecological restoration projects across forest ecosystems (Tong et al., 2018; Zhu et 

al., 2016), and is impacted by climate change, human positive and negative impacts. Climate change 

affects vegetation growth by changing water and heat condition, thus affecting LAI (Nemani et al., 
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2003; Ciais et al., 2005). Specifically, at the individual plant level, temperature and precipitation 

affect plant growth processes (e.g. photosynthesis, respiration, etc.), resulting in changes in LAI. At 

the plant community level, climatic conditions affect the vegetation structure (e.g. dry conditions may 

make the plant composition of the community become drier, thus causing changes in LAI). “Human 

positive impact” is caused by the implementation of ecological restoration projects, which promote 

vegetation restoration through measures such as “closing hill for afforestation” and “Grain-for-Green” 

projects. Human negative impact refers to the impact of vegetation degradation caused by 

urbanization, reclamation, etc. The objective of this study is to (i) characterize vegetation dynamics 

with long LAI sequences obtained from remote sensing data, (ii) identify the dominant impact factors 

of vegetation dynamics using the newly proposed residual threshold method, and (iii) explore how 

various natural and social factors determine the spatial distribution of the dominant factors of 

vegetation dynamics. The results of this study can provide support for evaluation and implementation 

of ecological restoration projects. For areas dominated by negative impact of human activities, 

governance may be needed. For areas where the impact of human activities changed from positive to 

negative, focus attention and governance should be placed to curb this change. What’s more, to cope 

with the risks of climate change, projects to address climate change should be carried out in the 

vegetation degradation dominated by climate change. 

2 Study area and data sources 

2.1 Study area 

Yunnan, Guizhou and Guangxi provinces located in Southwest China were chosen as study area, 

of which 38.6% of the area is karst, (i.e. 0.3 million km
2
 accounting for 82% of the total karst 

landform area in China). The vegetation coverage of the study area is high with a proportion of forest 
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land and grassland equaling to 76.4%, whereas construction land covers only a small part (i.e. 1.3%) 

(Fig. 1). The altitude declines from west to east, with a mean of 1275m. The study area is dominated 

by subtropical monsoon climate, with an average annual precipitation of 1021 mm and an average 

annual temperature of 17.6℃ (Tong et al., 2017) and is characterized by a high vegetation type 

diversity of evergreen species (Wang et al., 2008). However, serious land degradation problems were 

reported, because inappropriate land management decisions across the fragile ecological environment 

of the karst region triggered the degradation of vegetation and soil, causing rocky landscapes and 

threatening the sustainable development of the region (Wang et al., 2004; Zhao and Hou, 2019). The 

government initiated the “Grain-for-Green” project in 1999, the regional ecological environment 

significantly improved as a result of the increase in vegetation growth and coverage (Tong et al., 

2018). 

 

Fig. 1. Geographical location and information of the study area. (a) Location of the study area in 

China and distribution of karst landforms in the study area. (b) Elevation of the study area. (c) Land 

use map and location of three nature reserves (1. Gaoligong mountain national nature reserve in 

Yunnan province (established in 1983), 2. Fanjing mountain national nature reserve in Guizhou 
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Province (established in 1978), 3. Shiwandashan Mountain National Natural Reserve in Guangxi 

province (established in 1982)). 

 

2.2 Data and processing 

The following datasets are used in this paper and were transformed into Albers equal area projection 

(Snyder and Voxland, 1989). 

(1) Global Land Surface Satellite (GLASS) LAI data products from Beijing normal university 

(http://glass-product.bnu.edu.cn/) from 1983 to 2015 with spatial resolution of 0.05° in order to 

characterize the surface vegetation cover condition; Average annual LAI is used to represent yearly 

growth state of vegetation; 

(2) Monthly temperature and precipitation data covering the period from October 1982 to December 

2015 obtained from the China meteorological data service center (http://data.cma.cn/) was rasterized 

after applying the commonly used kriging interpolation technique (Jeffrey et al., 2001; Tong et al., 

2017); 

(3) DEM data, from Geospatial data clouds (http://www.gscloud.cn/) to create slope maps; 

(4) Geological data from the Institute of Karst Geology, Chinese Academy of Geological Sciences to 

map karst landform data; 

(5) Inter-annually adjusted nighttime light data from NOAA (http://ngdc.noaa.gov/) between 1999 and 

2012; 

(6) Land use type data, from Resource and environment data cloud platform (http://www.resdc.cn/).  

3 Methods 

3.1 Research framework 
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The Grain-to-Green project was implemented by the Chinese government from 1999 (Naeem et 

al., 2020). Before this, the urbanization level in the study area was quite low. The main causes of 

ecological problems are the complex terrain, the widespread distribution of karst landform, and the 

poor soil conditions. Human activities were mainly long-term agricultural behaviors, which have little 

impact on vegetation dynamics (Wang et al., 2019). Therefore, from 1983 to 1998, anthropogenic 

activities in this area were weak. Vegetation dynamics in the study area were mainly impacted by 

climate change. From 1999 to 2015, due to the acceleration of urbanization and the implementation of 

large-scale ecological restoration projects, human activities significantly enhanced, which became the 

main impact factor of vegetation dynamics in some areas (Delang & Yuan, 2015). To separate the 

impacts of climate change and human activities on vegetation dynamics, we divide the whole research 

period into two parts, i.e. 

(1) The reference period from 1983 to 1998. Vegetation dynamics are almost affected by climate 

change. We construct the multiple regression LAI-climate models. 

(2) The experimental period from 1999 to 2015. Vegetation dynamics are affected by climate 

change and human activities. We use the LAI-climate models to analyze the impacts of climate 

change and human activities on vegetation dynamics. 

The research process includes four parts, which are carried out according to the flow presented in 

Fig. 2, i.e. 

(1) The quantification of the time-lag effect. 

The response of LAI to climate factors in the study area has a time-lag effect (Wu et al., 2015). In 

order to ensure the scientific establishment of LAI-climate model, the time-lag effect is firstly 

analyzed, which is used to modify the climate factors in the model. 
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(2) The specification of the LAI-climate model. 

Due to the existence of spatial heterogeneity, climate factors of different grids may have different 

impacts on vegetation (Piao et al., 2019; Zhu et al., 2016). So, we construct the model in a spatial 

explicit format, i.e. raster-based. 

(3) The identification of the dominant factor of vegetation dynamics. 

By comparing the LAI residuals corresponding to the reference period and the experimental period, a 

threshold value was obtained based on the mean and standard deviation of residuals considering the 

reference period. Subsequently, the residuals were analyzed to identify the dominant factors of LAI 

dynamics.  

(4) The assessment of the impact of topography, landform and urban development on the zoning 

results of dominant impact factors of LAI dynamics. 

 

Fig. 2. Research framework. 

 

3.2  Time-lag effect quantification 
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Climate change mainly affects the vegetation growth of terrestrial ecosystems through 

temperature and precipitation (Ye et al., 2019), but this is characterized by a time-lag effect. Due to 

the existence of the spatial heterogeneity in environmental and climatological factors, this time-lag 

effect differs depending on latitude. For example, Wu et al. (2015) showed that the correlation 

between vegetation growth and temperature for a given month is the highest in mid- to high latitudes 

(i.e. 30°N - 90°N, 30°S - 90°S), whereas there is a clear time-lag effect between vegetation growth 

and temperature in the low latitudes (30° S - 30 °N), which is often more than one month. Recent 

studies have shown that varying time-lags also exists between precipitation and water uptake by trees 

at mid and high latitudes (Juhlke et al.,2021). Furthermore, studies have shown that Normalized 

Difference Vegetation Index (NDVI) was strongest correlated with the cumulative precipitation of the 

current as well as two previous months (Herrmann et al., 2005; Nicholson et al., 1990), indicating the 

existence of a time-lag effect of climate factors on vegetation productivity between zero and three 

months. In the present study, we quantify the time-lag effect defined as follow: 

𝑇𝑒𝑚𝑝𝑙𝑎𝑔−𝑛
𝑖 =

𝑇𝑒𝑚𝑝𝑖+𝑇𝑒𝑚𝑝𝑖−1+⋯+𝑇𝑒𝑚𝑝𝑖−𝑛

𝑛+1
                                       (1) 

𝑃𝑟𝑒𝑙𝑎𝑔−𝑛
𝑖 =

𝑃𝑟𝑒𝑖+𝑃𝑟𝑒𝑖−1+⋯+𝑃𝑟𝑒𝑖−𝑛

𝑛+1
                                             (2) 

where 𝑇𝑒𝑚𝑝𝑙𝑎𝑔−𝑛
𝑖  and 𝑃𝑟𝑒𝑙𝑎𝑔−𝑛

𝑖  refer to the time-lagged temperature and precipitation data, 

calculated as the mean value of temperature or precipitation of the current month and the n previous 

months; 𝑇𝑒𝑚𝑝𝑖 and 𝑃𝑟𝑒𝑖 refer to temperature and precipitation of the 𝑖𝑡ℎ month. 

The average LAI and the corresponding time-lagged data of climate factors of each month from 

1983 to 1998 are linearly fitted. From this analysis the optimal fitting results are used to determine the 

time-lag effect of the corresponding climate factors. 

3.3 LAI-climate model specification 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



The LAI-climate model is constructed under the assumption of natural conditions without human 

activities, allowing the model to make LAI prediction considering only climatic factors. In order to do 

so, firstly, a surface trend of LAI is calculated by applying a linear regression filter to reflect the 

spatial and temporal patterns of vegetation. More precisely, the associated slope of the linear 

regression is calculated in each grid cell as follow: 

𝑠𝑙𝑜𝑝𝑒 =
𝑛×∑ 𝑖×𝐿𝑖

𝑛
𝑖=1 −∑ 𝑖𝑛

𝑖=1 ∑ 𝐿𝑖
𝑛
𝑖=1

𝑛×∑ 𝑖2𝑛
𝑖=1 −(∑ 𝑖𝑛

𝑖=1 )
2                                                 (3) 

where slope refers to the trend in annual average LAI; 𝐿𝑖 represents LAI of the 𝑖𝑡ℎ year, 𝑛 refers to 

the length of the time series; i refers to the number of the year. Hence, when the slope is greater than 0, 

the annual average LAI shows an increasing trend. 

Before establishing a LAI-climate model that can be used to predict climate factors dominated 

LAI, it is necessary to determine the correlation between LAI and climate factors. Hence, in the 

present study partial correlation coefficients were calculated in order to analyze the correlation 

between temperature, precipitation and LAI. The significance of the partial correlation coefficients 

was tested by using t statistics. Taking temperature as an example, the partial correlation coefficient 

between LAI and temperature is defined as follow: 

𝑟𝐿𝐴𝐼—𝑇𝑒𝑚𝑝 =
𝑟𝐿𝐴𝐼·𝑡𝑒𝑚𝑝−𝑟𝐿𝐴𝐼·𝑝𝑟𝑒𝑟𝑡𝑒𝑚𝑝·𝑝𝑟𝑒

√1−𝑟𝐿𝐴𝐼·𝑝𝑟𝑒
2 √1−𝑟𝑡𝑒𝑚𝑝·𝑝𝑟𝑒

2
                                          (4) 

Through multiple linear regression of LAI and time-lagged climate data from 1983 to 1998, 

gridded LAI-climate model is established: 

𝐿𝐴𝐼(𝑖, 𝑗) = 𝑎𝑖 × 𝑇𝐸𝑀𝑃(𝑖, 𝑗) + 𝑏𝑖 × 𝑃𝑅𝐸(𝑖, 𝑗) + 𝑐𝑖                                (5) 

where 𝑖 refers to the 𝑖𝑡ℎ grid cell; 𝑗 refers to the 𝑗𝑡ℎ month; 𝑎𝑖 and 𝑏𝑖 are the multiple linear 

regression slope coefficients of temperature and precipitation, respectively; 𝑐𝑖  is a constant. The 

resulting R
2
 – values and associated levels of significance (i.e. p-value) of each grid-cell are used to 
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evaluate the overall performance of the model. 

3.4 Residual threshold analysis 

The results of the presented residual trend analysis method reflect the trend of the impact of 

human activities on vegetation throughout the study period (Yan et al., 2020; Wu et al., 2020). At the 

same time, it is difficult to identify the impact of human activities within a relatively short period of 

time. To solve this problem, we analyzed the distribution of LAI residuals, and found that the 

residuals tend to be normally distributed, which supports the validity to apply the residuals threshold 

method. The method consists of three main steps, i.e. (i) calculating the LAI residual, (ii) demarcating 

the LAI residual threshold, and (iii) identifying the dominant impact area of LAI dynamics. 

First, according to the LAI-climate model, the predicted LAI not affected by human activities 

(under ideal conditions) is calculated as follow: 

𝐿𝐴𝐼𝑝𝑟𝑒(𝑖) = 𝑎𝑖 × 𝑇𝐸𝑀𝑃(𝑖, 𝑗) + 𝑏𝑖 × 𝑃𝑅𝐸(𝑖, 𝑗) + 𝑐𝑖                               (6) 

where 𝑖 refers to the 𝑖𝑡ℎ grid cell; 𝑗 refers to the 𝑗𝑡ℎ month, 𝐿𝐴𝐼𝑝𝑟𝑒 refers to LAI obtained by the 

LAI-climate model; 𝑇𝐸𝑀𝑃 and 𝑃𝑅𝐸 represent temperature and precipitation, respectively.  

Taking the GLASS LAI data as the real LAI under the impact of climate and human activities, 

we name it 𝐿𝐴𝐼𝑟𝑒𝑎𝑙. Therefore, the residual of LAI can be defined as follow: 

𝐿𝐴𝐼𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝐿𝐴𝐼𝑟𝑒𝑎𝑙 − 𝐿𝐴𝐼𝑝𝑟𝑒                                               (7) 

LAI residuals represent the impact of factors other than climate, including human activities and 

other environmental factors. In this study, the impacts of these environmental factors are considered 

as random errors, so the residuals of LAI values corresponding to the period 1983 to 1998 are 

theoretically distributed following a normal distribution. The distributions of residuals in each grid 

cell are different due to the difference in soil conditions across the study area. For each grid cell, the 
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sequence of monthly LAI residuals is obtained, and the mean and standard deviation are calculated in 

order to verify whether the residuals conform to the theoretical normal distribution. 

To explore the distribution of LAI residuals of the time window 1983 to 1998, we have used 

ranges corresponding to 0.5, 1, 1.5 and 2 times the standard deviation. Without the impact of human 

activities, the residual distribution is within the range of n (equals to 0.5, 1.0, 1.5 or 2.0) times the 

standard deviation of the average value. However, with the impacts of human activities, LAI residuals 

for units affected by human activities jump out of the range. The associated mean and standard 

deviation values of LAI residual from 1983 to 1998 in the corresponding grid cells are denoted by μ 

and σ respectively. The annual mean residuals of LAI from 1999 to 2015 are used to identify the areas 

in which climate change or human activities significantly impact according to the following formula: 

𝐹𝑎𝑐𝑡𝑜𝑟𝑑𝑜𝑚𝑖𝑛 = {

ℎ𝑢𝑚𝑎𝑛  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 𝐿𝐴𝐼𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 < μ − n ∗ σ           
𝑐𝑙𝑖𝑚𝑎𝑡𝑒                    μ − n ∗ σ < 𝐿𝐴𝐼𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 < μ + n ∗ σ 

ℎ𝑢𝑚𝑎𝑛 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)   𝐿𝐴𝐼𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 > μ + n ∗ σ           
  (8) 

For each grid, if the LAI residual falls within the range (i) (μ+n*σ, +∞), it is identified as a 

positive impact area of human activities; (ii) (-∞, μ-n*σ), it is identified as a negative impact area of 

human activities. (iii) [μ-n*σ, μ+n*σ], it is identified as a climate impact area. 

3.5 Geographical Detector 

In order to explore the effects of natural and socio-economic factors, the geographical detector 

approach developed by Wang et al. (2010) is applied. This allows us to detect the spatial heterogeneity 

of the driving forces behind these effects (Ran et al., 2019). The risk detector identifies whether there 

are significant differences among the independent variables and across the different layers as well as 

associated t statistic tests, whereas the factor detector identifies the spatial structure of the dependent 

variable (Eq. 9), and the degree to which the independent variable explains the dependent variable. 

By combining the two results (i.e. risk detector and factor detector), we can analyze the influence 
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mechanism of different social and natural factors on human activities and climate. 

𝑞 = 1 −
∑ 𝑁ℎ𝜎ℎ

2𝐿
ℎ=1

𝑁𝜎2 = 1 −
𝑆𝑆𝑊

𝑆𝑆𝑇
                                                  (9) 

𝑆𝑆𝑊 = ∑ 𝑁ℎ
𝐿
ℎ=1 𝜎ℎ

2                                                         (10) 

𝑆𝑆𝑇 = 𝑁𝜎2                                                               (11) 

where ℎ refers to the number of layers in which the independent variable is located; 𝑁ℎ and 𝑁 

refer to the number of cells in layer ℎ across the whole region, respectively; 𝜎ℎ
2 and 𝜎2 represent 

the variance of layer ℎ and the whole region, respectively. 𝑞 refers to the degree to which the 

independent variable explains the dependent variable, ranging between 0 and 1 (i.e. the closer 𝑞 is to 

1, the stronger the independent variable explains the dependent variable. The closer 𝑞 is to 0, the 

weaker the independent variable explains the dependent variable). 

Taking county-level administrative regions as the research unit, 295 county units are divided into 

five levels according to the equal-division method, which includes topography, landform and urban 

development speed. Since slope affects the way and intensity of land use by humans, the average 

slope of the research unit is used to characterize the influence of the topography factor, with a 

five-level grading standard of 0.21º - 2.86º, 2.86º - 4.00º, 4.00º - 5.14º, 5.14º - 7.09º, 7.09º - 15.87º 

corresponding to level I to V, respectively. The distribution of karst landform affects the vulnerability 

of the ecological environment. Since karst landform is characterized by broken landform and poor soil, 

and rocky desertification problems are easy to occur. Therefore, karst regions are the key 

implementation areas of ecological restoration projects. At the same time, vegetation growth is also 

affected by karst landform due to the difference in vegetation structure and growth process between 

karst and non-karst landforms. To explore whether the positive impact of human activities more 

significant in areas with a higher proportion of karst landforms, the landform zones of level I to V are 
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respectively set as 0% - 6.26%, 6.26% - 26.29%, 26.29% - 53.32%, 53.32% - 73.73%, 73.73% - 100%, 

according to the proportion of karst landform area. The speed of urban development affects the 

intensity of human activities and also the regional climate. Using the average growth amount of 

nighttime light intensity, urban development zones of level I to V are 0.07 - 0.66, 0.66 - 1.41, 1.41 - 

2.10, 2.10 - 3.58, 3.58 - 20.31, respectively. The grades of three indicators are taken as independent 

variables, whereas the dependent variables are the area of “positive impact of human activities”, 

“negative impact of human activities” and “impact of climate change”. 

4 Results 

4.1 Time-lag effect in Yunnan, Guizhou and Guangxi provinces 

The results of time-lag effect analysis show that the fitting of LAI with temperature and 

precipitation data is optimal with a two-month time-lag (Table 1), which is consistent with the results 

of existing studies (Herrmann et al., 2005; Wu et al., 2015). Therefore, we use the climate factors with 

a lag effect of 2 months to calculate climate-dominated LAI. 

 

Table 1. Correlation between LAI and time-lagged climate factors. 

R
2
 0 month 1 months 2 months 3 months 

Temperature 0.75 0.91 0.94 0.85 

Precipitation 0.57 0.74 0.80 0.67 

 

4.2 LAI trends 

Trend analysis shows that the dynamics trend of LAI in the study area presents significant spatial 

heterogeneity, and there is an obvious difference between the reference period and the experimental 

period. During the reference period (i.e. between 1983 and 1998), there is no significant change in 

LAI in 87.11% of the region. 9.74% of the area shows a significant increasing trend, mainly 
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distributed in Yunnan province with high vegetation coverage. 3.16% has a significantly decreasing 

trend and seems to be rather randomly scattered across the entire study area, but mainly in Guizhou 

and Guangxi (Fig. 3a). During the experimental period, the area characterized by a significant 

changing trend increased from 12.89% to 23.18%, of which 12.48% with an increasing trend and 

10.70% with a decreasing trend (Fig. 3b). Moreover, the spatial distribution of significantly increased 

areas changed considerably over times with many more regions across the border of three provinces 

as well as in the southern part of Yunnan province, which may be the result of human activities. Hence, 

this result indicates that from 1999 to 2015, climate change, urbanization and ecological restoration 

projects together led to drastic changes in vegetation dynamics. 

 

Fig. 3. Vegetation trends for different periods based on yearly average LAI time series. (a)1983 -1998. 

(b)1999 - 2015. 

 

4.3 LAI-climate model 

The partial correlation degree between LAI and temperature gradually decreases from east to 

west, and the correlation coefficient in most areas is positive and higher than 0.25 (Fig. 4a). The 

correlation between LAI and precipitation shows a distribution with generally higher values in the 

west and lower values in the east due to the land and sea location (Fig. 4b). The results of the 
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significance test show that (i) the southwestern part of the study area is only significantly influenced 

by precipitation, (ii) the west part is only significantly influenced by temperature and (iii) the central 

part is significantly influenced by both temperature and precipitation (Fig. 4c, d). While the central 

and southern regions of Yunnan province have low latitude and abundant heat, so LAI is more 

sensitive to changes in precipitation. 

 

Fig. 4. Partial correlation analysis results of LAI and climate factors for the period of 1983 - 1998. (a) 

Partial correlation coefficients of LAI and temperature. (b) Partial correlation coefficients of LAI and 

precipitation. (c) P value of LAI and temperature. (d) P value of LAI and precipitation. 

 

From 1983 to 1998, LAI in the study area is jointly affected by two climate factors, namely, 

temperature and precipitation, so a LAI-climate model can be constructed at the grid level. The model 

is typically characterized by R
2
 values above 0.6 in most of the regions. However, the goodness of fit 

in central and western Yunnan is lower, but basically higher than an R
2
 value of 0.2 (Fig. 5). In 

general, the LAI-climate models in most areas of the study area have a high degree of goodness of fit 
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and pass the significance test (i.e. 99.14% of the regions in the study area passed the significance test), 

indicating that the proposed approach is reliable. 

 

Fig. 5. Goodness of LAI-Climate Model (At the significance level of 0.05). 

 

4.4  Spatial distribution of dominant factors 

Time-lagged temperature and precipitation data from 1983 to 2015 are used to fit the LAI-climate 

model and obtain a LAI prediction considering the impact of climate factors. Fig. 6 compares the real 

LAI and predicted LAI values on a monthly basis. The predicted LAI before January 1999 is basically 

consistent with the real LAI, however since January 1999, the predicted value and the real value 

began to show a much larger deviation. 
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Fig. 6. Average of real LAI and predicted LAI of each month for the period of 1983 - 2015. 

 

When verifying whether LAI residuals from 1983 to 1998 care normally distributed, the results 

confirm that 82.54% of pixels are subject to normal distribution (Fig. 7a). The pixels which do not 

follow a normal distribution are scattered in the research area without obvious spatial clusters. By 

comparing the potential using of 0.5, 1, and 2 times the standard deviation in order to identify 

residuals and the impact of human activities, it is found that 1 times standard deviation performed best. 

For each pixel, the proportion of residual distribution within one standard deviation is found to be 

within the range of 60% to 80% (Fig. 7b). Therefore, one standard deviation above and below the 

average are used as the threshold for residual analysis, which means n in Eq. (9) is equal to 1. Based 

on this, the dominant impact areas of human activities and climate change are identified (Fig. 8a). In 

1999, there are no obvious spatial clusters or patterns of impact areas dominated by human activities, 

which is probably due to the fact that the ecological restoration projects were still in an early stage. 

Since 2000, the impact area of human activities begins to appear, and by 2004, it has formed a 

relatively obvious and stable impact area of human activities. Positive impact of human activities 

mainly distributes at the junction of the three provinces, while negative impact is mainly distributed in 

the central and western parts of Yunnan province. In order to verify the accuracy of the results, we 

selected a large-scale nature reserve in each province (Fig. 1), and the results show that the LAI in the 

three nature reserves have been dominated by climate impact. The spatial distribution and area ratio of 

the dominant factors were analyzed (Fig. 8b). Since the beginning of the ecological restoration 

projects in 1999, the positive and negative impact areas of human activities in the study area have 

shown an overall increasing trend. Since 2012, the area affected by positive human activities has been 
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significantly reduced, indicating that the benefits of ecological restoration projects have begun to 

weaken. 

 

Fig. 7. Residual threshold analysis. (a) Result of normal distribution test. (b)Proportion of residuals 

within [μ-σ, μ+σ]. 

 

Fig. 8. Spatial distribution (a) and area ratio (b) of dominant factors of LAI dynamics from 1999 to 

2015. 
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In order to analyze the leading factors of vegetation dynamics as a whole, comprehensive leading 

factors of LAI dynamics from 1999 to 2015 were identified (Fig. 9a). The proportions of area under 

the positive impact of human activities, negative impact of human activities and climate impact are 

5.61%, 1.30% and 93.09%, respectively. The spatial distribution of the affected areas is similar to the 

results of multi-year identification, but the affected areas of human activities significantly decrease. 

This is because the impact of human activities in many areas alternates between positive and negative, 

so the impact of human activities is not obvious, and as such climate is recognized as the dominant 

factor. The positive impacts of human activities are mainly distributed around the junction of the three 

provinces as well as parts of central and northern Yunnan, which is the key implementation area of 

ecological restoration projects, indicating that these projects had a significant positive effect on LAI. 

The negative impact areas of human activities are mainly distributed across the mountainous areas of 

the Yunnan province, which may be disturbed by urban development strategies such as "low-slope 

hilly" in Yunnan province (Liu et al., 2018). 

We also superimpose the result of the identified dominant impact areas with the layer displaying 

significant dynamics of LAI (Fig. 9b). For the pixels characterized by significant dynamics in LAI, 

the error rate of dominant impact identification is 0.2% (i.e. pixels with either (i) significant increases 

in LAI but identified as negative impact of human activities or (ii) significant decreases in LAI but 

identified as positive impact of human activities). This indicates that the identification results as 

regards the dominant impact factors are reliable. 82.54% of the pixels with significantly increased 

LAI are climate-dominated, while 16.95% are positively impacted by human activities. For the pixels 

with significantly decreased LAI, 94.76% are climate-dominated and 3.33% are dominated by a 
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negative impact of human activities. It can be seen that in most areas with significant dynamics of 

LAI, the impact of human activities is not as high as considered. Furthermore, the results show that in 

the mountainous areas of Yunnan province there is no significant dynamics in vegetation, despite the 

negative impact of human activities in this particular region. As a whole, from 1999 to 2015, the 

vegetation dynamics in the karst region of southwest China are mainly dominated by climate change. 

Dominant areas of positive impact of human activities are mainly distributed across the 

implementation area of ecological restoration projects near the junction of the three provinces. 

 

Fig. 9. (a) Spatial distribution of dominant factors of LAI dynamics for the period of 1999 - 2015. (b) 

Spatial distribution of significant LAI dynamics due to different factors for the period of 1999 - 2015. 

 

5 Discussion 

5.1 Influencing factors of the dominant drivers’ distribution 

For the areas dominated by positive impact of human activities, only landform zoning has been 

identified by the significance test as having a significant influence on the restoration effects due to 

ecological restoration projects. This is because karst landform areas are more sensitive to disturbance 

and therefore more prone to ecological degradation, and hence, are considered as key areas of 
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ecological restoration projects. For the areas dominated by negative impact of human activities, the 

influence of topographic and landform zoning passes the significance test. More precisely, the 

influence degrees are significantly higher than that of urban development zoning. Human activities 

such as agricultural and urban construction are restricted by topography factors, and therefore, are 

resulting in significant spatial patterns as regards the negative disturbance of vegetation depending on 

the topography settings, such as slope angle. For another, the distribution of karst landform affects the 

degree of agricultural development, and hence, also the degree of disturbance to natural vegetation. 

However, for regions mainly affected by climate change, the influence of urban development passes 

the significance test. The latter can be explained by the fact that the overall impact of human activities 

is relatively weak for climate-dominated regions, resulting in a high sensitivity to the degree of urban 

development. At the same time, the influence of slope is also significant, because the magnitude of 

slope determines the intensity of soil erosion. As the slope increases, the topography gradually 

becomes more complex, and different topographic sections of the landscapes (defined below as a 

topography zoning) receive different amounts of solar radiation, causing a spatial heterogeneity in 

water vapor as well as supply of heat and water across the landscape (Gallardo-Cruz et al., 2009; 

Holland and Steyn, 1975). 

 

Table 2. Results of the factor detector analysis. Explanatory ability of natural and social factors to the 

distribution of dominant factors in LAI dynamics. 

 Positive human impacts Negative human impacts Climate change impacts 

 TZ LZ UDZ TZ LZ UDZ TZ LZ UDZ 

q 0.021 0.069 0.022 0.142 0.130 0.026 0.043 0.029 0.140 
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p 0.189 <0.001 0.184 <0.001 <0.001 0.117 0.016 0.077 <0.001 

Note: q represents the degree to which the independent variable explains the dependent variable. p 

represents degree of confidence. TZ: Topography zoning. LZ: Landform zoning. UDZ: Urban development 

zoning. 

 

 

Fig. 10. Results of risk detector. (a) Average area of human positive impact in different zones. (b) 

Average area of human negative impact in different zones. (c) Average area of climate change impact 

in different zones. 

 

According to the results of the risk detector analysis, the positive impact area of human activities 

(i.e. landform zones are III and IV) is significantly larger, indicating that the vegetation restoration 
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effect is optimal when the relative spatial proportion of karst landform is between 26.29% and 73.73% 

(Fig. 10). However, it is important to recognize that it is difficult to restore ecology in the area 

characterized by a large proportion of karst landform, in particular when considering a short period 

time. When considering the negative impact of human activities, the area increases with increasing 

slope angle and decreases with increasing relative proportion of karst landform. This is because the 

range of average slopes in the research unit is between 0.21º and 15.87º, which is generally suitable 

for human activities. When the slope angle exceeds this range, human activities are more intense and 

will have a strong negative impact on vegetation. However, these steep sloped areas are less suitable 

for human activities. Moreover, the area characterized by a high proportion of karst landform tend to 

have more serious ecological problems, which means that these areas are also less suitable for human 

activities. As mentioned above, the latter areas are considered as key areas for the implementation of 

ecological restoration projects, with the objective to control the negative impact on vegetation. 

Consequently, the negative impact area of human activities is gradually decreased. Finally, it can be 

noted that for the regions under the impact of climate change, the faster the city develops, the lower 

the impact degree of climatic factors will be. 

5.2 Methodological considerations 

The time-lag effect of vegetation’s response to climate factors has been ignored in most current 

studies, however, it may cause high uncertainty (Wen et al., 2019; Ding et al., 2020). Hence, we 

comprehensively analyzed the results of other studies at similar latitude to our study area in order to 

illustrate the effect of time-lag. In essence, when the time-lag effect is ignored, the impact of climate 

is not correctly estimated. The most direct result is that the R
2
 of vegetation-climate model is low, and 

part of the impact of climate change is misclassified as that of human activities, and hence, the results 
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are biased and cannot truly reflect the distribution of dominant impact factors. 

Most of the existing studies ignored the time-lag effect. Wang et al. (2015) took 114 countries 

(cities and districts) across Southwest China as study area, and directly used annual NDVI and annual 

mean values of climate factors in order to carry-out a correlation analysis. The significant increase of 

vegetation around the junction of the Yunnan, Guizhou and Guangxi provinces is consistent with our 

results. However, the coefficient of partial correlation analysis was rather low, indicating that the 

climate factors did not explain the vegetation development (represented by NDVI) well without 

considering the time-lag effect. With respect to Yunnan, Guangxi and Guizhou provinces, Tong et al. 

(2017) used LAI data at an 8km grid covering the period 1982 – 2011 to calculate vegetation trends. 

They showed a significant positive impact of human activities. Our results indicate that the impact of 

human activities in Guangxi was mostly positive before 2011, whereas after 2011, the negative 

influence began to appear, which reduced the positive influence area of human activities in the final 

identification results. This also reminds us to pay attention to the long-term maintenance of effects 

after the implementation of ecological restoration projects. Wang et al. (2008) chose eight karst 

provinces (cities) in southwest China as study area. Without considering the time-lag effect, the partial 

correlation analysis results of NDVI and NPP with climate factors were found to be insignificant. In 

our study, when taking time-lag effect into account, fitting R
2
 of LAI with temperature and 

precipitation were found to be mostly significant, as ranging from 0.75 to 0.94 and from 0.57 to 0.80, 

respectively (Table 1). Generally speaking, as an important effect of vegetation’s response to climate 

factors, time-lag effect has a great impact on the results through modeling LAI (Zhao et al., 2020). 

Therefore, the time-lag effect should be considered when analyzing vegetation dynamics in order to 

ensure the authenticity of the results. 
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Residual trend analysis is a commonly used method to identify dominant factors of vegetation 

dynamics. However, this method cannot truly reflect the impacts of climate change and human 

activities (Wu et al., 2020), nor can it analyze the inter-annual changes of such impacts. Wang et al. 

(2015) used the residual trend method to explore the dominant factors of vegetation dynamics in 

southwest China, and found that from 2000 to 2010, the residuals showed an obvious upward trend 

indicating that ecological restoration projects were effective. This is consistent with our results, but 

did not reflect the annual impact distribution. Tong et al. (2017) analyzed the dominant factors of 

vegetation dynamics from 2001 to 2011 using the residual trend method, and found that the positive 

effects of human activities were concentrated in Guangxi. In our results, before 2011, the vegetation 

dynamics in Guangxi was dominated by positive impact of human activities, but the subsequent 

negative impact of human activities, such as urban development, offset the previous positive impact. 

To solve the problems of residual trend method, many studies have proposed new methods. Yan et al. 

(2020) used the second-order partial correlation analysis model to identify the dominant factors. Wu et 

al. (2020) used partial derivatives to quantify the impacts of climate change and human-induced NPP 

dynamics. Our study provides an additional perspective to identify the dominant factors of vegetation 

dynamics. 

Moreover, in terms of potential applications, by determining the dominant factors of vegetation 

dynamics, as well as their variation over a period of time, our study can support afforestation and 

reforestation monitoring, and integrated governance of social-ecological development. Although land 

use policies have significantly improved the environment and the ecosystem functions, they are not 

stable (Tong et al., 2020). Analyzing the spatial distribution and temporal changes of ecological 

restoration projects’ impacts can help us find the changes and take measures on time. The first stage of 
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ecological restoration projects began in 1999 and ended in 2007, after which the increase in 

vegetation cover leveled off (Brandt et al., 2018). What’s more, vegetation growth was impeded by 

abnormally dry years until 2011 (Brandt et al., 2018; Jiang et al., 2014), after 2011, the impact of 

climate change increased significantly, which replaced human activities’ positive impact as the 

dominant factor. Our study can help to achieve the greatest value for money, while avoiding costly 

and simplistic plantings by analyzing the change of ecological restoration projects’ impact (Menz et 

al., 2013). 

5.3 Limitations and future research 

In this study, we considered the time-lag effect of vegetation’s response to climate change and 

proposed a new residual threshold analysis method to separate climate change and human activities' 

impacts on vegetation dynamics in karst region of southwest China. However, there are still some 

limitations in this study, which may be the direction of future research. Firstly, we use kriging 

interpolation technique to interpolate with temperature and precipitation data from meteorological 

stations all over China. However, there are also some other interpolation methods that could be 

applied, such as Thin Plate Spline (TPS) (Hutchinson et al., 1995). Secondly, we did not further 

quantitatively analyze the time limitation of the ecological restoration projects' effect to come up with 

a concrete plan to maximize the benefits of ecological restoration projects. This may be an important 

direction for future research. Thirdly, based on the assumption of normal distribution, we choose n=1 

to determine the threshold of LAI residuals to separate the impacts of climate change and human 

activities. However, the results is sensitive to the choice of n, which needs to cooperate statistical 

results and background knowledge together to determine. And there may be differences in the 

sensitivity to n in different regions. This needs to be discussed more in future researches. Finally, we 
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do not consider the changes in plant species and the nonlinear process of vegetation’s response to 

climate factors, especially the limitation of water. This needs a deeper discussion in the future 

researches. 

6 Conclusions 

In this study, we take the time-lag effect on vegetation’s response when establishing LAI-climate 

model, and propose a new residual threshold analysis method to separate the impacts of climate 

change and human activities on vegetation dynamics across the three provinces in the karst region of 

southwest China. Our results indicate that the ecological restoration projects induced a significant 

positive impact of human activities, which promoted the growth of vegetation but this influence began 

to decrease from 2012 onwards. We identified that (i) dominant areas of positive impact of human 

activities are mainly distributed along the implementation areas of ecological restoration projects, and 

(ii) the dominant areas of negative impact are mainly situated in the mountainous area of Yunnan 

province. In the respect of influencing factors of dominant factors’ distribution, it is worth noting that 

the relative spatial proportion of karst landform has a remarkably big influence on the spatial pattern 

of areas characterized by positive impact of human activities on vegetation development. However, 

when the proportion of karst landform exceeds 73.73%, the positive impact area of human activities 

significantly decreases. Therefore, the implementation of ecological engineering should be 

strengthened in the area where karst landform is widely distributed. The results also indicate that the 

positive impact of human activities brought by ecological restoration projects may be offset by the 

negative impact and gradually weakens over time. Hence, it is crucial to restrict human activities in 

zones with degraded vegetation and pay attention to the long-term implementation effects of 

ecological restoration projects. 
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Highlights 

 We consider the time-lag effect when establishing the LAI-climate model. 

 We use residual threshold to separate the impacts of climate and human activities. 

 LAI changed significantly from 1999 to 2015. 

 Dominant impact areas of climate change and human activities are identified. 

 Karst landform affects the distribution of human's positive impact most. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof


