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Abstract: Progress has been made in improving water-useaesflg (WUE) in
China, whereas problems such as unbalanced regindahdustrial WUE
development still exist. In this study, the WUE36fprovinces in mainland China at
the overall level as well as three industrial {ipgimary, secondary, and tertiary
industrial) levels are investigated. The study csvke time period 2005 to 2015 and
is based on the Slacks-based measure approachreimbith the Super-efficiency
model dealing with undesirable outputs; in addit@multidimensional analytical
framework was developed in this study. Afterwatts, geographical detector
model is applied to identify the driving forcesWlE, serving as a reference for
policies and strategies needed to improve WUE. Resulicate that China’s
overall WUE has been improving since 2005, thougth&r progress is necessary.
At the regional level, five regions (i.e., wateuadance, vulnerability, stress,
scarcity, and absolute scarcity) grouped by théahility of water resources per
capita are all the most efficient in terms of watse in the primary industry. The
absolute scarcity region performs best in all fdunensions despite the scarcity of
water resources per capita, yet the water strggsréas the lowest WUE. At the
provincial level, provinces in the eastern coastglon, especially the south-eastern
coastal region, have the highest WUE, whereas timoe interior south-eastern
and south-western region have the lowest. Induistiriacture, research and
development intensity, and higher education arertaim driving forces of WUE.
Their mutual interactions and their interactionfhvather indicators are highly
influential.

Keywords: Water-use efficiency; Regional analysis; IAtetustry comparison;

Data Envelopment Analysis; Undesirable outputsn&hi

Nomenclature

WUE watel-use efficienc n thenumber of DMU:

DEA data envelopment analy M thenumber of input

DMU  decision making unit p, the number of desirable outputs

CRS  constant return to scale p, the number of undesirable outputs

VRS variable return to sce X input vecto

SBM  slack-based measu Y desirable output vect

USBM SBM approach dealing with £ undesirable output vector
undesirable outpu

Super- USBM approach combined with X  input matrix

USBM the Supe-efficiency mode

AN ammonia nitroge Y desirable output matr

ANE AN emissiot Y4 undesirable output mati

COD chemical oxygen demand A weighting vector

CODE COD emission s input slacks vector

GRP  gross regional product g9  desirable output slacks vector
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TIFA total investment in fixed assets . undesirable output slacks vector
TNEP total number of employed persons p”  optimal solution of USBM model

TWU total water us o  optimal solution of Super-USBM mod
IS industrial structur

PS population structure g? statistical variance

R&D research and development E  efficiency value ofbMU,

RDIl  R&D input intensit SST total sum of squar:

RDF  R&D personne SSW within sum of square

HTP  high-tech productio Pl the primary industr

EF educational func S|  the secondary indus:

HEG higher education gradua Tl the tertiary industr

PPS production possibility s m®>  cubic mete




1. Introduction
Unreasonable water use can place constraints @ysteon health, socioeconomic
development, and even human sun/iveib enhance water-use efficiency (WUE)
and further sustainable development, the UnitedoNatGeneral Assembly declared
the period from 2018 to 2028 as the Internatioredddle for Action “Water for
Sustainable DevelopmeAt'WUE has also drawn widespread attention from
academia. Academic research on sustainable watermerged in the late 1990s.
The percentage of literature using WUE as one@k#ywords increased from
4.31% in 1998-2007 to 11.53% in 2008—-2017 (AznareBéz et al., 2018).
Efficiency-related variables also become the mostraonly used variables in this
field (Azad et al., 2015; Bian et al., 2014; Craiak, 2013; Long and Pijanowski,
2017; Zhang et al., 2016), accounting for a sh&B5&7% (Aznar-Sanchez et al.,

2018).
China is facing water-use problems. ParticulaHg, lbw level of processing water

resources per capita is a key concern. The cosnirgter resources per capita cover
only 2100 cubic meters, equal to 28% of the glalvarage level (Ministry of Water
Resources PRC, 20£2ther problems such as unbalanced distributicegibnal
water resources and reduction of total water ressuare also evident. According to
the World Resources Institute (2019), more thahdfaChina’s provinces are
suffering from water scarcity, while two thirds©hina’s cities face critical water
shortages, and nearly one third of China’s ten ntajer systems are of poor water
quality’. The government has been responding to countse ttencerns. For
instance, thé.aw of Prevention and Control of Water Pollution has been set as its
objective preventing and controlling water pollutias well as protecting water
ecology to realize sustainable development. Odve of Water and Soil

Conservation was legislated to incorporate water conservatim the national
economic and social development plan. Progresbdms made with these efforts,
yet WUE in China still needs enhancement, whigkgsrded as an important means
to realize and promote sustainable developmettarehvironment, economy, and

society (Suzuki and Nijkamp, 20162. _ o _ o
Understanding the current status of WUE is on@éeforerequisites for improving it.

Therefore, this study aims to investigate the WhlEhainland China. In social
science, WUE is also called economic WUE, defiretha value of products
produced per unit of water consumption (Wang e28l15). Studies have been
conducted following this conceptual framework (Azddl., 2015; Bouman, 2007,
Huang et al., 2005). It was later recognized thatiewalone as an input cannot
produce the necessary outputs in the productiotegs Other inputs are also
essential in WUE assessment (Hu et al., 2006).€fbis, studies on total factor

WUE measured by multiple-input models come intorttaénstream.
Data Envelopment Analysis (DEA) is one of the maistely used methods for its

ability to deal with multiple inputs and outputstsE proposed by Charnes et al.
(1978), conventional DEA models, such as the Clsai@eoper—Rhodes or

! https://www.un.org/en/sections/issues-depth/wiaigek. html

2 https://lwww.un.org/en/events/waterdecade/

% http://news.china.com.cn/txt/2012-02/13/conten6 Z293.htm
* http://www.wri.org.cn/en/our-work/topics/water



Banker—Charnes—Cooper model, are the most poghtrig ét al., 2009; Geng et al.,
2019; Lombardi et al., 2019; Razzagq et al., 2008)vever, such models with radial
and oriented features neglect excesses in inpdtstaortfalls in outputs (Tone,
2001) that are likely to deviate the efficiency m@@ment. Hence, the efficiency
assessed by traditional DEA may not accuratelgcefleal efficiency level of
decision making units (DMUSs). To counter this issuen-radial and non-oriented
DEA models are proposed, among which slacks-basesune (SBM) applied
(Azad et al., 2015; Chen et al., 2018; D’Invernalet2017; Wu et al., 2018; Chen et

al., 2019a).
Conventional SBM-DEA models fail to fully rank DMUEonsequently, studies

applying this method can only focus on ineffici@MUs, impeding the
investigation of all DMUs in the whole region (fexample, mainland China
analyzed in this study). Furthermore, only econogfiiciency was evaluated when
measuring WUE, represented by the consideratiatesifable outputs but the
neglect of undesirable outputs. Recently, it watced that pollutants also need to
be accounted for they are inevitably produced anithér discharged in the
production process, signaling the importance ofrenmental efficiency
assessment of water-use. Therefore, with cleaneéiugtion taken into consideration,
researchers started to evaluate WUE with undesimalgiputs included (Bian et al.,
2014; Deng et al., 2016; D'Inverno et al., 201dafat al., 2009). Nonetheless, these

studies are still in the minority. N _ o _
From the perspective of research objective, relkttexdture can be divided into

three broad themes: industrial WUE (especiallyadpure and irrigation), water
utility WUE, and overall WUE. In the first theme,WEE of one industry or sector is
frequently assessed. Studies on WUE in agriculespecially irrigated agriculture
(Azad et al., 2015; Watto and Mugera, 2019), ingast the efficiency in water
management and are especially prevalent. Othelestémtus on the assessment of
industrial WUE (Chen et al., 2018), infrastructureensive agencies (Woodward et
al., 2019), and the water sector (Cruz et al., 20b3he second theme, the studies
focus on water utilities or water treatment plantassess WUE (Castellet and
Molinos-Senante, 2016; D’Inverno et al., 2017; Zleval., 2018), with results
ranging from efficient performance to complete fivgncy. In the third theme,
regional analyses based on various data levetsnson; these types of studies also
account for the largest share between the threeabeSome studies focus on
provincial level data (Bian et al., 2014; Byrnesiet 2010; Deng et al., 2016; Wang
et al., 2015; Yao et al., 2018), while others foon<ity level analyses

qun or-Demirci et al., 2018; Morales and Hean . o
t can be concluded that previous studies focusrnarWUE of a certain industry or

at the overall level, owning shortcomings in twpeds. On the one hand,
investigating the WUE of one industry cannot reflbe efficiency level of this
industry among all industries in the region. Ondkiger hand, examining overall
WUE alone fails to identify the advantaged and diseataged industries in this
region, hindering the in-depth understanding ofaeal WUE. Consequently, an
inter-industry WUE analysis is essential in additio the assessment of regional

WUE at the overall level.
The purpose of this study is to investigate redi®dE and its driving forces in

mainland China. Thirty provinces in mainland Ch{aacluding Tibet, which has



missing data) are taken as DMUSs. This paper adagxisting literature in two
ways. First, a multidimensional analytical framelvisr constructed, based on which
China’s regional WUE at the overall and industfia., primary, secondary, and
tertiary industrial) levels are analyzed. Secohd,$BM approach combined with
the Super-efficiency model dealing with undesiradléputs (thus, Super-USBM
model) are developed for efficiency assessmenfahcanking of all DMUs.
Undesirable outputs are also considered, so thhtdmmnomic and environmental
efficiency of water-use can be accounted. In thid\g three input indicators (labor,
assets, and water consumption), one desirable iniginator (economic output)
and two undesirable output indicators (ammoniagén emissions and chemical
oxygen demand emissions) are selected for measotefmathermore, a
geographical detector model is applied to iderthiy driving forces of WUE,
serving as reference for policy and strategy imprgWUE. Following previous
literature, WUE in this paper is the total factolJ®. Scopes of the three industries
are given by the Statistical Yearbook of China. phenary industry includes
agriculture, forestry, animal husbandry, fisheng avater conservancy. The
secondary industry includes industry, mining, maoturing, electric power, gas
and water production and supply. The tertiary itgusicludes all industries with
the exception of primary and secondary industngeh ®1s transport, storage, post,
wholesale and retail trades, hotels and cateringcss, and household

consurrnTPt_ion. . . .
The remaining paper is organized as follows: Saipresents the Super-USBM

model used in this paper for calculating region&d B\and the geographical detector

model for identifying the driving forces. SectioraBalyzes regional WUE in China

and identifies the driving forces of WUE. Sectionghcludes and proposes policy

implications.

2. M ethodology

In this study, a two-part methodological framewisrlemployed to investigate

China’s regional WUE and its driving forces. FigtSuper-USBM model is

developed to assess regional WUE in China. Se¢badJriving forces of WUE in

different regions are identified by a geographda=tiector model.

2.1 Super-USBM model

Conventional DEA models are radial and orientefiirrang to an efficiency
evaluation based on a certain proportion of inmgt @utput and input or output
orientation. Nonetheless, there often exists anmddacy in the input or an
insufficiency in the output during the productiomgess, which traditional
DEA models neglect. In this case, the non-radidlram-oriented measurement
SBM model that considers both inputs excesses atplits shortfalls (called
slacks) can better measure the efficiency of DMysllminating errors caused
by radial and oriented methods (Tone, 2001).
Considern DMUs with m inputs, p, desirable outputs and, undesirable
outputs. Denote the input and output vectors,dsz, then the input and
output matrices can be defined dsY, Z , where X, Y, Z>0. The production

possibility set (PPS) reflecting all the outputequced bym inputs under the
assumption of constant return to scale (CRS) is



PPS:{(X, Y, z) | X=X, y<sYA,z>Z4 A= (} , Where 4 is a weighting vector
in R". Under the assumption of variable return to s¢@dRS), 4 should also
meet the constrainE:/lj =1.

j=1
For DMU(X,, Y,, Z,) , the SBM model dealing with undesirable outputsn@
2004) can be measured as:

ZS
pD:mm 22 %o -
S’ Z Y
iy pz(;ym =i b]
st. X, =XA+s
9 —vy9 g ! (1)
Ys =YA -5
Yo =Y°A+¢
2 A =1
=1

s,59,8°,120
wheres’, s? and s’ are the slacks of input, desirable outputs anesinable
outputs, respectively. The optimal solution of thetional program is
(074757, 7,s™) and p” is the efficiency index oDMU . The value ofo’
range from 0 to 1DMU is considered SBM-efficient ib =1.

Super-USBM model (Andersen et al., 1993; Tone, 2@0further developed
for ranking the SBM-efficient DMUSs For the SBM-efficienODMU , , the

objective function model of Super-USBM can be diéstt as:

1+—z i)
aD:mm B
s, ]
pl + p2 [; yrk ; yrk
st. h(= Z Ay, ’ 2)
j=Lzk
Zn:/]j =1

j=1
s,59,8°,120
wherel =x,y,z andu=x,y,z, thatis,h = x,, h[=Fy, andh,=z. s*, ¢, and
s* are the slacks of input and output vectors thatkhmeet the constraint
s',¢',s"20. Then the SBM-efficient DMUs can be further idéieti and ranked
by the efficiency indexa’” >1.

! As Seiford and Zhu (1999), Zhu (2001), Chen (2085} Lee et al. (2011) contend,
infeasibility problems may occur when conductinglgisis using the Super-efficiency model.
However, in this study, no infeasibility is obseatwsith the data.



2.2 Geogr aphic detector model
To explore the driving forces of regional WUESs, gemgraphic detector model
proposed by Wang et al. (2016) is frequently us&h(iero et al., 2018; Chen
et al., 2019b; Ding et al., 2018; Goudarzi et2017; Hu et al., 2018; Jiang et
al., 2018; Khan et al., 2019; Li et al., 2019; Quiczand Hagihara, 2017). This
model applies g-statistic to detect the degree to which a fact@xplains the
spatial differentiation of attributé& in an observed region.
Suppose that tha DMUs in Section 2.1 can be divided inkdayers, with
each layer referring to a different region studiedein. Then, for layer

h(h=1,2,...k), the variances,’ can be defined ag2=yN, 3" (E, - E,)
where E,; represents the efficiency value of uhitn stratumh calculated by
the model introduced in section 2.1. Varialeis the mean efficiency value of
all DMUs in layer h. Similarly, the variance of gille samples can be calculated
by o2 =Ny " (E -E) , whereE, is the efficiency value oPMU; in all
layers andE is the mean value af . Combining the statistics’ total sum of

squares SST = No2, and within sum of square§SWV =N, g,?, theg-statistic
can be obtainedy =1- SSW/SST .

The value ofg can be inferred between 0 and 1 from the formaitese, where
0 represents no stratified heterogeneity and lesgmts full stratification. The
value of g indicates thal00x q % of E can be explained by the explanatory

variableu. The statistic value meets the “monotonous in&gpoperty as the
stratified heterogeneity increases. Thereforelatger the value of], the

greater the stratified heterogeneity laf. If the stratification arises from the
explanatory variablel, then a higher value d implies stronger explanatory

power ofu on the attributeE , andvice versa. A ( value of 1 indicates

complete control ofi on the spatial distribution of , whereas 0 indicates no
relationship between and E .

2.3 Datasets and indicators
As part of the recent popularity of sustainabiétyd quality of environmental
development, water resources and WUE are alsongambre academic
attention. Researchers use distinct variablessesasthe performance and
efficiency of water use (Azad et al., 2015; Genglet2019; Li et al., 2018;
Morales and Heaney, 2016; Wang et al., 2015; WattbMugera, 2019; Yao et
al., 2018; Zhao et al., 2017; Zhou et al., 2018%dd on which three input
variables (asset, labor, and water consumption}fare@ output variables are
selected, where the economic output (i.e., gragismal product [GRP] when
gauging WUE at the overall level and added valubeaindustrial levels) is a
desirable variable, and the emissions of AN and Q©OWDastewater (i.e., the

main pollutants in wastewater) constitute the uimdbke output variables.
Among the input indicators, the indicator assetdatts the total number of

building and purchasing fixed assets in monetamnfavhich is named Total
Investment in Fixed Assets (TIFA) (billion yuan)time China Statistical
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Yearbook. Labor refers to the total amount of erppés hired. Here, we choose
the Total Number of Employed Persons (TNEP) (millpersons) as the
representatives. The indicator water consumptidhdakey indicator for the
WUE assessment, reflecting the amount of water ussiééed production process.
In this paper, the Total Water Use (TWU) (billians) in the China Statistical
Yearbook is chosen as a representative indicabar.gfoss national product
(GRP) refers to the total value of all final prothuand services produced by all
resident units in a region in a certain periodmit which is often regarded as
an indicator to measure economic outputs. Giveretfigient water use should
include the economy performance, we select GRRofbiyuan) as the
desirable output in this paper. When assessingtnduUWUE, value-added of
the three industries are chosen. In the Chinas8tati Yearbook, AN and COD
in wastewater are regarded as the two most impgptaiutants in wastewater.
Therefore, the total amount of emission of theseitwlicators, i.e., AN
emission (ANE) and COD emission (CODE) were ch@senndesirable

outputs.
For a more comprehensive and profound understardiregional WUE in

China, a multidimensional analytical framework &vdloped for the
assessments (Fit). The framework characterized in Flghas twdevels(i.e.,
the overall level and industrial levels) and fdumnensions for analysis of
regional WUE. At the overall level, the measurenwntgional WUE offers a
global picture of China’s regional WUE performank®lustrial WUE
constitutes the second level of the analytical &awark, which contains three
dimensions. Here, China’s regional WUE from thespective of three
industries, primary, secondary, and tertiary, ayzed. Specific variables and
data are chosen when evaluating WUE at differantedsions (Table 1).

Dimensions Desirable Output
Input 1: Labor . ecrall Level Output 1. Economic Output N
the Primary
Input 2: Assets Industry Output 22 Ammonia Nitrogen (AN)
_______ » —_—— — —_——_——_————_———
_ the Secondary |
Input 3: Water _ Industry Output 3: Chemical Oxygen |
Consumption Demand (COD) ]
_______ » _—ee—— ,—,——— ) —_— e
the Tertiary |
Industry \j

Undesirable Outputs

Fig. 1. Analytical framework for assessing regional WUE#fina.

Table 1. Input and output variables for WUE assessmentsmdifferent dimensions.

the Primary the Secondary the Tertiary
Overall level industry (PI) industry (SI) industry (T1)

I nputs (1) TIFA (1) TIFA in PI (1) TIFA in SI (1) TIFAInTI




(2) TNEF (2) TNEPirPI  (2) TNEPinSI  (2) TNEP inTI

(3) TWU (3)TWUinPI  (3TWUinSI  (3)TWUinTI
. (1) Value-added (1) Value-added (1) Value-added
Outputs Desrable (1) GRP of PI of S| of TI
Undesirable (1) ANE (1) ANE of PI (1) ANE of SI (1) ANE of Ti
(2) CODE (2) CODE 0PI (2) CODE ofSl  (2) CODE ofTlI

2.4 Descriptive statistics on indicators
The descriptive statistics are shown in Fig. 2a¥hg assets input (average
value) grew in all four dimensions. At the ovelallel, the average TIFA grew
from ¥280.96 bn to ¥777.42 bn between 2005 and,20i% an annual growth
rate of 17.67%. The average TIFA of the secondadystry grew the fastest in
the three industries. In 2005, the TIFA of the selawy industry was ¥123.88
bn, lower than that of the tertiary industry. Afeeten-year growth period, the
TIFA of the secondary industry was ¥724.13 bn, Whwas ¥300 bn higher than
that of the tertiary industry in 2015 (Fig. 2a).témms of the TNEP changes,
three of the four dimensions increased over thesy@aereas the TNEP of the
primary industry experienced a decline (Fig. 2lh)e Thanges of the third input
variable—TWU—are relatively stable. The amount atev use grew from
18.17 bn tons in 2005 to a peak of 19.95 bn tor2di8, and then reduced to
19.69 bn tons in 2015. Changes in the TWU of tiemothree industries were

similar to that at the overall level (Fig. 2c). ) _ _
Desirable output variables increased at all the fiimnensions after 2005 (Fig.

2d, 2e). At the overall level, the average GRRddgrom ¥642.67 bn to
¥1859.76 bn in 2005-2015. The average industrig¢ddalues of the primary,
secondary, and tertiary industries increased sanatiusly with an annual
growth rate of 5.41%, 22.05%, and 19.41%, respelgtiVt can be found from
Fig. 2e that the primary industry had both the Istv@lue and annual growth

rate among the three industries.
When analyzing changes in undesirable outputsp@@005-2015 was divided

into two phases (period 2005-2010 and 2011-201&Yalthe revision of
statistical scope Fig. 2f illustrates the changing process of ANE i
wastewater ANE in the three dimensions (i.e., the overalklethe secondary
industrial level, the tertiary industrial level) akperienced continuous
decreases from 2005 to 2010. Although the totallarhof ANE in the
secondary industry was less than that in the tgrimmlustry, it changed with a
higher reducing rate faster than in the tertiadustry, indicating a higher
capability of cleaner production in the secondadustry. The total amount of
ANE at the overall level also decreased, effectederby the changes of ANE

1In 2011, statistical scope in wastewater was expaual 5 parts byhe Ministry of
Environmental Protection, PRC: industry sourceicadfural source, urban living source,
automotive vehicle, centralized pollution abatemémdicators of statistical system, method of
survey, and related technologies were also revisedlering incomparability between
undesirable outputs in 2010 and 2011. Data-smagtias not adopted here for the purpose of

gbserving actual changes. Therefore, Period 2005 s divided. . _
Data on ANE of the primary industry from 2005 @lP were not given. Therefore, in the first

period, changes at the primary industrial leveleveot analyzed. The same is true of data on
CODE.



in the secondary industry. Performance of theasrtindustry in the second
period (2011-2015) was better than the previousgeduring which the ANE
declined from 47600 tons in 2011 to 43300 tonDibh3Rwith an average annual
decrease of 1075 tons. However, the total amouAN& in the tertiary
industry was the highest among the three industnegk ANE in the primary
industry performing second and the secondary imgygstrforming the best.
The same is true for CODE from 2005 to 2010 (Fg), the total amount of
which reduced from 456.2 thousand tons to 349.d4gand tons. Means of
CODE in the secondary industry decreased from 1ff@sand tons in 2005 to
140.3 thousand tons in 2010 with an average ardegkase rate of 4.70%,
which is 3.59 times that of the tertiary industty3(1%) over the same period. In
the second period (2011-2015), the annual dedhteeaf the secondary
industry is still the highest among the three indes, reaching 4.63%. The rate
of the tertiary industry also improved to 2.54% jiethwas close to the overall
level (2.89%). The same situation occurs in thenpry industry, CODE in
which falling from 382.6 thousand tons in 2011 4@ 3 thousand tons in 2015,

reachina an averane rediiction rate of 2 57% annnall
(2}

Means of TIFA (100 milion yuan)

Means of TWU (100 million tons)
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Fig. 2. Changes in means of TIFA (a), TNEP (b), TWU (dRR(d), value-added of the
three industries (e), ANE (f) and CODE (g) in wasiéer from 2005 to 2015.

3. Resaults
The overall and industrial WUE of the DMUs can bé&alated based on the model
developed in Section 2. Results show an average WWwe&r than 1 at overall level
(Fig. 3a), indicating that China’s current WUE sliblbe enhanced. The industrial
WUE indices are also relatively low (Fig. 3b), argamhich the WUE index of the
primary industry is the highest, with an average®®f 0.8946. (The WUE index of
the primary industry can only be calculated frodd2@ 2015 because of lack of
statistics for the undesirable outputs.) This maiyespond with accumulated
experience, such as water-saving irrigation inlohng history of agricultural
production in China. In general, WUE of the secaopndadustry ranks second with
an average value of 0.5772, higher than that ofdttery industry at an average of
0.5484. After industrial restructuring and upgratie, WUE index of the secondary
industry slumped in 2015. This value has beersdbwest level since 2005, placing
it at the bottom and allowing the tertiary industinysurpass it after 2011.
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Fig. 3. Average WUE at the overall level (a) and industieakls (b) in China from 2005 to
2015.

The average WUE index value of each province fro®520 2015 is calculated
based on the WUE distribution map in Fig. 4. THeieihcy of water use in the
eastern region, especially along the eastern autheim coasts, is significantly
higher than that in the central and western regiBgsontrast, WUE in northwest
China lags. Although WUE in central and westernn@hs relatively low, some
provinces, such as Qinghai and Sichuan Provinees hegher WUE scores than the
surrounding provinces. They form small peaks inMA¢E index for the central and
western regions, whereas the surrounding low-WUlipces such as Anhui and
Jianaxi Province are collapsed in the fiaure.

High WUE ' |I

Low WLE

Fig. 4. Distribution of the average WUE index value of@@0vinces from 2005 to 2015.

3.1 Regional heterogeneity of water-use efficiency in China
For a more comprehensive analysis of regional WiJEhina, WUE index
values of regions with different water distributiomaracteristics are
investigated herein. Numerous water resourcesatatis and indices were
used to measure the degree of water scarcity,dmgu/Nater System
Vulnerability (Gleick, 1990), Water Availability trex (Meigh et al., 1999),
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Water Resources Vulnerability Index (Shiklomand9@; Vorosmarty et al.,
2000), and Water Poverty Index (Sullivan, 2002]iga et al., 2003).
Particularly, the Falkenmark Water Stress Indicftatkenmark et al., 1989) is
globally accepted to evaluate regional water resggiavailability and scarcity.
It sets the threshold of annual renewable surfestemand groundwater
availability of 1700 m per capita. Based on this threshold, several $evkl
water scarcity (e.g., water stress, chronic watarcty, and beyond the water
barrier) are graded. Combined with the water sigertdassification provided
by World Water Assessment Program{@@15), 30 provinces herein are
grouped into five categories according to the ayer@nual water resources
availability per capita (Table 2). These categoinetudewater abundance,
water vulnerability, water stress, water scarcity, andwater absolute scarcity.
The data on water resources per capita are tagen@hina’s Statistical
Yearbook (2006—-2016). The amount of water resoyseegapita is calculated
based on the urban population, which changes w#hect to the sum of the

urban census register po_gulation and transientlpbpn. _
Fig. 5 illustrates the distribution of the wateastty conditions of different

provinces. It can be found that, except for Shaangi Shanghai, the provinces
of absolute scarcity are mainly located in northin@hmost of which are
adjacent to each other. Water scarcity provinceseattered but are invariably
found in north China. Except for Jilin Province,tesastress provinces closely
surround the absolute scarcity area. Water vulié@yaprovinces are
distributed in northeast and southeast China, whater abundance provinces

are located in western and southern China. Fitgdraveals an interesting
feature of the water scarcity distribution pattermainland China: Link the
northwest end to the southeast and a boundary eppgdang this boundary,
the southwest region is abundant in water resouvdesreas the northeast

region is relatively deficient.
Table 2. Five water resources distribution regions and d¢sit provinces.

Water Water resources per . . Number of
. Constituent provinces )
resources status  capita (cu. M/person) provinces
Water Fujian, Jiangxi, Hunan, Guangxi,
2500<x Hainan, Sichuan, Guizhou, Yunnan, 10
abundance . A,
Qinghai, Xinjian¢
Water Inner Mongolia, Heilongjiang,
vulnerability 170Gx<2500 Zhejiang, Guangdong, Chongq 5
Water stres 100C<x<170( Jilin, Anhui, Hubei, Shaan 4
Water carcity 50(=x<100( Liaoning, Jiangsu, Gan 3
Water absolute 0<x<500 Beijing, Tianjin, Hebei, Shanxi, 8

scarcity

Shanghai, Shandong, Henan, Nint
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Fig. 5. Five water resources distribution regions in gtigly.

Fig. 6 illustrates the overall and industrial WUigléx values of the five regions.
Despite having the scarcest water resources, @b scarcity region has the
highest WUE index values. However, the stress regearforms the worst; it
has the lowest WUE in all dimensions. The abundaegen is also inefficient
in water use, ranking third at the primary indwdtievel and second in the
secondary and tertiary industrial levels. On th@hthe WUE index value of
the five regions is the highest in the first pratitut and is ahead of the WUE
for the other three aspects.

nmi

0.2
0.0
Abundance Vulnerability = Stress Scarcity Absolute
Region scarcity
m Overall Level ® the Primary Industry

the Secondary Industry the Tertiary Industry
Fig. 6. WUE index values of different regions under all swwad dimensions.

At the overall level, the WUE index values of thesalute scarcity and
vulnerability regions are always above the nati@varage (Fig. 7a). However,
differences exist between the two regions with fagarall WUE. From 2005
to 2015, the WUE index value of the absolute staregion increased above
the national average and compared with other regaba stable rate. On the
contrary, the vulnerability region failed to maimt&s advantages. Though it
held a leading position against four regions (ektepabsolute scarcity region),
it continued to decline and almost matched thecéiyategion by 2010.

14



However, the scarcity region has been improvinges2007 and now exceeds
the national average despite its initial low status

In general, all the five regions show a well-peniorg WUE index at the
primary industrial level. Four of the five regioti®., water abundance,
vulnerability, scarcity, and absolute scarcity) @aw index value higher than
the national average for every year between 20d2am5 (Fig. 7b). Regarding
the overall WUE, there exists an efficiency of watse even in the absolute
scarcity region. Notably, the WUE of the primargustry exhibits
characteristics of annual changes, where the effayi gap among regions is

larger in odd years than that in even years.
Regarding the WUE index value of the secondarystrguthe water absolute

scarcity region ranks first, whereas the stressadmuhdance regions fall at the
bottom (Fig. 7c). Significant changes occur inthéerability and scarcity
regions. At the beginning, the WUE index valuehia vulnerability region is as
almost high as that of the absolute scarcity regiénom 2010 onward, it
descended rapidly and was surpassed by the WUEK iralee of the scarcity
region, which, at the same time, was steadily msireg. However, the scarcity
region failed to maintain this improvement in tleeendary industrial WUE. A
deterioration with the vulnerability region in aafler 2013 can be observed.
Meanwhile, the improvement of the secondary indaistWUE in the stress and
abundance regions accelerated. The efficiency gapeen the five regions

subsequently narrows.
Compared with the efficiency of the primary andasetary industry, the

efficiency of the tertiary industry shows eviderftetences among the
echelons, which are categorized by the regional Vigeiformance. The first
echelon has only one region, the absolute scamifipn. This region’s WUE is
not only the highest between the five regions,ash much higher than the
national average WUE. The second echelon inclugesulnerability and
scarcity regions. At the very beginning, especiadlyhe year 2008 and before,
it is challenging to count the scarcity region aseanber of the second echelon.
Nevertheless, in 2009, its WUE improved signifit¢aaind the index value
surpassed that of the vulnerability region. Thedtiechelon includes the
abundance and stress regions, whose WUE indexsvaluee been relatively
poor and almost unchanged (Fig. 7d).
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Fig. 7. WUE index values at the overall level (a), thevaiy industrial level (b), the
secondary industrial level (c) and the tertiaryuisidial level (d) from 2005 to 2015.

3.2 Driving forces of regional water-use efficiency differences
Driving forces on the regional WUE are examinedeblasn industrial structure
(IS), population structure (PS), scientific anchtealogical levels, and
educational level. The evolution of the secondadustrial WUE is similar to
that of the overall WUE regarding industrial stiret Hence, the proportion of
the secondary industry in the three industriegliscted as the representative
indicator of industrial structure. The urbanizatrate indicator is chosen to
stand for population structure. Further, scientiind technological
development can affect the production process atdhevitably affect the
efficiency of water resources use. Input and ouitpditators are the two
aspects that are frequently used to assess thiogdment status of science and
technology. Therefore, the R&D input intensity (RD$ taken as input,
whereas the proportion of R&D personnel (RDP) dredadded value of the
high-tech production (HTP) is our output. Educagidiactors are also
considered when identifying the driving forces. Bamto the field of science
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and technology, educational funds (EF) are takeepoesent the input of
education. Given that the number of university stud may not reflect the
educational quality due to delayed graduation enedropping out, the number
of higher education graduates (HEG) is chosenpresent the education
output. Because only few provinces exist in steegbkscarcity regions and both
regions have similar water resources endowmenteptieg, the stress and

scarcity regions are combined into one region is dnalysis.
The effect of the indicators above on WUE indexueah the four regions is

reported in Table 3. Results illustrate that WU#eix values in different
regions are driven by different forces. RDII is tirdy dominant force in WUE
in the absolute scarcity region, while the stress scarcity region’s WUE
index values are also dominated by RDP and RDR. diliving forces in the
vulnerability region are PS and EF; both affectWigE index value
remarkably in this region. In contrast, the WUEdrd/alue in the abundance

region is more affected by RDII.
Table 3. Q-statistic of the driving forces on the WUE indexue in four regions.
IS PS RDII EF HTP RDP HEG
Absolutescarcity 0.2117 0.318¢ 0.492¢ 0.305¢ 0.217° 0.380! 0.213¢
Stressand Scarcity 0.052¢ 0.299! 0.480:¢ 0.211C 0.107¢ 0.482¢ 0.111*
Vulnerability 0.093¢ 0.492¢ 0.242¢ 0.487: 0.065¢ 0.344: 0.203¢
Abundance 0.210¢ 0.219¢ 0.331¢! 0.130¢ 0.192( 0.113: 0.207:

A common phenomenon can be observed in the resffiésts of science and
technology-related indicators are more signifiaamtregional WUE. Although
factor PS has not become the dominant driving forerost regions (except
the vulnerability region), it has a remarkable efffen the WUE index value of
the other three regions at an explanation lev8lla85%, 29.93%, and 21.96%,
respectively. Thus, its influence degree is higttenpared with the other three
aspects in most cases. Factor IS affects the abssitarcity and abundance
regions more than the other two regions. Amonddhe detected regions, the
driving forces had a balanced effect on the absdaércity and abundance
regions, whereas WUE in the stress and scarcitgmegvas driven less by the
population-related indicator. This result is simiia the WUE index value in

the vulnerabili#/ region. _ _ _
Notably, the effect of the indicators on the regloWUE index value is not

mutually independent. Thus, the interaction amawiicators may exert a
higher degree of influence on the regional WUE ndalue. The interaction
detection module of the Geodetector software cantify the driving effect of
the interaction between two drivers on WUE in d#éf& regions to a higher
degree. Based on the results of this module, tharemement effect of the
interaction among driving forces on the WUE indekue includes
bi-enhancement and nonlinear-enhancement. Enhantemeans that the
synergistic effect of the impact forces exceeddrteidual or cumulative
effect of the two forces. In the case of bi-factnfiancement, the effect of
interaction between factor and factory is higher than the maximum effect of

each factor. In the case of nonlinear enhancertteneffect of the interaction
between the two factors is higher than the surhaf individual effects.
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Assume that factox and factory are two driving factors of regional WUE, so
x|y is the interaction ok andy. Then values of effect can be represented by

E(x), E(y) andE(X)y). Further, bi-factors enhancement can be formulated
as: E(xy) >max(E(x) ,E(y)), and nonlinear enhancement can be formulated

as: E(xﬂ y) >E(x)+E(y). Table 4 reports the combinations of the top four

indicators with the largest WUE index value int¢i@e for each region.

Table 4 reports the interactions among the indredtmat are dominant of WUE
in different regions. It can be found that the aadors 1S, RDII, and HEG are
the essential indicators of dominant interactiohn/0JE in different regions.
Their mutual interactions and interactions withastimdicators are highly
influential. For example, RDMIHEG and I$)PS are dominant in the absolute
scarcity region. ISHTP and RDINHEG are dominant in the stress and
scarcity regions. WUE in the vulnerability regi@nainly affected by the
interactions of IBEF, RDINHEG, as well as ISHTP. WUE in the abundance

region is affected by the interactions betweenR®Il and RDINHEG.
An important common feature is also noticed: Theraction between RDII

and HEG has a significant impact on WUE in all foegions (absolute scarcity,
49.80%; stress and scarcities, 49.35%; vulnergb.38%; and abundance,
49.61%), reflecting the strong incentive effectexfhnology and education on
the improvement of regional WUE. The interactiongag the driving forces
that influence regional WUE exhibit an obvious cergence of water resource

endowment characteristics.
Table 4. Dominant interactions on the WUE index value iffielent regions.

Absolute Stressand .
scarcity Scarcity Vulnerability Abundance
Dominant RDII N HEG PSN HTE ISNHTF RDII N HEG
interaction 1 0.4980 0.5000 0.5000 0.496%
Single effect RDII 0.492¢ P<0.299:¢ IS 0.093¢ RDII 0.331¢
9 HEG 0.213¢ HTP 0.107¢ HTP 0.065¢ HEG 0.207:
Dominant RDII N HTF RDII N HEG RDII N HEG IS N RDII
interaction 2 0.4954 0.4935 0.4938 0.4957
Sinale effect RDII 0.492¢ RDII 0.480: RDII 0.242¢ 1S 0.210¢
9 HTF 0.217" HEGO0.111¢ HEG0.111¢ RDII 0.331¢
Dominant HTP N HEG ISN HTF RDII N RDF RDII N EF
interaction 3 0.406% 0.4920 0.4930 0.4334
Sinale effect HTF 0.217" IS 0.052¢ RDII 0.242¢ RDII 0.331¢
9 HEG 0.213¢ HTP 0.107¢ RDF 0.344: EF 0.130:
Dominant IS NPS RDP N HEG ISN EF EFN HEG
interaction 4 0.3797 0.4898 0.3188 0.3589
Single effect 1S0.2117 RDF 0.482¢ IS 0.093¢ EF 0.130:
9 P<0.318¢ HEGO0.111* EF 0.487: HEG 0.207:

Note: Notation represents bi-factors enhancement of interachlotation* represents
nonlinear enhancement of interaction.

4. Conclusions
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In this study, WUE and its evolutionary proces8@nprovinces in mainland China
from 2005 to 2015 are evaluated by the Super-USBMehunder a
multidimensional analytical framework. Three inmdicators, one desirable output
indicator and two undesirable output indicatorsenszlected for the assessment.
Driving forces of the regional WUE are also ideetif

The main findings are as follows: (1) At the natibaverage level, the overall and
industrial WUE index values are less than 1, inthcpthat the current WUE in
China needs improvements. The primary industrythasighest efficiency,
followed by the secondary and tertiary industrieshat order. The tertiary industry
surpasses the secondary industry owing to the fosnmelustrial restructuring,
upgrade, development, and maturity. (2) At theawegi level, water abundance,
vulnerability, stress, scarcity, and absolute stamgrouped according to the water
resources availability per capita, are all effitienterms of water use in the primary
industry. Secondary industrial water-use performneandhe regions of water
vulnerability, stress, and scarcity is better thaat of the tertiary industry in the
regions of water abundance and absolute scardityodgh short of water resources
in per capita terms, the water absolute scarcgiore located in north China
surrounding the Bohai sea, has developed with iifeekt WUE index value in the
four dimensions. (3) At the provincial level, proges in the eastern coastal region,
especially the south-eastern coastal region, Hae/@ighest WUE, whereas those in
the interior south-eastern and south-western relggme the lowest in relation. The
WUE index values for Beijing and Shanghai rankhia top five at all four
dimensions. Tianjin and Guangdong follow, with Wisilex values leading at the
overall, secondary industrial, and tertiary indiastevels. (4) Industrial structure,
R&D intensity, and higher education are the maiwindg forces of WUE. Their
mutual interactions and interactions with otherigatbrs are highly influential.
Among the driving forces, indicators for the urlzation rate and education
expenditure are the main forces causing the repifiarences in water-use

B%ﬂg{/rprﬁgﬁgé\tions for improving WUE arise fromeliindings of this research.

First, given the imbalanced and uncoordinated agreént of WUE in China, it is
important to implement a strategy of coordinateyioeal WUE development.
Second, WUE can be improved by exploiting the talieeffect wherein
advantages of high-efficiency areas spread to lffistency areas. For example, the
absolute scarcity region is surrounded by the stregion. The former has the
highest WUE, whereas the latter has the loweshifay a sharp contrast. This
phenomenon can be used as heuristic informatidnite the development of the
stress region and improve China’s overall WUE @ficy by stimulating the
absolute scarcity region. Third, the results ofidig forces identification indicate
that incentive policies should be designed to iasegnvestments in science and
technology, improve the quality of education, aptimize the industrial structure to,

in turn, positively affect WUE. B L
Future research should include models that cardahei infeasibility problem for

the fully ranked analysis of regional and indu$MAJE in China. Inter-industry
heterogeneity may be further considered duringrtez-industry analysis. Also,
assessment can be applied at a more microscoi; ech as the municipal level,
to offer a more accurate and precise picture ofégenal water use performance in
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China.
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