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Abstract: In recent years, flash floods have increased, accompanying rapid economic growth, changes
to the natural environment and increases in extreme climate events. However, spatial heterogeneity
in the influencing factors has seldom been studied systematically. This paper investigates this issue
by using the Geodetector tool and considering 14 factors such as climate, natural environment, and
human activities in 11 ecoregions in China based on flash flood records from 1950 to 2015 collected by
the Investigation Project of Chinese Flash Floods. The results showed that there is obvious spatial
heterogeneity in the main influencing factors and influencing weights in 11 ecoregions. Precipitation
and landforms have the greatest effects on flash floods and the interactions of these two factors have
the strongest effects as compared to interactions between other factors in most of the 11 ecoregions;
however, the effect has obvious variation from northwest to Southeast. Meanwhile, human activities
were found to have tangible impacts, especially in ecologically vulnerable regions. The findings
provide a new understanding of how and why flash floods occur in a particular region and contribute
to the formulation of regionally targeted strategies to cope with flash flood.
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1. Introduction

A large body of research is devoted to understanding the spatial heterogeneity of natural conditions,
human activities, and their interactions [1–3]. However, such insights are seldom applied to disaster
studies, such as those on floods, which are becoming one of the most severe disasters due to climate
change and human activities [4]. As one of the most frequently occurring natural disasters with severe
impacts, flash floods (FFs) attract a lot of attention. Characterized by the rapid onset of flooding,
FFs are a result of complex interactions between humans and the natural environment [5]. This is
particularly the case in China, where the frequency of FFs has increased in recent years owing to rapid
economic growth, changes in the natural environment, and increases in extreme climate events [6].
FFs were responsible for 62–92% of deaths attributed to flood disasters that occurred from 2010 to
2015 [7]. There were 1500 deaths and 265 people missing as a result of the FF in Zhouqu, Gansu
Province on 7 August 2010 [8], which is one of the areas that often experiences FFs. Therefore, it is
important to understand the driving forces behind the FFs [9].

As FFs are nowadays reported in a timely manner and well documented, research on the influence
of various temporal and spatial factors on flash floods has been carried out all over the world, such as
in China, the United States, and other mountain areas. Significant progress has been made in analyzing
influence factors, including the underlying surfaces, residential distribution, and precipitation [10–12].
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However, these analyses have mostly be carried out in particular regions [13–15]. Gruntfest and
Hamer [16] pointed out that besides precipitation, human activity factors, such as river occupation,
urbanization, and flood control measures have modified the natural characteristics of extreme floods.
Tertl et al. [17] explored the space–time characteristics of flood-related vulnerability to understand the
human-related factors influencing FF events. Bloshcl et al. [18] argued that the effects of land cover on
FF events vary from humid climates to arid areas.

Although many studies have indicated that FFs are a comprehensive result of various factors,
all of which include spatial attributes and typically differ in different regions [19–21], there is little
inquiry into quantitative comparison of the spatial heterogeneity of the influence of various factors in
different regions [22].

As hazard sources are dispersed in space [23], it is difficult to determine why FFs often occur in
particular areas. The investigation of spatial heterogeneity is of particular importance in advancing
our knowledge of the spatial distribution and influential factors of FFs. FFs vary in space and time,
making them difficult to forecast precisely [17]. There is limited investigation of FFs and their spatial
heterogeneity at the national scale to determine whether the driving factors differ in different regions.
Further investigation will help improve FF prediction and the associated policy formulation and
implementation. This paper aims to determine the spatial heterogeneity and associated factors causing
FFs in China using historical records of FFs from 1950 to 2015.

2. Materials and Methods

2.1. Materials

Since 2013, the Chinese government has worked to collect and compile all flash flood events
from 1950 to 2015 across mainland China under the Investigation Project of Chinese Flash Floods
(IPCFF) [24]. The project was conducted over 78% of the land area of China, which covered a total
population of nearly 900 million. The Project collected more than 60,000 flash flood events that have
occurred from 1950 to 2015, which is the widest dataset in terms of the number of flash flood events
compared to other existing studies [25].

FFs are a result of the interactions of humans and nature, particularly precipitation and topographic
conditions [17,26,27], and recent studies show that human activities play a large role in the occurrence
of FFs [12,28]. Hence, potential driving factors of precipitation, changes in the natural environment,
and human activities were studied. Datasets of this information were collected from the Resources
and Environmental Sciences Data Centre (RESDC), the Database of Resources and Environment in
China, and the National Meteorological Science Data Service Platform (Table 1). The data used include
not only those that were relatively temporally static, such as topography, but also data that change
greatly with time in some areas, such as population and vegetation, which may have a certain impact
on the analysis. Because of difficulties in acquiring these datasets for multiple years, we employed
single-year datasets.

Table 1. Data Sources.

Data Period Source Format Description

Flash floods 1950–2015 Investigation Project of Chinese
Flash Floods (IPCFF) Point layer Location, time, etc.

Ecoregion 2012 Xie et al. Polygon layer Classified into 11 Ecoregion
Precipitation 1950–2015 CMA Table Daily data of 175 national meteorological station

DEM 2003 NASA 90 m × 90 m grid Shuttle Radar Topography Mission (STRM)
Land use 2010 RESDC 1 Polygon layer Based on 1:1,000,000 land use dataset

Soil 2010 RESDC Polygon layer integrated from 1:1,000,000 soil type maps and
the 2nd national soil census data

Landform 1994 RESDC Polygon layer 1:4,000,000 geomorphological map of China
Vegetation 1996 RESDC Polygon layer 1:4,000,000 geomorphological map of China
Population 2000 RESDC 1 km × 1 km grid Grid value is population

Village 2000 RESDC Point layer Village layer of national basic geography layer
1 RESDC: Resources and Environmental Sciences Data Centre (http://www.resdc.cn, Beijing, China).

http://www.resdc.cn
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2.2. Data Processing

2.2.1. Flash Flood Records

For the spatial analysis, a map of FFs was generated based on FF records obtained from Getis-Ord
Gi* statistics and the fishnet map technique [29,30]. The Getis-Ord Gi statistics for each feature in the
dataset are z-scores and p-values, which indicate where features with either high or low values cluster
spatially. For statistically significant positive Z scores, the larger the Z score is, the more intense the
clustering of high values (hot spot). For statistically significant negative Z scores, the smaller the Z
score is, the more intense the clustering of low values (cold spot). In this paper, the flash flood points
were converted to 1 × 1 km gridded data and all the data were integrated into watershed polygons by
using area-weighted and aggregation methods. The value of a fishnet polygon in the map is calculated
using Equation (1), as follows:
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where xj is the number of FF events in fishnet j, and wij is the weight of the i-th fishnet and the j-th
fishnet. We used a fixed threshold of 200 km [31]. When the distance between the i-th and j-th fishnet
is less than the threshold, wij = 1; otherwise, wij = 0. m is the sum of the fishnets.

2.2.2. Processing of Precipitation Data

Based on the available dataset and the factors suggested by relevant studies, daily precipitation
has been confirmed to be strongly correlated to short-duration (e.g., hourly) precipitation, which is
the main trigger factor of FFs [32]. The data was downloaded from websites of the National Weather
Service of China (http://data.cma.cn/, Beijing, China).

Six precipitation factors were determined as expressed in Equation (2) for all meteorological
stations, as follows:

S j
i =

 2015∑
a=1950

 365∑
k=1

(Pk ∈ Pi)


/65 (2)

where S j
i represents the value of the i-th precipitation factor of j-th meteorological station; and “i”

represents 6 precipitation factors, which are divided according to daily precipitation as Pk ≤ 10 mm,
10 mm < Pk ≤ 25 mm, 25 mm < Pk ≤ 50 mm, 50 mm < Pk ≤ 100 mm, 100 mm < Pk ≤ 250 mm and Pk ≥ 10
mm, Pk means the daily precipitation on the k-th day in “a” year, Pi is the range of daily precipitation
as Pi ∈ [0–10, 10–25, 25–50, 50–100, 100–250, >250].

The precipitation data is acquired from RESDC, which applied ANUSPLIN software [33,34] to
spatialize precipitation data in China by interpolating each factor from the meteorological stations to
continuous data. For the precipitation data from 1950 to 2015 (65 years), the annual average days are
obtained by dividing the total number of days by 65. The result is shown in Section 3.1.

2.2.3. Processing of Human Activity Data

The population data were converted from the total population of each county to a raster dataset
representing the population distributed in a 1-km grid, which represents the spatial density of the
population [35]. To further consider the spatial distribution of human activities, the density of villages
in a unit area was calculated to determine any possible difference in impacts of human activities on
nature owing to the same population.

http://data.cma.cn/
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2.2.4. Integration of Numerical Factors at Watershed Scale

Similar to most research on FFs [36,37], the analysis was performed at the spatial unit of watersheds.
The area-weighted method was used for the vector data including the village density and the population
density. The mean values method was used for the raster data, including the elevation, slope, intensity
of flash floods, and the six precipitation factors. Watersheds ranging from 10 to 50 km2 are the units for
FF management and mitigation planning in China [7]. The FF area includes over 250,000 watersheds,
more than 110,000 of which are inhabited by humans. These 110,000 watersheds were used as the
evaluation area to ensure consistency of the data.

2.3. Methods

The Geodetector tool was applied to determine the spatial heterogeneity of historical events
of FFs in China from 1950 to 2015. The Geodetector tool was developed based on geographical
spatial differentiation theory by Wang [38].This tool is widely used in spatial analysis [39,40], and it
is valuable for identifying association or overlaying between dependent variables and independent
variables, according to the consistency of their spatial distributions [39,41]. The tool consists of a factor
detector and an interaction detector [39,41]. In Geodetector, the power of determinant (PD) is used to
represent the relationship between dependent variable and independent variable. For analysis using
the geographical detector, all the data were classified using “Jenks natural breaks” by GIS software [38],
which divides spatial continuous data to spatial zones. The scale of 1 to 5 corresponds to high (1) to
low (5).

2.3.1. Factor Detector

The factor detector quantitatively judges the contributions of independent variables to variations in
dependent variables based on factor accountability, and thereby verifies whether a certain geographical
factor accounts for the spatial variation in geographical phenomena.

In the Geodetector, the PD between FFs and X is determined by Equation (3):

PDe[F, Xi] = 1−
1

Nσ2

∑L

h=1
Nhσ

2
h (3)

where F indicates FFs in ecoregion e (Figure 1); Xi represent a factor, h = 1, 2 . . . L; L is the number of
zones for one factor and the zones are classified via Jenks spatial zoning; Nh and N are the number of
FFs in zone h and the whole ecoregion, respectively; and σ2

h and σ2 are the variances in the FFs of zone
h and the whole ecoregion, respectively. Thus, the PDe indicates the degree to which the F distribution
is associated with factor Xi. In addition, PDe ∈ [0, 1] and the greater the spatial correlation between F
and Xi the larger the PDe.

2.3.2. Interaction Detector

The interaction detector can be used to identify interactions between different influential factors
through spatial overlap; specifically, it compares the sum of the independent accountabilities of two
influential factors with the synergistic accountability of the factors, to determine the mode of influence
on geographical phenomena upon interaction.

The interaction detector reveals whether the independent factors L1 and L2 interact with and
influence target Y. GIS software was used to unite the L1 and L2 geographical layers and obtain a new
layer L1∩L2. The correlation of the interaction was determined by comparing the PD values for L1, L2,
and layer L1∩L2, and the interaction relationship was determined based on the location of PD(X1∩X2)
in the 5 intervals (Table 2) [39,41].
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Figure 1. Flash floods in each ecoregion in China from 1950 to 2015. (Notes: NWAR: Northwest Arid
Region; TP: Tibetan Plateau; Inner MP: Inner Mongolia Plateau; NER: Northeast China region; LP: The
Loess Plateau; North China: North China ecoregion; HDM: Hengduan mountainous ecoregion; Ch-Yu:
Ch-Yu ecoregion; MLY: the middle and lower reaches of the Yangtze River region; Yun-Gui: Yun-Gui
Plateau; South China: South China ecoregion).

Table 2. Types of interaction between two factors.

Interaction Description

Weaken, nonlinear PD(L1∩L2) < Min(PD(L1), PD(L2))
Weaken, unilinear Min(PD(L1), PD(L2)) < PD(L1∩ L2) < Max(PD(L1)), PD(L2))
Bilinear enhanced PD(L∩L2) > Max(PD(L), PD(L2))

Independent PD(L∩L2) = PD(L) + PD(L2)
Nonlinear enhanced PD(L∩L2) > PD(L) + PD(L2)

Where the symbol “∩” represents the union between L1 and L2.

2.3.3. Spatial Zoning Scheme

Chinese scholars and policy makers promote the idea of ecoregions, which represent a
comprehensive system of landforms, vegetation, precipitation, and human activities to facilitate
environmental protection and ecological rehabilitation [42–44]. This idea has been widely used to
assist spatial analysis and management [45]. The concept was adopted here to investigate the spatial
heterogeneity of FFs (Figure 1). The details of investigated factors in each ecoregion can be found in
Appendix A.

3. Results

3.1. Spatial Variation in the FFs and Factors

As Figure 1 shows FFs were heavily concentrated in South China (26%), Ch-Yu (23%), the Loess
Plateau (LP) (17%), Yun-Gui (10%), and the middle and lower reaches of the Yangtze River region
(MLY) (10%), which in total includes 86% FFs in China from 1950 to 2015. In contrast, regions such as
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the Tibetan plateau (1%), Hengduan mountainous ecoregion (1%), Inner Mongolia Plateau (Inner MP)
(2%), and Northwest Arid Region (NWAR) (2%) were seldom affected by FFs.

3.2. Driving Factors of Flash Floods Across Different Ecoregions

The spatial variations in the FFs and the associated key factors were determined using the
Geodetector tool. The factor detector results show that there is an obvious spatial heterogeneity in the
major factors. Similar to the findings of other researchers [46,47], precipitation was found to be the
most influential factor affecting the spatial distribution of FFs, especially heavy precipitation, which
was highly ranked, along with landforms (Table 3). For instance, P(100–250) was the most influential
factor in NWAR and Ch-Yu, while P(>250) was the most influential factor in Inner MP and LP.

Table 3. Results of key influential factors.

Ecoregion NWAR TP Inner
MP NER LP North

China HDM Ch-Yu LMY Yun-Gui South
China

P(<10) 0.368 0.349 0.346 0.613 0.253 0.294 0.111 0.27 0.135 0.212 0.315
P(10–25) 0.567 0.348 0.216 0.466 0.297 0.176 0.276 0.336 0.176 0.353 0.205
P(25–50) 0.589 0.28 0.17 0.233 0.257 0.171 0.215 0.33 0.086 0.065 0.098
P(50–100) 0.707 0.337 0.289 0.134 0.289 0.2 0.365 0.334 0.075 0.104 0.084

P(100–250) 0.756 0.104 0.434 0.162 0.422 0.065 0.255 0.392 0.059 0.062 0.126
P(>250) 0.704 0.206 0.44 0.306 0.564 0.044 0.231 0.301 0.134 0.06 0.199

population density 0.501 0.384 0.22 0.11 0.194 0.033 0.252 0.053 0.033 0.081 0.013
village density 0.597 0.321 0.236 0.273 0.155 0.446 0.194 0.031 0.087 0.018 0.011

elevation 0.116 0.672 0.034 0.122 0.231 0.019 0.266 0.024 0.011 0.009 0.02
Slope 0.034 0.063 0.178 0.113 0.012 0.019 0.069 0.052 0.014 0.017 0.019

land use 0.104 0.248 0.069 0.136 0.173 0.071 0.039 0.026 0.052 0.033 0.1
vegetation 0.192 0.146 0.131 0.234 0.173 0.044 0.155 0.158 0.124 0.078 0.181

soil 0.285 0.343 0.093 0.149 0.067 0.125 0.149 0.031 0.11 0.146 0.08
landform 0.509 0.714 0.312 0.209 0.22 0.558 0.189 0.306 0.086 0.049 0.401

Note: The factor with the largest impact of each ecoregion is in bold.

3.3. Interaction of Influential Factors Driving Flash Floods

The interaction detector results showed that heavy precipitation was one of the two factors with
the highest PDs in all 11 ecoregions (Table 4). P(>250) had the highest PD in nine ecoregions and
P(100–250) had the highest PD in the remaining two ecoregions, which indicates that precipitation
is the most influential factor affecting the spatial distribution of FFs in China, consistent with the
findings of most other related studies [48,49]. Likewise, the interactions of the key factors and their
relations varied greatly in their influence on FFs in different ecoregions (Table 4). For example, in the
NWAR ecoregion, the primary factor was P(100–250), which affected FFs by strongly interacting with
landforms (0.901).

Table 4. Summary of interaction among influential factors.

Ecoregion Factors with Highest Interactive
Power of Determinant (PD)

PD of Interaction
Detector

Relationship of the
Two Factors

NWAR Landform, P(>250) 0.901 Bilinear enhanced
TP Landform, P(>250) 0.861 Bilinear enhanced

Inner MP Landform, P(100–250) 0.737 Bilinear enhanced
NER P(<10), P(>250) 0.800 Bilinear enhanced
LP P(25–50), P(>250) 0.819 Bilinear enhanced

North China Landform, P(100–250) 0.770 Nonlinear enhanced
HDM P(10–25), P(>250) 0.690 Nonlinear enhanced
Ch-Yu P(50–100), P(>250) 0.617 Bilinear enhanced
LMY P(<10), P(>250) 0.478 Nonlinear enhanced

Yun-Gui P(10–25), P(>250) 0.532 Nonlinear enhanced
South China Landform, P(>250) 0.641 Nonlinear enhanced

Of the driving forces, there is an obvious spatial heterogeneity in the precipitation factors. Hotspots
of P(<10) are mainly located in the Ch-Yu and the Yun-Gui ecoregions. In contrast, the hotspots of
P(>250) are mainly located in the LMY and South China ecoregions. The other four precipitation factors,
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P(10–25), P(25–50), P(50–100), and P(100–250), have similar spatial distributions, and their hotspots
are mainly in the Hengduan mountainous ecoregion, Ch-Yu ecoregion, LMY, Yun-Gui plateau, and
South China ecoregion (Figure 2). Table 3 also shows the highest factors of PD in NWAR are P(50–100),
P(100–250) and P(>250), while landform has the highest impact (0.714) on FF in TP (Figure 3).
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Figure 2. Spatial distributions of precipitation factors (Notes: (a) P(<10); (b) P(10–25); (c) P(25–50);
(d) P(50–100); (e) P(10–250); (f) P(>250). P(<10) means annual average number of days with daily
precipitation less than 10 mm and P(10–25) means annual average number of days with daily
precipitation greater than 10 mm and less than 25 mm).
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Figure 3. Spatial distributions of natural environment and human activity factors. (Notes: (a) landform;
(b) elevation; (c) population density; (d) village density).

4. Discussion

Precipitation and landforms are the main factors that result in environments that are ecologically
vulnerable to human activities. Accordingly, human activities significantly influence FFs; for example,
the PD of the population density was as high as 0.501 and 0.384 in the NWAR and TP ecoregions,
respectively (Figure 4).

The spatial heterogeneity of the interactions is more significant than that of the factors (Figure 5).
The interaction of the six ecoregions in northwest China is bilinearly enhanced and that of the five
ecoregions in southeast China is nonlinearly enhanced, meaning that the combined influence of
multiple factors is substantially greater than that of a single factor. For instance, bilinear enhancement
between precipitation and landforms was observed in NWAR, TP, Inner MP, and Northeast China
regions, which seldom suffer from FFs, totaling approximately 10% of the occurrences.
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The relationship between precipitation and landforms can be non-linearly enhanced in ecoregions
mainly in the southern part of China (Figure 5). Some other factors may be influential here because
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human activities are more diversified, such as urbanization, population growth, and industrial
agglomeration, alongside complex natural conditions of sub-level landforms, climate change, and
different terrains (Figure 4). For instance, in South China, P(>250) and landforms are the primary
factors, respectively, that can explain 40.1% and 12.6% of the FF occurrences. However, their interaction
explains 64.1% of the FFs, which is greater than the effect of summation (52.6%).

In the traditional view, more precipitation will induce more serious FFs, whereas, by adding more
factors such as natural conditions, economy and human effects in different ecoregions, the driving
factors varied. It can be illustrated that other factors undoubtedly change the influence of precipitation
on FFs in different ecoregions. Herewith, we consider that the result of our manuscript is innovative
and useful in forewarning of FFs in special ecoregions.

As for the forces driving the heterogeneity of the spatial distribution of FFs, precipitation,
especially heavy precipitation was the major driving force in eight ecoregions of China, and the power
of determinants (PDs) were 0.176–0.756. Landform is another significant factor, which is the most
influential factor in three ecoregions of Tibetan Plateau, North China and South China, and the PDs
were 0.401–0.714. Furthermore, interactions of precipitation and landform have the strongest effect
on the spatial distribution of FFs (e.g., 0.901 in Northwest Arid Region), although the degrees vary
across ecoregions. The interactive influence of precipitation and landform was much greater than that
of any single factor, with PDs of 0.478–0.901, which exceeded 0.8 in 8 of the 11 ecoregions. All these
indicated that precipitation and landform were the major driving forces in China. However, human
activities have a tangible relationship with flash floods, especially in ecologically vulnerable regions
of Northwest Arid Region, Tibetan Plateau, and North China. Interestingly, the interaction between
precipitation and landforms was found to be bilinearly enhanced in the six ecoregions of northwest
China and nonlinearly enhanced in the five ecoregions in southeast China, implying that there are
different interactions among the influential factors across ecoregions, which deserve further study.
Based on the above, different strategies and proposals for preventing and controlling flash floods are
also proposed.

5. Conclusions

FFs are one of main forms of disaster globally, dramatically affected by nature and human activities,
and therefore the occurrence of FFs demonstrates spatial or regional heterogeneity. Availing of the data
from the Investigation Project of Chinese Flash Floods, which is so far the largest and comprehensive
dataset of FF records in China, this study explores the spatial variation of FF in China and assessed
the driving force of various factors by using the Geodetector tool and considering 14 factors such as
climate, natural environment, and human activities in 11 ecoregions in China. This contributes to
understanding why FFs often occur in particular areas. The findings provide useful references for
improving the prewarning system of FFs. Regional strategies are required to cope with the variation in
these influential factors. Pre-warning systems in particular should pay attention to factors with high
PD and the effects of their interaction.

The analysis may be limited owing to the choice of factors. It can be improved by including more
variables to reflect and evaluate human activities. Nevertheless, they provide a new understanding
of FFs from the perspective of spatial heterogeneity and will enable the development of regionally
targeted strategies to cope with FFs. We hope the attempt at understanding the spatial heterogeneity
of FFs and associated influential factors can improve our knowledge on how and why FFs occur in a
particular ecoregion.
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Appendix A

Table A1. Descriptive analysis of investigated factors.

NWAR HDM Inner
MP LP MLY North NER TP Ch-Yu South

China Yun-Gui

Number of Flash Floods 148 93 146 1078 621 231 301 38 1468 1688 638

P(<10)

Mean 21.9 42.58 22.38 26.64 35.01 22.46 29.19 27.93 46.02 42.5 46.9

Min 7.26 28.36 14.63 17.86 28.6 18.04 17.35 9.3 25.96 29.4 34.47

Max 39.71 53.25 37.48 41.21 40.91 31.98 51.26 48.41 90.98 54.82 90.48

P(10–25)

Mean 10.04 25.72 12.31 15.23 19.59 12.39 15.82 16.72 25.76 23.22 25.85

Min 2.92 17.11 7.03 10.65 14.82 10.64 10.81 4.11 14.18 13.59 19.13

Max 22.18 35.35 17.47 25.18 22.69 17.76 20.16 31.36 39.2 30.35 39.06

P(25–50)

Mean 6.99 22.85 9.62 12.51 18.03 10.23 13.19 13.91 20.81 20.36 21.22

Min 2.02 14.74 4.71 7.81 13.32 8.72 9.29 2.59 11.77 10 14.99

Max 16.67 30.14 12.59 21.62 21.46 15.9 19.02 27.29 28.21 24.66 27.79

P(50–100)

Mean 5.09 22.46 8.58 11.72 19.83 10.06 12.4 13.65 19.57 21.86 21.53

Min 1.49 15.47 3.94 6.98 13.83 8.88 7.59 2.09 12.13 10.18 15.71

Max 12.73 29.04 11.06 20.17 24.35 16.9 18.67 26.46 27.18 25.94 31.35

P(100–250)

Mean 2.95 19.19 6.98 10.36 24.01 10.34 11.63 9.81 19.27 26.62 23.62

Min 1.18 8.96 2.49 5.15 14.9 8.19 7.01 1.55 11.6 11.51 17.8

Max 8.29 31.04 9.2 15.07 30.35 19.32 16.95 18.85 25.51 30.88 35.63

P(>250)

Mean 1.2 3.88 2.4 3.85 15.23 5.87 4.82 1.66 10.09 18.08 11.28

Min 1 1.22 1.19 1.5 7.4 2.37 2.28 1.03 2.44 10.51 5.25

Max 1.69 12.43 3.54 7.52 21 12.49 11.16 2.77 15.14 26.23 18.05

Elevation
(m)

Mean 1764.17 3472.59 1347.03 1325.57 167.76 410.48 385.15 4275.7 709.48 290.53 1493.78

Min −26.84 765 545.19 75.11 1.46 0 0 1481.37 40.23 −0.65 97.13

Max 5322.5 5565 15,544.65 4245.85 1222.22 1891.95 1640.33 6086 3832.46 1776.13 4106.74

Slope (◦)

Mean 13.33 28.5 7.44 18.11 14.09 11.77 8.4 18.39 21.59 17.03 21.76

Min 0 0 0 0 0 0 0 0 0 0 0

Max 55.59 55.69 39.68 74.3 43.5 40.97 31.35 48.31 53.38 48.29 51.09

land use
(%)

field 19.50% 2.00% 36.30% 43.80% 39.80% 51.10% 34.90% 3.40% 43.30% 25.40% 18.10%

forest 4.90% 50.40% 4.10% 15.40% 48.10% 20.60% 49.80% 6.30% 42.70% 61.60% 63.60%

grass 75.60% 47.60% 59.60% 40.80% 12.10% 28.30% 15.30% 90.30% 14.10% 13.00% 18.30%

Soil (%)

loam 78.40% 78.90% 85.30% 83.30% 51.50% 86.50% 72.70% 87.30% 65.50% 50.70% 38.00%

clay 19.00% 19.70% 11.60% 15.90% 42.80% 11.00% 26.60% 7.70% 33.80% 48.00% 60.90%

other 2.70% 1.40% 3.10% 0.80% 5.80% 2.50% 0.70% 5.10% 0.70% 1.40% 1.10%

Vegetation
(%)

natural 88.00% 97.20% 79.80% 52.70% 71.60% 50.00% 71.10% 89.80% 68.20% 82.90% 92.40%

agricultural 8.60% 1.00% 19.60% 47.30% 28.20% 49.60% 28.90% 5.20% 31.60% 17.10% 7.50%

other 3.40% 1.80% 0.60% 0.00% 0.20% 0.30% 0.00% 5.10% 0.10% 0.10% 0.10%

Landform
(%)

low
mountain 10.60% 0.10% 37.00% 43.30% 69.80% 68.40% 71.50% 0.00% 80.20% 79.60% 34.70%

high
mountain 33.00% 94.90% 6.30% 25.50% 0.00% 0.40% 0.40% 81.10% 13.70% 0.10% 60.60%

plain 56.40% 5.00% 56.60% 31.20% 30.20% 31.20% 28.10% 18.90% 6.20% 20.30% 4.70%

population
density
(/km2)

Mean 30 17 83 190 322 385 125 16 289 283 137

Min <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

Max 2112 542 2642 3398 6342 12,672 4339 2413 7468 3808 8191

village
density

(/100km2)

Mean 3 8 15 39 70 44 21 4 51 58 35

Min <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

Max 62 77 80 1370 1497 344 1045 370 394 261 275
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