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Industrial Water-Use Efficiency in China: 
Regional Heterogeneity and Incentives 
Identification 
Abstract: Progress has been made in improving water-use efficiency (WUE) in 
China, whereas problems such as unbalanced regional and industrial WUE 
development still exist. In this study, the WUE of 30 provinces in mainland China at 
the overall level as well as three industrial (i.e., primary, secondary, and tertiary 
industrial) levels are investigated. The study covers the time period 2005 to 2015 and 
is based on the Slacks-based measure approach combined with the Super-efficiency 
model dealing with undesirable outputs; in addition, a multidimensional analytical 
framework was developed in this study. Afterwards, the geographical detector 
model is applied to identify the driving forces of WUE, serving as a reference for 
policies and strategies needed to improve WUE. Results indicate that China’s 
overall WUE has been improving since 2005, though further progress is necessary. 
At the regional level, five regions (i.e., water abundance, vulnerability, stress, 
scarcity, and absolute scarcity) grouped by the availability of water resources per 
capita are all the most efficient in terms of water use in the primary industry. The 
absolute scarcity region performs best in all four dimensions despite the scarcity of 
water resources per capita, yet the water stress region has the lowest WUE. At the 
provincial level, provinces in the eastern coastal region, especially the south-eastern 
coastal region, have the highest WUE, whereas those in the interior south-eastern 
and south-western region have the lowest. Industrial structure, research and 
development intensity, and higher education are the main driving forces of WUE. 
Their mutual interactions and their interactions with other indicators are highly 
influential. 
Keywords: Water-use efficiency; Regional analysis; Inter-industry comparison; 

Data Envelopment Analysis; Undesirable outputs; China 
Nomenclature 
WUE water-use efficiency n  the number of DMUs 
DEA data envelopment analysis m  the number of inputs 
DMU decision making unit 

1p  the number of desirable outputs 

CRS constant return to scale 
2p  the number of undesirable outputs 

VRS variable return to scale x  input vector 
SBM slacks-based measure y  desirable output vector 
USBM SBM approach dealing with 

undesirable outputs 

z  undesirable output vector 

Super-
USBM 

USBM approach combined with 
the Super-efficiency model 

X  input matrix 

AN ammonia nitrogen Y  desirable output matrix 
ANE AN emission Z  undesirable output matrix 
COD chemical oxygen demand λ  weighting vector 
CODE COD emission -s  input slacks vector 
GRP gross regional product gs  desirable output slacks vector 
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TIFA total investment in fixed assets bs  undesirable output slacks vector 
TNEP total number of employed persons ρ∗  optimal solution of USBM model 

TWU total water use *α  optimal solution of Super-USBM model 
IS industrial structure 
PS population structure 2σ  statistical variance 
R&D research and development iE  efficiency value of DMU i

 

RDII R&D input intensity SST total sum of squares 
RDP R&D personnel SSW within sum of squares 
HTP high-tech production PI the primary industry 
EF educational funds SI the secondary industry 
HEG higher education graduates TI the tertiary industry 
PPS production possibility set m3 cubic meter 
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1. Introduction 
Unreasonable water use can place constraints on ecosystem health, socioeconomic 
development, and even human survival1. To enhance water-use efficiency (WUE) 
and further sustainable development, the United Nations General Assembly declared 
the period from 2018 to 2028 as the International Decade for Action “Water for 
Sustainable Development”2. WUE has also drawn widespread attention from 
academia. Academic research on sustainable water use emerged in the late 1990s. 
The percentage of literature using WUE as one of the keywords increased from 
4.31% in 1998–2007 to 11.53% in 2008–2017 (Aznar-Sánchez et al., 2018). 
Efficiency-related variables also become the most commonly used variables in this 
field (Azad et al., 2015; Bian et al., 2014; Cruz et al., 2013; Long and Pijanowski, 
2017; Zhang et al., 2016), accounting for a share of 35.57% (Aznar-Sánchez et al., 
2018). 
China is facing water-use problems. Particularly, the low level of processing water 
resources per capita is a key concern. The country’s water resources per capita cover 
only 2100 cubic meters, equal to 28% of the global average level (Ministry of Water 
Resources PRC, 2012)3. Other problems such as unbalanced distribution of regional 
water resources and reduction of total water resources are also evident. According to 
the World Resources Institute (2019), more than half of China’s provinces are 
suffering from water scarcity, while two thirds of China’s cities face critical water 
shortages, and nearly one third of China’s ten major river systems are of poor water 
quality4. The government has been responding to counter these concerns. For 
instance, the Law of Prevention and Control of Water Pollution has been set as its 
objective preventing and controlling water pollution as well as protecting water 
ecology to realize sustainable development. The Law of Water and Soil 
Conservation was legislated to incorporate water conservation into the national 
economic and social development plan. Progress has been made with these efforts, 
yet WUE in China still needs enhancement, which is regarded as an important means 
to realize and promote sustainable development in the environment, economy, and 
society (Suzuki and Nijkamp, 2016). 
Understanding the current status of WUE is one of the prerequisites for improving it. 
Therefore, this study aims to investigate the WUE in mainland China. In social 
science, WUE is also called economic WUE, defined as the value of products 
produced per unit of water consumption (Wang et al., 2015). Studies have been 
conducted following this conceptual framework (Azad et al., 2015; Bouman, 2007; 
Huang et al., 2005). It was later recognized that water alone as an input cannot 
produce the necessary outputs in the production process. Other inputs are also 
essential in WUE assessment (Hu et al., 2006). Therefore, studies on total factor 
WUE measured by multiple-input models come into the mainstream. 
Data Envelopment Analysis (DEA) is one of the most widely used methods for its 
ability to deal with multiple inputs and outputs. First proposed by Charnes et al. 
(1978), conventional DEA models, such as the Charnes–Cooper–Rhodes or 

                                                 
1 https://www.un.org/en/sections/issues-depth/water/index.html 
2 https://www.un.org/en/events/waterdecade/ 
3 http://news.china.com.cn/txt/2012-02/13/content_24625293.htm 
4 http://www.wri.org.cn/en/our-work/topics/water 
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Banker–Charnes–Cooper model, are the most popular (Frija et al., 2009; Geng et al., 
2019; Lombardi et al., 2019; Razzaq et al., 2019). However, such models with radial 
and oriented features neglect excesses in inputs and shortfalls in outputs (Tone, 
2001) that are likely to deviate the efficiency measurement. Hence, the efficiency 
assessed by traditional DEA may not accurately reflect real efficiency level of 
decision making units (DMUs). To counter this issue, non-radial and non-oriented 
DEA models are proposed, among which slacks-based measure (SBM) applied 
(Azad et al., 2015; Chen et al., 2018; D’Inverno et al., 2017; Wu et al., 2018; Chen et 
al., 2019a). 
Conventional SBM-DEA models fail to fully rank DMUs. Consequently, studies 
applying this method can only focus on inefficient DMUs, impeding the 
investigation of all DMUs in the whole region (for example, mainland China 
analyzed in this study). Furthermore, only economic efficiency was evaluated when 
measuring WUE, represented by the consideration of desirable outputs but the 
neglect of undesirable outputs. Recently, it was noticed that pollutants also need to 
be accounted for they are inevitably produced and further discharged in the 
production process, signaling the importance of environmental efficiency 
assessment of water-use. Therefore, with cleaner production taken into consideration, 
researchers started to evaluate WUE with undesirable outputs included (Bian et al., 
2014; Deng et al., 2016; D'Inverno et al., 2018; Frija et al., 2009). Nonetheless, these 
studies are still in the minority. 
From the perspective of research objective, related literature can be divided into 
three broad themes: industrial WUE (especially agriculture and irrigation), water 
utility WUE, and overall WUE. In the first theme, WUE of one industry or sector is 
frequently assessed. Studies on WUE in agriculture, especially irrigated agriculture 
(Azad et al., 2015; Watto and Mugera, 2019), investigate the efficiency in water 
management and are especially prevalent. Other studies focus on the assessment of 
industrial WUE (Chen et al., 2018), infrastructure intensive agencies (Woodward et 
al., 2019), and the water sector (Cruz et al., 2013). In the second theme, the studies 
focus on water utilities or water treatment plants to assess WUE (Castellet and 
Molinos-Senante, 2016; D’Inverno et al., 2017; Zhou et al., 2018), with results 
ranging from efficient performance to complete inefficiency. In the third theme, 
regional analyses based on various data levels is common; these types of studies also 
account for the largest share between the three themes. Some studies focus on 
provincial level data (Bian et al., 2014; Byrnes et al., 2010; Deng et al., 2016; Wang 
et al., 2015; Yao et al., 2018), while others focus on city level analyses 
(Gungor-Demirci et al., 2018; Morales and Heaney, 2016). 
It can be concluded that previous studies focus more on WUE of a certain industry or 
at the overall level, owning shortcomings in two aspects. On the one hand, 
investigating the WUE of one industry cannot reflect the efficiency level of this 
industry among all industries in the region. On the other hand, examining overall 
WUE alone fails to identify the advantaged and disadvantaged industries in this 
region, hindering the in-depth understanding of regional WUE. Consequently, an 
inter-industry WUE analysis is essential in addition to the assessment of regional 
WUE at the overall level.  
The purpose of this study is to investigate regional WUE and its driving forces in 
mainland China. Thirty provinces in mainland China (excluding Tibet, which has 
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missing data) are taken as DMUs. This paper advances existing literature in two 
ways. First, a multidimensional analytical framework is constructed, based on which 
China’s regional WUE at the overall and industrial (i.e., primary, secondary, and 
tertiary industrial) levels are analyzed. Second, the SBM approach combined with 
the Super-efficiency model dealing with undesirable outputs (thus, Super-USBM 
model) are developed for efficiency assessment and full ranking of all DMUs. 
Undesirable outputs are also considered, so that both economic and environmental 
efficiency of water-use can be accounted. In this study, three input indicators (labor, 
assets, and water consumption), one desirable output indicator (economic output) 
and two undesirable output indicators (ammonia nitrogen emissions and chemical 
oxygen demand emissions) are selected for measurement. Furthermore, a 
geographical detector model is applied to identify the driving forces of WUE, 
serving as reference for policy and strategy improving WUE. Following previous 
literature, WUE in this paper is the total factor WUE. Scopes of the three industries 
are given by the Statistical Yearbook of China. The primary industry includes 
agriculture, forestry, animal husbandry, fishery, and water conservancy. The 
secondary industry includes industry, mining, manufacturing, electric power, gas 
and water production and supply. The tertiary industry includes all industries with 
the exception of primary and secondary industries such as transport, storage, post, 
wholesale and retail trades, hotels and catering services, and household 
consumption. 
The remaining paper is organized as follows: Section 2 presents the Super-USBM 
model used in this paper for calculating regional WUE and the geographical detector 
model for identifying the driving forces. Section 3 analyzes regional WUE in China 
and identifies the driving forces of WUE. Section 4 concludes and proposes policy 
implications. 

2. Methodology 
In this study, a two-part methodological framework is employed to investigate 
China’s regional WUE and its driving forces. First, a Super-USBM model is 
developed to assess regional WUE in China. Second, the driving forces of WUE in 
different regions are identified by a geographical detector model. 

2.1 Super-USBM model 
Conventional DEA models are radial and oriented, referring to an efficiency 
evaluation based on a certain proportion of input and output and input or output 
orientation. Nonetheless, there often exists a redundancy in the input or an 
insufficiency in the output during the production process, which traditional 
DEA models neglect. In this case, the non-radial and non-oriented measurement 
SBM model that considers both inputs excesses and outputs shortfalls (called 
slacks) can better measure the efficiency of DMUs by eliminating errors caused 
by radial and oriented methods (Tone, 2001).  
Consider n  DMUs with m  inputs, 1p  desirable outputs and 2p  undesirable 

outputs. Denote the input and output vectors as, ,x y z , then the input and 
output matrices can be defined as , ,X Y Z , where , , 0X Y Z＞ . The production 
possibility set (PPS) reflecting all the outputs produced by m  inputs under the 
assumption of constant return to scale (CRS) is 
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where -s , gs  and bs  are the slacks of input, desirable outputs and undesirable 
outputs, respectively. The optimal solution of this fractional program is 

( ), , , ,g bρ∗ ∗ −∗ ∗ ∗s s sλλλλ  and ρ∗  is the efficiency index of DMU o . The value of *ρ  

range from 0 to 1. DMUo  is considered SBM-efficient if * 1ρ = . 

Super-USBM model (Andersen et al., 1993; Tone, 2002) is further developed 
for ranking the SBM-efficient DMUs1. For the SBM-efficient DMU k , the 

objective function model of Super-USBM can be described as: 
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where , ,l zx y=  and , ,=u x y z , that is, 0x =�h x , 0y =�h y  and 0z =�h z . xs , ys , and 
zs  are the slacks of input and output vectors that should meet the constraint 
, , 0x y z ≥s s s . Then the SBM-efficient DMUs can be further identified and ranked 

by the efficiency index * 1α ≥ . 

                                                 
1 As Seiford and Zhu (1999), Zhu (2001), Chen (2005), and Lee et al. (2011) contend, 
infeasibility problems may occur when conducting analysis using the Super-efficiency model. 
However, in this study, no infeasibility is observed with the data. 
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2.2 Geographic detector model 
To explore the driving forces of regional WUEs, the geographic detector model 
proposed by Wang et al. (2016) is frequently used (Cagliero et al., 2018; Chen 
et al., 2019b; Ding et al., 2018; Goudarzi et al., 2017; Hu et al., 2018; Jiang et 
al., 2018; Khan et al., 2019; Li et al., 2019; Onozuka and Hagihara, 2017). This 
model applies a q-statistic to detect the degree to which a factor u explains the 
spatial differentiation of attribute E  in an observed region.  
Suppose that the n DMUs in Section 2.1 can be divided into k  layers, with 
each layer referring to a different region studied herein. Then, for layer 

( )1,2,...,h h k= , the variance 2
hσ  can be defined as ( )2

2

1
1 hn

h h hi hi
N E Eσ

=
= −∑ , 

where hiE  represents the efficiency value of unit i  in stratum h calculated by 

the model introduced in section 2.1. Variable hE  is the mean efficiency value of 
all DMUs in layer h. Similarly, the variance of all the samples can be calculated 

by ( )2
2

1
1

n

ii
N E Eσ

=
= −∑ , where iE  is the efficiency value of DMU i  in all 

layers and E  is the mean value of iE . Combining the statistics’ total sum of 

squares, 2SST Nσ= , and within sum of squares, 2
h hSSW N σ= , the q-statistic 

can be obtained: 1q SSW SST= − . 
The value of q can be inferred between 0 and 1 from the formulas above, where 
0 represents no stratified heterogeneity and 1 represents full stratification. The 
value of q indicates that 100 %q×  of E  can be explained by the explanatory 
variable u . The statistic value meets the “monotonous increase” property as the 
stratified heterogeneity increases. Therefore, the larger the value of q, the 

greater the stratified heterogeneity of E . If the stratification arises from the 
explanatory variable u , then a higher value of q implies stronger explanatory 

power of u  on the attribute E , and vice versa. A q value of 1 indicates 

complete control of u  on the spatial distribution of E , whereas 0 indicates no 
relationship between u and E . 

2.3 Datasets and indicators 
As part of the recent popularity of sustainability and quality of environmental 
development, water resources and WUE are also gaining more academic 
attention. Researchers use distinct variables to assess the performance and 
efficiency of water use (Azad et al., 2015; Geng et al., 2019; Li et al., 2018; 
Morales and Heaney, 2016; Wang et al., 2015; Watto and Mugera, 2019; Yao et 
al., 2018; Zhao et al., 2017; Zhou et al., 2018), based on which three input 
variables (asset, labor, and water consumption) and three output variables are 
selected, where the economic output (i.e., gross regional product [GRP] when 
gauging WUE at the overall level and added value at the industrial levels) is a 
desirable variable, and the emissions of AN and COD in wastewater (i.e., the 
main pollutants in wastewater) constitute the undesirable output variables. 
Among the input indicators, the indicator asset indicates the total number of 
building and purchasing fixed assets in monetary form, which is named Total 
Investment in Fixed Assets (TIFA) (billion yuan) in the China Statistical 

User
高亮
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Yearbook. Labor refers to the total amount of employees hired. Here, we choose 
the Total Number of Employed Persons (TNEP) (million persons) as the 
representatives. The indicator water consumption is the key indicator for the 
WUE assessment, reflecting the amount of water used in the production process. 
In this paper, the Total Water Use (TWU) (billion tons) in the China Statistical 
Yearbook is chosen as a representative indicator. The gross national product 
(GRP) refers to the total value of all final products and services produced by all 
resident units in a region in a certain period of time, which is often regarded as 
an indicator to measure economic outputs. Given that efficient water use should 
include the economy performance, we select GRP (billion yuan) as the 
desirable output in this paper. When assessing industrial WUE, value-added of 
the three industries are chosen. In the China Statistical Yearbook, AN and COD 
in wastewater are regarded as the two most important pollutants in wastewater. 
Therefore, the total amount of emission of these two indicators, i.e., AN 
emission (ANE) and COD emission (CODE) were chosen as undesirable 
outputs. 
For a more comprehensive and profound understanding of regional WUE in 
China, a multidimensional analytical framework is developed for the 
assessments (Fig. 1). The framework characterized in Fig. 1 has two levels (i.e., 
the overall level and industrial levels) and four dimensions for analysis of 
regional WUE. At the overall level, the measurement of regional WUE offers a 
global picture of China’s regional WUE performance. Industrial WUE 
constitutes the second level of the analytical framework, which contains three 
dimensions. Here, China’s regional WUE from the perspective of three 
industries, primary, secondary, and tertiary, are analyzed. Specific variables and 
data are chosen when evaluating WUE at different dimensions (Table 1). 

Overall Level

the Primary
Industry

the  Secondary
Industry

the Tertiary
Industry

Input 1: Labor

Input 2: Assets

Input 3: Water
               Consumption

Output 1:  Economic Output 

Output 2: Ammonia Nitrogen (AN)

Desirable Output

Undesirable Outputs

Dimensions

Output 3: Chemical Oxygen
                  Demand (COD)

 
Fig. 1. Analytical framework for assessing regional WUE of China. 
 
Table 1. Input and output variables for WUE assessments under different dimensions. 

     Overall level the Primary 
industry (PI) 

the Secondary 
industry (SI) 

the Tertiary 
industry (TI) 

Inputs 
 

(1) TIFA (1) TIFA in PI (1) TIFA in SI (1) TIFA in TI 
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(2) TNEP (2) TNEP in PI (2) TNEP in SI (2) TNEP in TI 

  
(3) TWU (3) TWU in PI (3) TWU in SI (3) TWU in TI 

Outputs Desirable (1) GRP 
(1) Value-added 
of PI 

(1) Value-added 
of SI 

(1) Value-added 
of TI 

 Undesirable (1) ANE (1) ANE of PI (1) ANE of SI (1) ANE of TI 

  
(2) CODE (2) CODE of PI (2) CODE of SI (2) CODE of TI 

2.4 Descriptive statistics on indicators 
The descriptive statistics are shown in Fig. 2a–2g. The assets input (average 
value) grew in all four dimensions. At the overall level, the average TIFA grew 
from ¥280.96 bn to ¥777.42 bn between 2005 and 2015, with an annual growth 
rate of 17.67%. The average TIFA of the secondary industry grew the fastest in 
the three industries. In 2005, the TIFA of the secondary industry was ¥123.88 
bn, lower than that of the tertiary industry. After a ten-year growth period, the 
TIFA of the secondary industry was ¥724.13 bn, which was ¥300 bn higher than 
that of the tertiary industry in 2015 (Fig. 2a). In terms of the TNEP changes, 
three of the four dimensions increased over the years, whereas the TNEP of the 
primary industry experienced a decline (Fig. 2b). The changes of the third input 
variable—TWU—are relatively stable. The amount of water use grew from 
18.17 bn tons in 2005 to a peak of 19.95 bn tons in 2013, and then reduced to 
19.69 bn tons in 2015. Changes in the TWU of the other three industries were 
similar to that at the overall level (Fig. 2c). 
Desirable output variables increased at all the four dimensions after 2005 (Fig. 
2d, 2e). At the overall level, the average GRP tripled from ¥642.67 bn to 
¥1859.76 bn in 2005–2015. The average industrial added values of the primary, 
secondary, and tertiary industries increased simultaneously with an annual 
growth rate of 5.41%, 22.05%, and 19.41%, respectively. It can be found from 
Fig. 2e that the primary industry had both the lowest value and annual growth 
rate among the three industries.  
When analyzing changes in undesirable outputs, period 2005–2015 was divided 
into two phases (period 2005–2010 and 2011–2015) due to the revision of 
statistical scope1. Fig. 2f illustrates the changing process of ANE in 
wastewater2. ANE in the three dimensions (i.e., the overall level, the secondary 
industrial level, the tertiary industrial level) all experienced continuous 
decreases from 2005 to 2010. Although the total amount of ANE in the 
secondary industry was less than that in the tertiary industry, it changed with a 
higher reducing rate faster than in the tertiary industry, indicating a higher 
capability of cleaner production in the secondary industry. The total amount of 
ANE at the overall level also decreased, effected more by the changes of ANE 

                                                 
1 In 2011, statistical scope in wastewater was expanded to 5 parts by the Ministry of 
Environmental Protection, PRC: industry source, agricultural source, urban living source, 
automotive vehicle, centralized pollution abatement. Indicators of statistical system, method of 
survey, and related technologies were also revised, rendering incomparability between 
undesirable outputs in 2010 and 2011. Data-smoothing was not adopted here for the purpose of 
observing actual changes. Therefore, period 2005-2015 was divided. 
2 Data on ANE of the primary industry from 2005 to 2010 were not given. Therefore, in the first 
period, changes at the primary industrial level were not analyzed. The same is true of data on 
CODE. 
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in the secondary industry. Performance of the tertiary industry in the second 
period (2011–2015) was better than the previous period, during which the ANE 
declined from 47600 tons in 2011 to 43300 tons in 2015 with an average annual 
decrease of 1075 tons. However, the total amount of ANE in the tertiary 
industry was the highest among the three industries, with ANE in the primary 
industry performing second and the secondary industry performing the best. 
The same is true for CODE from 2005 to 2010 (Fig. 2g), the total amount of 
which reduced from 456.2 thousand tons to 349.4 thousand tons. Means of 
CODE in the secondary industry decreased from 179.0 thousand tons in 2005 to 
140.3 thousand tons in 2010 with an average annual decrease rate of 4.70%, 
which is 3.59 times that of the tertiary industry (1.31%) over the same period. In 
the second period (2011–2015), the annual decline rate of the secondary 
industry is still the highest among the three industries, reaching 4.63%. The rate 
of the tertiary industry also improved to 2.54%, which was close to the overall 
level (2.89%). The same situation occurs in the primary industry, CODE in 
which falling from 382.6 thousand tons in 2011 to 344.7 thousand tons in 2015, 
reaching an average reduction rate of 2.57% annually.  
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Fig. 2. Changes in means of TIFA (a), TNEP (b), TWU (c), GRP (d), value-added of the 
three industries (e), ANE (f) and CODE (g) in wastewater from 2005 to 2015. 

3. Results 
The overall and industrial WUE of the DMUs can be calculated based on the model 
developed in Section 2. Results show an average WUE lower than 1 at overall level 
(Fig. 3a), indicating that China’s current WUE should be enhanced. The industrial 
WUE indices are also relatively low (Fig. 3b), among which the WUE index of the 
primary industry is the highest, with an average value of 0.8946. (The WUE index of 
the primary industry can only be calculated from 2011 to 2015 because of lack of 
statistics for the undesirable outputs.) This may correspond with accumulated 
experience, such as water-saving irrigation in the long history of agricultural 
production in China. In general, WUE of the secondary industry ranks second with 
an average value of 0.5772, higher than that of the tertiary industry at an average of 
0.5484. After industrial restructuring and upgrade, the WUE index of the secondary 
industry slumped in 2015. This value has been at its lowest level since 2005, placing 
it at the bottom and allowing the tertiary industry to surpass it after 2011. 
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Fig. 3. Average WUE at the overall level (a) and industrial levels (b) in China from 2005 to 
2015. 
 
The average WUE index value of each province from 2005 to 2015 is calculated 
based on the WUE distribution map in Fig. 4. The efficiency of water use in the 
eastern region, especially along the eastern and southern coasts, is significantly 
higher than that in the central and western regions. By contrast, WUE in northwest 
China lags. Although WUE in central and western China is relatively low, some 
provinces, such as Qinghai and Sichuan Province, have higher WUE scores than the 
surrounding provinces. They form small peaks in the WUE index for the central and 
western regions, whereas the surrounding low-WUE provinces such as Anhui and 
Jiangxi Province are collapsed in the figure. 

 
Fig. 4. Distribution of the average WUE index value of 30 provinces from 2005 to 2015. 
 

3.1 Regional heterogeneity of water-use efficiency in China 
For a more comprehensive analysis of regional WUE in China, WUE index 
values of regions with different water distribution characteristics are 
investigated herein. Numerous water resources indicators and indices were 
used to measure the degree of water scarcity, including Water System 
Vulnerability (Gleick, 1990), Water Availability Index (Meigh et al., 1999), 
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Water Resources Vulnerability Index (Shiklomanov, 1990; Vorosmarty et al., 
2000), and Water Poverty Index (Sullivan, 2002; Sullivan et al., 2003). 
Particularly, the Falkenmark Water Stress Indicator (Falkenmark et al., 1989) is 
globally accepted to evaluate regional water resources availability and scarcity. 
It sets the threshold of annual renewable surface water and groundwater 
availability of 1700 m3 per capita. Based on this threshold, several levels of 
water scarcity (e.g., water stress, chronic water scarcity, and beyond the water 
barrier) are graded. Combined with the water shortage classification provided 
by World Water Assessment Programme (2015), 30 provinces herein are 
grouped into five categories according to the average annual water resources 
availability per capita (Table 2). These categories include water abundance, 
water vulnerability, water stress, water scarcity, and water absolute scarcity. 
The data on water resources per capita are taken from China’s Statistical 
Yearbook (2006–2016). The amount of water resources per capita is calculated 
based on the urban population, which changes with respect to the sum of the 
urban census register population and transient population. 
Fig. 5 illustrates the distribution of the water scarcity conditions of different 
provinces. It can be found that, except for Shaanxi and Shanghai, the provinces 
of absolute scarcity are mainly located in north China, most of which are 
adjacent to each other. Water scarcity provinces are scattered but are invariably 
found in north China. Except for Jilin Province, water stress provinces closely 
surround the absolute scarcity area. Water vulnerability provinces are 
distributed in northeast and southeast China, while water abundance provinces 
are located in western and southern China. Fig. 5 also reveals an interesting 
feature of the water scarcity distribution pattern in mainland China: Link the 
northwest end to the southeast and a boundary appears. Along this boundary, 
the southwest region is abundant in water resources, whereas the northeast 
region is relatively deficient. 
Table 2. Five water resources distribution regions and constituent provinces. 

Water 
resources status 

Water resources per 
capita (cu. M/person) 

Constituent provinces 
Number of 
provinces 

Water 
abundance 

2500≤x 
Fujian, Jiangxi, Hunan, Guangxi, 
Hainan, Sichuan, Guizhou, Yunnan, 
Qinghai, Xinjiang 

10 

Water 
vulnerability 

1700≤x<2500 
Inner Mongolia, Heilongjiang, 
Zhejiang, Guangdong, Chongqing 

5 

Water stress 1000≤x<1700 Jilin, Anhui, Hubei, Shaanxi 4 
Water scarcity 500≤x<1000 Liaoning, Jiangsu, Gansu 3 
Water absolute 
scarcity 

0<x<500 
Beijing, Tianjin, Hebei, Shanxi, 
Shanghai, Shandong, Henan, Ningxia 

8 
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Fig. 5. Five water resources distribution regions in this study. 
 
Fig. 6 illustrates the overall and industrial WUE index values of the five regions. 
Despite having the scarcest water resources, the absolute scarcity region has the 
highest WUE index values. However, the stress region performs the worst; it 
has the lowest WUE in all dimensions. The abundance region is also inefficient 
in water use, ranking third at the primary industrial level and second in the 
secondary and tertiary industrial levels. On the whole, the WUE index value of 
the five regions is the highest in the first production and is ahead of the WUE 
for the other three aspects.  
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Fig. 6. WUE index values of different regions under all measured dimensions.  
 
At the overall level, the WUE index values of the absolute scarcity and 
vulnerability regions are always above the national average (Fig. 7a). However, 
differences exist between the two regions with high overall WUE. From 2005 
to 2015, the WUE index value of the absolute scarcity region increased above 
the national average and compared with other regions at a stable rate. On the 
contrary, the vulnerability region failed to maintain its advantages. Though it 
held a leading position against four regions (except the absolute scarcity region), 
it continued to decline and almost matched the scarcity region by 2010. 
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However, the scarcity region has been improving since 2007 and now exceeds 
the national average despite its initial low status.  
In general, all the five regions show a well-performing WUE index at the 
primary industrial level. Four of the five regions (i.e., water abundance, 
vulnerability, scarcity, and absolute scarcity) have an index value higher than 
the national average for every year between 2011 and 2015 (Fig. 7b). Regarding 
the overall WUE, there exists an efficiency of water use even in the absolute 
scarcity region. Notably, the WUE of the primary industry exhibits 
characteristics of annual changes, where the efficiency gap among regions is 
larger in odd years than that in even years. 
Regarding the WUE index value of the secondary industry, the water absolute 
scarcity region ranks first, whereas the stress and abundance regions fall at the 
bottom (Fig. 7c). Significant changes occur in the vulnerability and scarcity 
regions. At the beginning, the WUE index value in the vulnerability region is as 
almost high as that of the absolute scarcity regions. From 2010 onward, it 
descended rapidly and was surpassed by the WUE index value of the scarcity 
region, which, at the same time, was steadily increasing. However, the scarcity 
region failed to maintain this improvement in the secondary industrial WUE. A 
deterioration with the vulnerability region in and after 2013 can be observed. 
Meanwhile, the improvement of the secondary industrial WUE in the stress and 
abundance regions accelerated. The efficiency gap between the five regions 
subsequently narrows. 
Compared with the efficiency of the primary and secondary industry, the 
efficiency of the tertiary industry shows evident differences among the 
echelons, which are categorized by the regional WUE performance. The first 
echelon has only one region, the absolute scarcity region. This region’s WUE is 
not only the highest between the five regions, but also much higher than the 
national average WUE. The second echelon includes the vulnerability and 
scarcity regions. At the very beginning, especially in the year 2008 and before, 
it is challenging to count the scarcity region as a member of the second echelon. 
Nevertheless, in 2009, its WUE improved significantly and the index value 
surpassed that of the vulnerability region. The third echelon includes the 
abundance and stress regions, whose WUE index values have been relatively 
poor and almost unchanged (Fig. 7d). 
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Fig. 7. WUE index values at the overall level (a), the primary industrial level (b), the 
secondary industrial level (c) and the tertiary industrial level (d) from 2005 to 2015. 
 

3.2 Driving forces of regional water-use efficiency differences 
Driving forces on the regional WUE are examined based on industrial structure 
(IS), population structure (PS), scientific and technological levels, and 
educational level. The evolution of the secondary industrial WUE is similar to 
that of the overall WUE regarding industrial structure. Hence, the proportion of 
the secondary industry in the three industries is selected as the representative 
indicator of industrial structure. The urbanization rate indicator is chosen to 
stand for population structure. Further, scientific and technological 
development can affect the production process and will inevitably affect the 
efficiency of water resources use. Input and output indicators are the two 
aspects that are frequently used to assess the development status of science and 
technology. Therefore, the R&D input intensity (RDII) is taken as input, 
whereas the proportion of R&D personnel (RDP) and the added value of the 
high-tech production (HTP) is our output. Educational factors are also 
considered when identifying the driving forces. Similar to the field of science 
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and technology, educational funds (EF) are taken to represent the input of 
education. Given that the number of university students may not reflect the 
educational quality due to delayed graduation or even dropping out, the number 
of higher education graduates (HEG) is chosen to represent the education 
output. Because only few provinces exist in stress and scarcity regions and both 
regions have similar water resources endowment properties, the stress and 
scarcity regions are combined into one region in this analysis.  
The effect of the indicators above on WUE index value in the four regions is 
reported in Table 3. Results illustrate that WUE index values in different 
regions are driven by different forces. RDII is the only dominant force in WUE 
in the absolute scarcity region, while the stress and scarcity region’s WUE 
index values are also dominated by RDP and RDII. The driving forces in the 
vulnerability region are PS and EF; both affect the WUE index value 
remarkably in this region. In contrast, the WUE index value in the abundance 
region is more affected by RDII. 
Table 3. Q-statistic of the driving forces on the WUE index value in four regions. 

 
IS PS RDII EF HTP RDP HEG 

Absolute scarcity 0.2117 0.3185 0.4926 0.3059 0.2177 0.3803 0.2138 
Stress and Scarcity 0.0525 0.2993 0.4804 0.2110 0.1076 0.4828 0.1115 
Vulnerability 0.0939 0.4926 0.2426 0.4872 0.0658 0.3443 0.2036 
Abundance 0.2106 0.2196 0.3315 0.1303 0.1920 0.1134 0.2072 

 
A common phenomenon can be observed in the results: effects of science and 
technology-related indicators are more significant on regional WUE. Although 
factor PS has not become the dominant driving force in most regions (except 
the vulnerability region), it has a remarkable effect on the WUE index value of 
the other three regions at an explanation level of 31.85%, 29.93%, and 21.96%, 
respectively. Thus, its influence degree is higher compared with the other three 
aspects in most cases. Factor IS affects the absolute scarcity and abundance 
regions more than the other two regions. Among the four detected regions, the 
driving forces had a balanced effect on the absolute scarcity and abundance 
regions, whereas WUE in the stress and scarcity regions was driven less by the 
population-related indicator. This result is similar to the WUE index value in 
the vulnerability region. 
Notably, the effect of the indicators on the regional WUE index value is not 
mutually independent. Thus, the interaction among indicators may exert a 
higher degree of influence on the regional WUE index value. The interaction 
detection module of the Geodetector software can identify the driving effect of 
the interaction between two drivers on WUE in different regions to a higher 
degree. Based on the results of this module, the enhancement effect of the 
interaction among driving forces on the WUE index value includes 
bi-enhancement and nonlinear-enhancement. Enhancement means that the 
synergistic effect of the impact forces exceeds the individual or cumulative 
effect of the two forces. In the case of bi-factors enhancement, the effect of 
interaction between factor x  and factor y  is higher than the maximum effect of 
each factor. In the case of nonlinear enhancement, the effect of the interaction 
between the two factors is higher than the sum of their individual effects. 
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Assume that factor x  and factor y  are two driving factors of regional WUE, so 

x yI  is the interaction of x  and y . Then values of effect can be represented by 

( )E x , ( )E y  and ( )E x yI . Further, bi-factors enhancement can be formulated 

as: ( ) ( ) ( )( )max ,E x y E x E y>I , and nonlinear enhancement can be formulated 

as: ( ) ( ) ( )E x y E x E y> +I . Table 4 reports the combinations of the top four 

indicators with the largest WUE index value interaction for each region. 
Table 4 reports the interactions among the indicators that are dominant of WUE 
in different regions. It can be found that the indicators IS, RDII, and HEG are 
the essential indicators of dominant interactions of WUE in different regions. 
Their mutual interactions and interactions with other indicators are highly 
influential. For example, RDII∩HEG and IS∩PS are dominant in the absolute 
scarcity region. IS∩HTP and RDII∩HEG are dominant in the stress and 
scarcity regions. WUE in the vulnerability region is mainly affected by the 
interactions of IS∩EF, RDII∩HEG, as well as IS∩HTP. WUE in the abundance 
region is affected by the interactions between IS∩RDII and RDII∩HEG. 
An important common feature is also noticed: The interaction between RDII 
and HEG has a significant impact on WUE in all four regions (absolute scarcity, 
49.80%; stress and scarcities, 49.35%; vulnerability, 49.38%; and abundance, 
49.61%), reflecting the strong incentive effect of technology and education on 
the improvement of regional WUE. The interactions among the driving forces 
that influence regional WUE exhibit an obvious convergence of water resource 
endowment characteristics.  
Table 4. Dominant interactions on the WUE index value in different regions. 

 
Absolute 
scarcity 

Stress and 
Scarcity 

Vulnerability Abundance 

Dominant 
interaction 1 

RDII ∩ HEG PS ∩ HTP IS ∩ HTP RDII ∩ HEG 

0.4980△ 0.5000△ 0.5000▲ 0.4961△ 

Single effect 
RDII 0.4926 PS 0.2993 IS 0.0939 RDII 0.3315 
HEG 0.2138 HTP 0.1076 HTP 0.0658 HEG 0.2072 

Dominant 
interaction 2 

RDII ∩ HTP RDII ∩ HEG RDII ∩ HEG IS ∩ RDII 

0.4954△ 0.4935△ 0.4938▲ 0.4957△ 

Single effect 
RDII 0.4926 RDII 0.4804 RDII 0.2426 IS 0.2106 
HTP 0.2177 HEG 0.1115 HEG 0.1115 RDII 0.3315 

Dominant 
interaction 3 

HTP ∩ HEG IS ∩ HTP RDII ∩ RDP RDII ∩ EF 

0.4061△ 0.4920△ 0.4930△ 0.4334△ 

Single effect 
HTP 0.2177 IS 0.0525 RDII 0.2426 RDII 0.3315 
HEG 0.2138 HTP 0.1076 RDP 0.3443 EF 0.1303 

Dominant 
interaction 4 

IS ∩PS RDP ∩ HEG IS ∩ EF EF ∩ HEG 

0.3797△ 0.4898△ 0.3188△ 0.3589△ 

Single effect 
IS 0.2117 RDP 0.4828 IS 0.0939 EF 0.1303 
PS 0.3185 HEG 0.1115 EF 0.4872 HEG 0.2072 

Note: Notation△ represents bi-factors enhancement of interaction. Notation ▲ represents 

nonlinear enhancement of interaction. 
 

4. Conclusions 
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In this study, WUE and its evolutionary process in 30 provinces in mainland China 
from 2005 to 2015 are evaluated by the Super-USBM model under a 
multidimensional analytical framework. Three input indicators, one desirable output 
indicator and two undesirable output indicators were selected for the assessment. 
Driving forces of the regional WUE are also identified.  
The main findings are as follows: (1) At the national average level, the overall and 
industrial WUE index values are less than 1, indicating that the current WUE in 
China needs improvements. The primary industry has the highest efficiency, 
followed by the secondary and tertiary industries, in that order. The tertiary industry 
surpasses the secondary industry owing to the former’s industrial restructuring, 
upgrade, development, and maturity. (2) At the regional level, water abundance, 
vulnerability, stress, scarcity, and absolute scarcity, grouped according to the water 
resources availability per capita, are all efficient in terms of water use in the primary 
industry. Secondary industrial water-use performance in the regions of water 
vulnerability, stress, and scarcity is better than that of the tertiary industry in the 
regions of water abundance and absolute scarcity. Although short of water resources 
in per capita terms, the water absolute scarcity region, located in north China 
surrounding the Bohai sea, has developed with the highest WUE index value in the 
four dimensions. (3) At the provincial level, provinces in the eastern coastal region, 
especially the south-eastern coastal region, have the highest WUE, whereas those in 
the interior south-eastern and south-western region have the lowest in relation. The 
WUE index values for Beijing and Shanghai rank in the top five at all four 
dimensions. Tianjin and Guangdong follow, with WUE index values leading at the 
overall, secondary industrial, and tertiary industrial levels. (4) Industrial structure, 
R&D intensity, and higher education are the main driving forces of WUE. Their 
mutual interactions and interactions with other indicators are highly influential. 
Among the driving forces, indicators for the urbanization rate and education 
expenditure are the main forces causing the regional differences in water-use 
performance.  
Policy implications for improving WUE arise from the findings of this research. 
First, given the imbalanced and uncoordinated development of WUE in China, it is 
important to implement a strategy of coordinated regional WUE development. 
Second, WUE can be improved by exploiting the radiation effect wherein 
advantages of high-efficiency areas spread to low-efficiency areas. For example, the 
absolute scarcity region is surrounded by the stress region. The former has the 
highest WUE, whereas the latter has the lowest, forming a sharp contrast. This 
phenomenon can be used as heuristic information to drive the development of the 
stress region and improve China’s overall WUE efficiency by stimulating the 
absolute scarcity region. Third, the results of driving forces identification indicate 
that incentive policies should be designed to increase investments in science and 
technology, improve the quality of education, and optimize the industrial structure to, 
in turn, positively affect WUE.  
Future research should include models that can avoid the infeasibility problem for 
the fully ranked analysis of regional and industrial WUE in China. Inter-industry 
heterogeneity may be further considered during the inter-industry analysis. Also, 
assessment can be applied at a more microscopic level, such as the municipal level, 
to offer a more accurate and precise picture of the regional water use performance in 
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China.  
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· A multidimensional analytical framework is developed for inter-industrial 

analysis. 

· Super-SBM model is applied for full ranking of decision making units. 

· Both economic and environmental efficiency of water-use are considered. 

· Driving forces of regional heterogeneity of efficiency are identified. 
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