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Abstract: Alpine grassland is the typical vegetation 

in the eastern Qinghai–Tibetan Plateau, which has 

important ecological service functions, and also 

supports the development of alpine stock farming. In 

recent years, under both the natural and human 

disturbance, alpine grasslands in this area have 

appeared to different degrees of desertification. A 

diagnosis of the desertification degree serves as the 

basis for grassland ecological restoration. This study 

constructs a comprehensive index based on remote 

sensing called alpine grassland desertification index 

(AGDI) to monitor the areas and degree of 

desertification. The most relevant indicators of 

desertification, namely, vegetation fraction, 

aboveground biomass, soil moisture, and land surface 

temperature, were selected to establish AGDI. The 

geographical detector is used to reselect and assess 

these indicators. The results show that the overall 

verification accuracy of AGDI is 82.05%. In particular, 

the accuracy of identifying severe desertification is the 

highest. Our study confirms that the desertification of 

alpine grasslands in the eastern Qinghai–Tibetan 

Plateau is characterized by fragmentation. Thus, 

Landsat-8 OLI data with a spatial resolution of 30 m 

is more suitable than MODIS data for alpine 

grasslands desertification monitoring. The research 

results can provide a methodological reference for 
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monitoring desertification of alpine grasslands and 

other grassland regions in the world. 

 

Keywords: Desertification monitoring; Alpine 

grassland desertification index (AGDI); Geographical 

detector; Zoige county 

Introduction  

China has nearly 400 million ha of natural 

grasslands which occupy 41.7% of its territory and 

account for approximately 13% of the world's 

grassland area. However, 90% of China's available 

natural grasslands exhibit varying degrees of 

degradation, half of which are manifested in terms 

of reduced vegetative coverage, desertification, 

salinization, and other characteristics of moderate 

or severe degradation (Development Planning 

Department of Agriculture 2003). Grassland 

desertification is one of the most important aspects 

in the degradation context (Reynolds et al. 2007; 

Bestelmeyer et al. 2015; Qin et al. 2016). Grassland 

desertification indicates that natural grasslands 

have suffered from various degrees of damage, 

such as wind erosion, drought, and overgrazing, 

thereby turning the grasslands into a desert-like 

landscape (Li et al. 2013). At present, 20% of the 

world’s land area are threatened by desertification 

(Wang et al. 2016). Grassland desertification 

severely affects the balance of global grassland 

ecosystems, thereby resulting in water erosion, 

drought, and soil fertility decline. Accordingly, the 

desertification research field needs accurate 

monitoring and a diagnosis of the condition of 

desertification (Rubio and Bochet 1998; Huang and 

Siegert 2006; Sepehr and Zucca 2012). Over the 

years, remote sensing data and technology that offer 

extensive information and precise and rapidly 

updated data have been used widely in the grassland 

desertification research (Wang et al. 2010; Mansour 

et al. 2016; Wen et al. 2010; Zhang et al. 2019).  

Previous studies have used visual 

interpretation combined with image processing 

software to classify the types and levels of 

desertification (Kuang et al. 2002; Wang et al. 

2008; Li et al. 2013; Del Valle et al. 2014). Kuang 

et al. (2002) focused on land desertification 

investigation of the agriculture and graziery mixed 

area in the Duolun region of Inner Mongolia, and 

mainly used artificial interpretation by TM 

(Thematic Mapper) image. Li et al. (2013) used the 

1990, 2000, and 2010 Landsat images of Northern 

Tibet as bases to classify the main grassland 

landscape by hybrid classification method and 

analyze the characteristics of the landscape patterns 

and grassland degradation through landscape index. 

Visual interpretation and field surveys are the reliable 

method to obtain the result of grassland desertification. 

However, this method is time-consuming and 

laborious when monitoring large areas.  

The majority of related studies have focused 

on vegetation characteristics, such as, vegetation 

coverage (Gao et al. 2010; Rossi et al. 2019; Zhang 

et al. 2014), grassland productivity (Tsunekawa et 

al. 2005; Brinkmann et al. 2011), and aboveground 

biomass (Li et al. 2006), to evaluate desertification. 

With the development of remote sensing index, 

some studies have chosen vegetation indices 

related to desertification, such as normalized 

difference vegetation index (NDVI), enhanced 

vegetation index (EVI), ratio vegetation index 

(RVI), and net primary productivity (NPP), to 

evaluate the situation and dynamic changes of 

grassland desertification (Gao et al. 2010; Zhou et 

al. 2017). Gao et al. (2010) used MODIS-NDVI data 

to assess alpine grassland degradation between 

1981 and 2004 in Northern Tibet, and examined 

trends in grassland degradation and its response to 

climate variability. Zhou et al. (2017) selected net 

primary productivity (NPP) and grass coverage as 

indicators to analyze grassland degradation 

dynamics. And they designed a method to assess 

the driving force of grassland degradation based on 

NPP. These methods are easy to quantify and 

substantially maximize the advantages of remote 

sensing data. However, measuring grassland 

desertification solely by vegetation index has 

certain limitations because grassland 

desertification is the comprehensive result of the 

interactions of soil, vegetation, and other factors 

(Schlesinger et al. 1990). Thus, considering 

multiple characteristics to evaluate grassland 

desertification is a considerably scientific approach. 

Becerril et al. (2016) constructed an integrated 

desertification degree index (DDI) based on the 

NDVI–Albedo relationship, and evaluated the 

desertification of a semi-arid zone in Querétaro 

state. Lamqadem et al. (2018) developed DDI using 

the tasselled cap wetness (TCW) and tasselled cap 
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brightness (TCB) features, and used DDI to map 

the desertification degree of the central-southern 

region of Morocco. Although these studies have 

combined the remote sensing index of vegetation 

and soil, their ecological significance is unclear. 

That is, they have failed to prove that these indices, 

TCB and TCW, are directly related to grassland 

desertification. Evidently, constructing an index 

with clear ecological meaning is easy to understand 

and promote in other areas. 

The eastern margin of the Qinghai–Tibetan 

Plateau is a water conservation area and ecological 

barrier for some important hydrographic systems 

(e.g., Yangtze River, Yellow River, and Lancang 

River), characterized by a humid or semi-humid 

climate (Yuan et al. 2017; Zhang et al. 2019). 

Alpine grasslands are typical vegetation type on the 

plateau that have high yield and good quality and 

an important development area for alpine stock 

farming (Yu et al. 2016; Yue et al. 2018). The alpine 

grasslands on the Qinghai–Tibetan Plateau 

comprise 38% of the total grassland area in China 

(Zhao et al. 2012). In recent decades, the 

desertification of alpine grasslands has become 

serious, with a trend of reverse succession. 

Grassland coverage is decreasing, while the 

ecosystem fragility is increasing, thereby affecting 

the sustainable development of the stock economy 

and threatening the ecological security of the 

Yangtze and Yellow River source regions (Dong  

et al. 2010; Li et al. 2013). 

Given the preceding situation, this paper 

proposes an aggregative index called alpine 

grassland desertification index (AGDI) to quantify 

the degree of desertification in alpine grasslands. 

Four ecological indicators and geographical 

detector (See Section 2.3.1: Geographical detector) 

were used to construct AGDI. The current study 

aims to provide a methodological reference for 

monitoring alpine grassland desertification and 

identifying areas at risk of desertification. Accurate 

monitoring of alpine grassland desertification in 

Qinghai–Tibetan Plateau 

is important for grassland 

management and 

sustainable development 

of the stock economy. 

1    Materials  

1.1 Study area 

Zoige County is 

located on the eastern 

Qinghai-Tibetan Plateau, 

at the junction of China’s 

Sichuan, Gansu, and 

Qinghai provinces, 

between 32°56'- 34°19' N, 

102°08' -103°39' E (Figure 

1). Zoige has a total area of 

10436 km2 with an 

average elevation of 3500 

m above sea level, wherein 

76.12% of the area is 

covered by alpine 

grasslands (He et al. 2016). 

The climate of the Zoige 

grasslands is typical of 

alpine regions. The annual 

 

Figure 1 Geographical location of the study area and field sampling plots 
distribution. The Landsat 8 OLI (Operational Land Imager) image of the study area 
was obtained in May 2019 and was the RGB (red, green, blue) composite of Landsat 
bands 5, 4, and 3. The images on the right are the sampling photos of the varying 
degrees of desertification: (a) severe desertification (SD), (b) moderate 
desertification (MD), (c) light desertification (LD), and (d) non-desertification (ND). 
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mean temperature is 1.4°C and the average annual 

mean precipitation is 642.8 mm (mainly 

concentrated in June–August) (Shui et al. 2017). 

Zoige is dominated by alpine livestock farming as 

alpine grasslands provide forage for cattle or yaks 

by grazing or producing hay or silage. Zoige’ s plant 

growing period is from late March to early 

September. 

Zoige is an important part of the source area of 

the Yellow River. This county has an impact on the 

ecological environment construction and 

protection of the source area of the Yellow River, as 

well as the sustainable development of the entire 

Yellow River basin (Qiu 2016). However, Zoige 

experienced such problems as wetland shrinkage 

and grassland degradation because of the dual 

influence of natural environment change and 

unreasonable human activities (Hu et al. 2013). In 

the Zoige Basin, the degraded grasslands increased 

by 627 km2 from 1994 to 2009 (Yu et al. 2017). 

Accordingly, considerable attention has been 

provided to the desertification problem in the Zoige 

grasslands (Wang et al. 2015; Gou et al. 2016; 

Wang et al. 2016). We specifically choose Zoige as 

our study area owing to its special geographical 

location and economic advantages. 

1.2 Remote sensing data and preprocessing 

Landsat-8 OLI data (the main remote sensing 

data) were used in this study, with a spatial 

resolution of 30 m. Zoige is covered by four images, 

namely, path 131-row 37, path 131-row 36, path 

130-row 37, and path 130-row 36. We selected path 

131-row 37 for May 21, 2019, which was near the 

sampling time, owing to cloud coverage, image 

strip noise, measured data time, and other 

consideration of data quality. This image covered 

over 89% of the grassland area in Zoige, thereby 

meeting our research needs. 

Firstly, the Landsat-8 OLI data were subjected 

to a series of preprocessing, such as radiometric 

calibration, atmospheric correction, and cropping. 

To reduce the impact of clouds and the shadow 

they cast on the ground, a mask was created for the 

area covered by clouds in Zoige. Secondly, we 

obtained the Zoige grassland coverage map using 

the object-oriented automatic classification method. 

The use of field verification points verified this map, 

and the classification accuracy of grasslands 

reached 91%. Thirdly, three common vegetation 

indices were calculated: NDVI, EVI, and RVI. In 

addition, three characteristic variables, i.e., TCB, 

TCW, and tasselled cap greenness (TCG), were 

obtained using Tasseled cap transformation (Kauth 

and Thomas 1976). TCB reveals the bright soil with 

bare land and the absence of vegetation. TCW 

corresponds to soil moisture. Lastly, TCG 

represents the different types and densities of 

vegetation coverage (Zanchetta et al. 2016). 

We selected the MOD11A2 product (Land  

Surface Temperature/Emissivity 8-Day L3 Global 1 

km) to retrieve the land surface temperature 

(Hengl et al. 2012). We chose eight images in May–

June 2019 (i.e., May 1, May 9, May 17, May 25, 

June 2, June 10, June 18, and June 26), when the 

grasslands returned to green. Zoige is covered by 

tile h26v05. For the preprocessing of MOD11A2, 

the format conversion and re-projection were 

performed using the MODIS Conversion Toolkit. 

The projection coordinate system is defined as the 

Albers projection system. The maximum value 

composite method was used to remove outliers for 

the effects of clouds, atmosphere, and solar 

elevation angle. Moreover, we resampled the result 

using cubic convolution at 30 m to address the 

difference in spatial resolution. Then we calculated 

vegetation supply water index (VSWI) (Chu 2018) 

and temperature vegetation dryness index (TVDI) 

(Wang et al. 2016; Cao et al. 2017) for retrieving 

soil moisture.  

1.3 Field survey data and preprocessing 

A total of 39 sampling plots (30 m × 30 m) of 

varying degrees of desertification were surveyed in 

Zoige (Figure 1), in June 2019. Each of the plots 

was sampled with one 1 m × 1 m quadrat in the 

center. Soil moisture, land surface temperature, 

aboveground biomass and vegetation 

characteristics were measured in small quadrats. 

We used the soil analyzer TZS-ECW to measure the 

land surface temperature and soil moisture in 

quadrats. Moreover, we referred to China’s 

national natural grassland degradation, 

desertification, and salinization classification index 

standards to define the degree of desertification of 

plots as severe desertification (SD), moderate 

desertification (MD), light desertification (LD), and 

non-desertification (ND) (Ministry of agriculture 
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2003). Thereafter, 3–5 quadrats’ photos were 

taken vertically to calculate the vegetation coverage. 

Lastly, the aboveground plants in the quadrat was 

clipped, dried, and weighed to obtain the field 

aboveground biomass data. 

2    Methods 

2.1 Basic theory for constructing Alpine 
Grassland Desertification Index (AGDI) 

Loss of vegetation coverage and soil erosion 

are the most visible signs of desertification 

(Galindo et al. 2008). Therefore, AGDI integrates 

vegetation and soil characteristics of grassland 

desertification and is calculated using remote 

sensing index which is most relevant to the 

ecological significance of grassland desertification. 

Firstly based on the principles of scientificity, 

representativeness, and accessibility, we initially 

select four ecological indicators, namely, vegetation 

fraction (VF), aboveground biomass (AGB), soil 

moisture (SM), and land surface temperature 

(LST), which are most relevant to 

the symptoms of desertification. 

In the vegetation layer, VF is the 

most common indicator used to 

classify the degree of 

desertification. The worse the 

degree of desertification, the 

lower the vegetation coverage 

(Rossi et al. 2019). Grassland 

desertification changes the 

stability of the plant community. 

Consequently, AGB is reduced 

(Han et al. 2018). AGB is closely 

related to soil nutrient and 

grassland productivity, and can 

express plant height and 

aboveground productivity that 

cannot be shown by vegetation 

coverage (Jin et al. 2014; Zhang 

et al. 2016). In the soil layer, SM 

is the main ecological limiting 

factor of grassland desertification 

(Chang et al. 2017). Grassland 

desertification is accompanied by 

soil erosion, which leads to soil 

moisture decrease. Soil moisture 

is higher in non-desertification 

areas than desertification area (Zhang et al. 2016). 

Although rainfall permeates into the soil and 

increases soil moisture, the period before wet 

season was chosen to reduce the effects of 

atmospheric precipitation (He et al. 2015). LST 

shows the difference of underlying surface. Even at 

the same temperature, the land surface 

temperatures of bare soil and grasslands are 

different from each other (Chang et al. 2012). 

Second, ecological indicators were estimated. VF 

was calculated from NDVI using the dimidiate 

pixel model, and LST was derived from MOD11A2 

(Li 2003). To obtain AGB and SM, the remote 

sensing index relating the two indicators were 

combined with measured date to establish 

univariate regression models. The most suitable 

formula with remote sensing index is used to 

calculate the two indicators. Third, the estimation 

results and in situ measured data indicate that all 

indicators were discretized to four grades 

corresponding to the desertification degree. These 

indicators were selected again and weighed using a 

geographical detector to construct AGDI. Figure 2 

 

Figure 2 Flowchart of establishing alpine grassland desertification index 
(AGDI). NDVI: normalized difference vegetation index, VSWI: vegetation 
supply water index, EVI: enhanced vegetation index, TVDI: temperature 
vegetation dryness index, RVI: ratio vegetation index, TCB: tasselled cap 
brightness, TCG: tasselled cap greenness, TCW: tasselled cap wetness, VF: 
vegetation fraction, AGB: aboveground biomass, SM: soil moisture, LST: land 
surface temperature, and Geo-detector: geographical detector. 
 

User
线条
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shows the process for calculating AGDI. 

2.2 Estimation of the indicators 

2.2.1 Vegetation fraction (VF) estimation 

We input the photos taken by the quadrats 

into the software CAN-EYE (version 636), which is 

developed by the French National Institute of 

Agricultural Research and uses true color images to 

extract vegetation characteristics (including 

vegetation cover fraction, leaf area index, 

average leaf inclination an-gle, etc.) (Demarez et al. 

2008; Mougin et al. 2014). CAN-EYE extracted 

vegetation information using the RGB (red, green, 

blue) values on the sampling photos, and set 

specific threshold to obtain the vegetation fraction 

from the field survey. Thereafter, the 

dimidiate pixel model was introduced to calculate 

the simulated vegetation fraction: 

 

(1) 

where NDVIsoil is the NDVI value of the bare or 

non-vegetation covered area and NDVIveg is the 

NDVI value of the pixel completely covered by 

vegetation (i.e., NDVI value of the pure vegetation 

pixel). The key aspect of the model is how to 

accurately obtain the value of NDVIsoil and NDVIveg 

(Li 2003). The measured VF of the existing 

samples indicate that when VF = 0,  NDVI = 0.1, 

i.e., NDVIsoil = 0.1; and when VF = 1, NDVI = 0.7, 

i.e., NDVIveg = 0.7. Therefore, the simulated VF 

result was obtained and compared with the 

measured VF, as shown in Figure 3. The Y = X 

equation regression line, Pearson correlation 

coefficient (r), and root mean squared error (RMSE) 

were used to verify the accuracy between the 

simulated and measured values. 

 

(2) 

where  and  are the measured and simulated 

values, respectively, and n is the number of 

samples. Figure 3 shows the comparison between 

the field-measured values and simulated values. 

Comparing to the middle and low vegetation 

coverage samples, the high vegetation coverage 

samples deviated substantially from Y = X. Thereby 

indicating that the accuracy of the high vegetation 

coverage samples is lower than the other degree of 

vegetation coverage. All scatter plots were 

approximately distributed around Y = X. 

Furthermore, r = 0.97 between the measured and 

simulated values was highly correlated.  RMSE = 

0.10. The smaller the RMSE, the lower the 

difference between the true and the measured 

values. Thus, the research accuracy is satisfied. 

2.2.2 Aboveground biomass (AGB) 
estimation 

A total of 28 sampling points distributed 

equally in areas with the different desertification 

degree were selected randomly. To select a suitable 

index used to retrieve AGB, univariate regression 

models combined measured AGB with vegetation 

indices (NDVI, EVI, RVI) and TCG were 

established. Firstly, selecting the model entails 

focusing on whether the model passes the 

significance test. Secondly, the actual change of 

AGB in alpine grasslands and the coefficient of 

determination (R2) should be considered. Thirdly, 

the accuracy of the model should be verified. TCG 

was excluded because the models established by 

TCG and AGB did not pass the significance test. 

Table 1 shows the regression models that passed 

the significance test. The cubic regression equation 

was set aside because of its inconsistencies and 

extreme values, which do not meet the actual 

changes of AGB. At this time, the R2 of the 

logarithm and reciprocal regression model 

established by AGB–EVI was higher than the R2 of 

the model established by other indices. Therefore, 

 

Figure 3 Linear regression of the field-measured 
values (x-axis) and simulated values (y-axis) for 
vegetation fraction (VF) (n = 39). Simulated values were 
calculated from Equation (1), and field-measured values 
were calculated by software CAN-EYE (version 636). 
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the accuracy of the AGB–EVI logarithmic model 

and the reciprocal model were verified by the rest 

of the sampling points, as shown in Figure 4. 

Figure 4 shows that the measured and 

simulated values of the two models were around 

the Y = X line, except two points. From the Pearson 

correlation coefficient, the logarithmic model (r = 

0.95) was higher than the reciprocal model (r = 

0.92). A comparison of RMSE of two models shows 

that the logarithmic model (RMSE = 14.14 g/m2) 

was lower than the reciprocal model (RMSE = 

17.65 g/m2). The simulation result of the 

logarithmic model was close to the measured value. 

In summary, the AGB-EVI logarithmic regression 

model was selected to retrieve AGB. The regression 

equation is as follows: 

 

(3) 

2.2.3 Soil moisture (SM) estimation 

Univariate regression models were established 

using the measured SM of the 28 samples with 

TVDI, VSWI, TCB, and TCW. Among these models, 

the regression models of SM–TVDI did not pass 

the significance test. Thus, TVDI was excluded. 

Table 2 shows the remainder of the regression 

models. In this table, the models’ R2 established by 

SM–VSWI was higher than other models’ R2. 

Therefore, the accuracy of the SM–VSWI models 

were verified, as shown in Figure 5. 

Figure 5 shows that the points of the 

exponential model distributed around the Y = X 

Table 1 Regression models of Aboveground Biomass (AGB). Selected indices and models in estimating AGB. F: F-test 
Value; Sig.: Statistical significance. 

Models 
AGB–EVI AGB–NDVI AGB–RVI 

R2 F  Sig. R2 F Sig. R2 F Sig. 
Logarithmic model 0.406 25.32 0.000 0.375 22.23 0.000 / / / 
Reciprocal model 0.380 22.71 0.000 0.361 20.97 0.000 0.368 21.51 0.000 
Cubic model 0.485 11.00 0.000 / / / 0.510 12.14 0.000 

Notes: EVI = enhanced vegetation index; NDVI =normalized difference vegetation index; RVI =ratio vegetation 
index 

 
Table 2 Regression models of Soil Moisture (SM). Selected indices and models in estimating SM. F: F-test Value; 
Sig.: Statistical significance. 

Models 
SM–VSWI SM–TCB SM–TCW 
R2 F Sig. R2 F Sig. R2 F Sig. 

Linear model / / / 0.203 9.40 0.004 0.270 13.72 0.001 
Logarithmic model 0.522 40.34 0.000 0.375 22.23 0.000 / / / 
Reciprocal model 0.410 25.07 0.000 / / / 0.389 23.55 0.000 
Exponential mode 0.665 73.61 0.000 / / / 0.267 13.51 0.001 
Quadratic model / / / 0.230 11.08 0.002 0.358 10.03 0.000 

Note:  VSWI =vegetation supply water index; TCB= tasselled cap brightness; TCW =tasselled cap wetness. 
 

 

Figure 4 Linear regression of the field-measured values (x-axis) and simulated values (y-axis) for aboveground 

biomass (AGB) (n = 11). Simulated values were calculated based on the models of AGB–EVI (aboveground biomass -
enhanced vegetation index) in Table 2: (a) logarithmic model and (b) reciprocal model. 
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line were closer than those of the other models. 

However, the distribution of the other models was 

not good. For the Pearson correlation coefficient, 

exponential model (r = 0.8) > logarithmic model (r 

= 0.66) > reciprocal model (r = 0.57). For the 

comparation of RMSE, the exponential model 

(RMSE = 7.4%) < logarithmic model (RMSE = 

9.09%) < reciprocal model (RMSE = 10.03%) were 

considered. Hence, the SM–VSWI exponential 

regression model was selected to retrieve soil 

moisture. The regression equation is as follows: 

 

(4) 

2.3 Construction of Alpine Grassland 
Desertification Index (AGDI) 

2.3.1 Geographical detector 

This study used factor detector to select 

reasonable indicators and determine their weights 

to construct AGDI. Geographical detector (Geo-

detector) is a novel tool used to explore spatial 

stratified heterogeneity (SSH) and attribute the 

spatial patterns. This tool has been widely used in 

the factor detection studies of spatial 

heterogeneity(Du et al. 2016; Zhang and Zhao 2018; 

Bai et al. 2019). This tool can investigate the 

interaction between explanatory variables X1, X2, …, 

Xn to a response variable Y by the following 

geographical detector q-statistic: 

 

(5) 

where N and  are the number of units and 

variance of Y, respectively, in a study area. 

Population Y is composed of L strata (h = 1, 2, …, L). 

The strata of Y are a partition of Y, either by itself 

h(Y) or by an explanatory variable X, which is a 

categorical h(X). The value X should be stratified. 

If X is a numerical variable, then the number of 

strata L may be 2–10 or more, according to prior 

knowledge or a classification algorithm (Wang 

2017). In the factor detector, the q-statistic 

measures SSH of a variable Y, or the determinant 

power of an explanatory variable X of Y. The value 

of q is strictly within [0, 1]. Furthermore, q = 1 

indicates that Y is completely determined by X (i.e., 

X explains 100% of Y). Thereafter, q = 0 indicates 

no coupling relationship between Y and X (Wang  

et al. 2016). Geo-detector is good at analyzing type 

variables. The explanatory variable X has to 

approximate the categorical variable when X is a 

continuous variable. Geo-detectors can achieve 

high statistical accuracy with small sample sizes 

(<30). Moreover, the principle of geo-detector 

avoids multiple independent variable 

collinearity(Wang and Xu 2017). 

2.3.2 Construction of alpine grassland 
desertification index (AGDI) 

Firstly, the four degree of desertification in the 

field survey points (i.e., SD, MD, LD, and ND) 

were assigned the values 1, 2, 3, and 4, respectively. 

These values were introduced in the geo-detector 

as the dependent variable Y.  

Secondly, the simulated values of VF, AGB, SM, 

and LST were obtained using the preceding 

calculation. Given that these indicators are 

continuous values, every indicator was discretized 

as 4 grades based on the correspondence between 

indicators and each degree of desertification, as 

shown in Figure 6. These indicators, except LST, 

 

Figure 5 Linear regression of the field-measured values (x-axis) and simulated values (y-axis) for soil moisture (SM) 
(n = 11). Simulated values were calculated based on the models of SM–VSWI (soil moisture-vegetation supply water 
index) in Table 3. (a) logarithmic model, (b) reciprocal model, and (c) exponential model. 
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can locate different intervals in the diverse degree 

of desertification. Table 3 shows the specific 

intervals of classification. Similarly, each interval of 

indicator was assigned a value of 1, 2, 3, and 4 as a 

type variable into the geo-detector. Table 4 shows 

the result of q-statistic. 

Table 4 shows that LST has the weakest 

interpretation of AGDI among the four primary 

selected indicators. The value P > 0.05 indicates 

that LST does not pass the significance test. Thus, the 

indicator was excluded in the construction of AGDI. 

LST has no apparent correlation with the 

classification of AGDI in Figure 6(d). By contrast, 

VF, AGB, and SM had strong explanatory power for 

AGDI. The result of the q-statistic proved that 

using the three indicators to evaluate alpine 

grassland desertification has reference value. Lastly, 

 

Figure 6 The relationship between alpine grassland desertification index (AGDI) with the indicators: (a) 
relationship between AGDI and vegetation fraction (VF), (b) relationship between AGDI and aboveground biomass 
(AGB), (c) relationship between AGDI and soil moisture (SM), and (d) relationship between AGDI and land surface 
temperature (LST). 
 
Table 3 Indicators’ interval related to the desertification degree. 

Index 
Desertification degree 

Severe Moderate Light No 
AGDI 1 2 3 4 

Vegetation fraction (VF) 0～<0.1 0.1～<0.30 0.30～<0.6 0.6～<1.0 

Aboveground biomass (AGB) (g/m2) 0～<20 20～<65 65～<100 >100 

Soil moisture (SM) (%) 0～<11 11～<15 15～<24 > 24 

Land surface temperature (LST)(K) > 302.0 300.0～<302.0 298.0～<300.0 < 298.0 

Assigned value 1 2 3 4 

Notes: AGDI =alpine grassland desertification index.  

 

Table 4 The result of q-statistic by geographical 
detector 
 VF AGB SM LST 
q 0.924 0.908 0.907 0.167 
P 0.000 0.000 0.000 0.258 

Note: For the meanings of the abbreviations in the 
table head, please refer to the note of Table 3. 
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the “weighted voting” method was used to establish 

AGDI. The result of the q-statistic was used as 

weight. AGDI can be obtained using the following 

formula:  

 

 

(6) 

3    Results  

The spatial distribution of AGDI of study area 

is shown in Figure 7. This spatial distribution 

performed on the grassland coverage map was 

classified by Landsat-8 OLI. In the grassland 

coverage map, we mask clouds and other land 

cover types (including construction land, farmland, 

water, swamp, etc.) and exclude pattern spots of 

under 3 pixels to reduce the influence of noise. 

Confusion matrix is used to evaluate the accuracy 

of classification, which is a commonly used method 

for detecting the difference between classification 

result and in situ information(Foody 2002) (Tables 

5 and 6).  

For one class: A, User’s accuracy is the 

probability that the corresponding surface category 

is A when the classifier classifies pixels into 

category A, and is the probability of representation 

sampling classification points same as the actual 

situation on the ground. Producer’s accuracy is the 

probability that classifier can classify an image's 

pixels as A when the surface is class A, thereby 

indicating the probability that the ground sampling 

points are correctly classified. The overall accuracy 

is the probability that the classified results for each 

sample are consistent with the actual type of the 

corresponding area on the ground (Stuckens et al. 

2000). Comparing the calculated AGDI and in situ 

AGDI of samples, the overall accuracy is 82.05%. 

When the desertification degree is SD, AGDI fully 

recognizes it through the proposed method. The 

predicted MD are consistent with the in situ values. 

The accuracy of LD and ND is relatively low, and 

 

Figure 7 Spatial distribution of alpine grassland desertification index (AGDI) in the part of Zoige. SD: severe 
desertification, MD: moderate desertification, LD: light desertification, and ND: non-desertification. The blank areas 
include other land types and masks of clouds and cloud shadows. 
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the confusion is mainly on LD and ND. The main 

reason is that the remote sensing features of severe 

desertification land are distinct and easy to 

discriminate. However, the classification of light 

desertification/non-desertification land is 

susceptible to atmospheric conditions and other 

factors, such as thin clouds and mixed pixel. 

Table 7 shows the AGDI statistics. A total of 4 

489.79 km2 of grasslands in the study area are 

investigated after being masked. Severe 

desertification land (AGDI = 1) accounts for 0.26%, 

mainly distributed in Xiaman, Nenwa, and Maixi in 

the northwest of Zoige County. Moderate 

desertification land (AGDI = 2) comprises 1.72%, 

mostly in the outer edge of severe desertification 

land. Light desertification land (AGDI = 3) 

accounts for 36.96% of the total area, and most are 

concentrated in Axi, which is northeast of Zoige 

County. Non-desertification grasslands (AGDI = 4) 

have the largest proportion, which account for 

61.06%, and are distributed throughout the county. 

4    Discussion 

AGDI was constructed by integrating the 

characteristics of vegetation and soil in alpine 

grassland desertification. In some studies, the 

identification of desertification has generally relied 

on single indicators, such as VF, AGB, or net 

primary productivity, which do not fully indicate 

the characterization of grassland desertification 

(Zhang et al. 2014; Han et al. 2018). In addition, 

different from some studies that directly use 

remote sensing index to monitor desertification, we 

establish regression models between remote 

sensing index and ecological indicators (Becerril-

Pina et al. 2016; Lamqadem et al. 2018). Four 

ecological indicators are estimated by these models, 

which are most relevant to the signs of 

desertification. These ecological indicators discuss 

the ecological significance of AGDI and easy to 

promotes in other regions. Furthermore, geo-

detector is used to reselect and weigh the indicators 

constructing AGDI for the first time. Ideal results 

were obtained.  To revalidate the identification of 

SD, 32 points are randomly selected in a severe 

desertification area. The verification accuracy of SD 

is 100%, which means that this index is accurate 

for the identification of severe desertification land. 

Moreover, the AGDI results on both sides of the 

river are consistent with natural laws. Under the 

centrifugal force of water flow, the concave bank is 

eroded, and the eroded sediment is transported to 

the opposite bank. Figure 8 clearly shows the 

accumulation process on the inside of the convex 

bank. 

The area of pattern spots measuring less than 1 

km2 is calculated. The area measures 1,023.76 km2, 

which accounts for 22.72% of the resulting area. 

Among them, the area of pattern spots with less 

than 1 km2 for SD/MD accounts for over 90%. The 

desertification of alpine grasslands is characterized 

by fragmentation in the eastern Qinghai–Tibetan 

Plateau. The part of the pattern spots is difficult to 

be recognized by MODIS data or other low-

resolution images. From the above analysis, the 30 

m or higher resolution images are suitable for 

alpine grassland desertification monitoring in 

humid or semi-humid climatic conditions(Wen et 

al. 2010).However, The higher the spatial 

resolution of the remote sensing data, the lower the 

temporal resolution. In the comparative study of 

Table 5 Confusion matrix of the predicted Alpine 
Grassland Desertification Index (AGDI) and in situ 
AGDI. 

 In situ AGDI 

Predicted 
AGDI 

Degree Severe Moderate Light No Total 
Severe 11 2 0 0 13 
Moderate 0 8 0 0 8 
Light 0 0 6 2 8 
No 0 0 3 7 10 
Total 11 10 9 9 39 

 

Table 6 Accuracy evaluation of the image classification 
using the confusion matrix. 

Desertification 
degree 

User’s 
accuracy 

Producer’s 
accuracy 

Overall 
accuracy 

Severe 84.62% 100.00% 

82.05% 
Moderate 100.00% 80.00% 
Light 75.00% 66.67% 
No 70.00% 77.78% 

 

Table 7 Alpine grassland desertification index (AGDI) 
statistics in the study area. It showed the area of 
different degree of grassland desertification and the 
proportion of total statistical area. 

AGDI 
Desertification 
degree 

Area 
(km²) 

Proportion 
(%) 

1 Severe 11.65 0.26 
2 Moderate 77.44 1.72 
3 Light 1 659.49 36.96 
4 No 2 741.21 61.06 
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grassland desertification in multiple time series, 

remote sensing data is susceptible to the effects of 

cloud contamination and other poor atmospheric 

conditions. Although the spatial resolution of 

Modis data is low, MODIS data can provide highly 

frequent (daily) observations. The influence of 

clouds and atmosphere can be avoided by 

Maximum Value Composite method using multiple 

time series data. Therefore, Modis data have a 

greater advantage than the data with high spatial 

resolution when used for the comparative study of 

time series grassland desertification (Gur and 

Zalevsky 2011). 

In this study, AGDI has a few limitations. (1) 

The desertification state of a certain moment by 

one remote sensing image was studied. However, 

the state of grassland desertification is not stable. 

Thus, desertification will alleviate/aggravate under 

the comprehensive effects of climate and human 

activities. Multiple images for the dynamic 

monitoring should be used. At this time, adding 

climate and human factors according to the length 

of the study period should be considered. At a short 

time-intervals, the influence of climate and human 

factors is approximately the same (the shorter the 

time-interval is, the more similar), and the effect of 

climate and human factors can be relatively 

reduced. (2) The herbaceous swamp is susceptible 

to the spectral characteristics of the water body. 

This type of land is classified as SD/MD. Therefore, 

AGDI is applicable to alpine steppes or alpine 

meadows, and is not suitable for herbaceous 

marshes. (3) NDVI and AGB are closely related to 

plant growth. We need to have prior knowledge of 

the situation in study area, especially the plant 

growth period, to select the best time to obtain field 

data. To distinguish the characteristics of 

desertification and non-desertification area, we 

recommend use the images of vegetation growing 

season to study desertification. In addition, 

monitoring dynamic changes of desertification 

should compare the state of same plant period in 

different years. (4) For remote sensing images, the 

spectral characteristics are susceptible to sensors, 

 

Figure 8 Alpine grassland desertification index (AGDI) results on both sides of the river and corresponding remote 
sensing images in the study area. (a), (b) and (c) are the RGB (red, green, blue) composite of Landsat bands 5, 4, and 
3: the redder the color, the better the vegetation, and the closer the color to gray, the worse the vegetation. (d), (e) and 
(f) show the results of AGDI derived from (a), (b) and (c) respectively. SD: severe desertification, MD: moderate 
desertification, LD: light desertification, and ND: non-desertification. The blank areas include other land types and 
masks of clouds and cloud shadows. 
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clouds, and solar elevation angles. This study 

masked the clouds and the shadow of clouds, which 

to some extent affect the overall evaluation of the 

study area. The coverage of thin clouds entails a 

part of non-desertification land classified light 

desertification land. Moreover, mixed pixels 

relatively affect the accuracy of AGDI. Despite 

some limitations, the novel tool used in this study 

can provide valuable reference for grassland 

desertification monitoring.  

5    Conclusion 

This study proposes an index called Alpine 

Grassland Desertification Index (AGDI), which is a 

novel tool to monitor alpine grassland 

desertification and identify areas at risk of 

desertification. Vegetation fraction (VF), 

aboveground biomass (AGB), soil moisture (SM), 

and land surface temperature (LST) are selected to 

construct the comprehensive index, which are the 

most important characteristics of desertification in 

alpine grasslands. Regression models are used in 

the estimation of the four indicators, and the 

suitable remote sensing index are selected by 

regression analysis. Thereafter, a geo-detector is 

used to reselect and weight these indicators. LST is 

excluded because it had the weakest interpretation 

of AGDI.  

AGDI is introduced in Zoige County. The 

following conclusions are obtained. Geo-detector is 

used to construct grassland desertification index 

for the first time. Ideal results are obtained. The 

overall verification accuracy of classification is 

82.5%, and the accuracy of identifying severe 

desertification reaches 100%. Moreover, 

fragmentation distribution is the characteristic of 

alpine grassland desertification in the eastern 

Qinghai–Tibetan Plateau. Landsat-8 OLI data with 

a spatial resolution of 30 m are more suitable for 

desertification monitoring than MODIS data or 

other low-resolution images in this study. The 

findings are relevant for evaluating grassland 

desertification in the eastern Qinghai–Tibetan 

Plateau. Therefore, we can try to introduce AGDI in 

other grassland regions in the world. AGDI can be 

used to monitor the performance of grassland 

management policy. In addition, considering the 

development of animal husbandry in alpine 

grasslands, future efforts are needed to explore 

how grassland desertification affects animal 

husbandry economy, and the relationship between 

grassland desertification and grazing behavior. 
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