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a b s t r a c t

Issues on sampling procedure definition led numerous study
results to be biased and object of controversy. Choosing relevant
sampling design and number of samples is a difficult task when
wanted to set up or optimize a survey. The survey design choice
is very important to avoid bias and increase the survey cost-
efficiency. It can have a strong effect on the sample size needed
to achieve some targeted accuracy on results. And on the final
cost of the procedure.

The sequential process we expose here melt design based
and model based sampling theories. Its objectives are helping
practitioners defining a sampling design and a number of sam-
ples for their survey when inference to the whole population is
wanted. The main idea is to mathematically reconstruct the dis-
tribution of the surveyed population. Then assess and compare
cost-effectiveness of various sampling designs on this population.
This process allows setting predetermined level(s) of accuracy to
be reached in the targeted estimates and to take into account
previous relevant data. Results are an optimal sampling design
and an associated optimal sample size for a desired accuracy in
the results. This accuracy is so achieved without excess sampling.
Strength of this process is that it is based on simulations. This
allows trying a high number of combinations between sampling
design, sample size and desired level of accuracy. Sampling
design performances can thus be compared.
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The user can decide which combination is the best for his
survey and apply it for real. We discuss how to use available data
to improve the survey, from the case were several historical data
are provided to the case where no data are available.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Monitoring programs are tools used in environmental science in three main tasks: to detect a
hange into a system, to measure success or failure of management actions and to identify effects
f perturbations or disturbances (Legg and Nagy, 2006). Likens and Lindenmayer (2018) reviewed
he term ‘‘monitoring’’ in the ecological literature between 1985 and 2016 and more than 131000
rticles and numerous books were returned. Monitoring information is essential answering most
cological and environmental questions (Albert et al., 2010). For example they can be the basis for
estoration programs or for endangered species conservation.

Sampling is very common because exhaustive information cannot be collected for almost all the
ases. But its theory is complex and several environmental scientists are not trained to it. Thus,
rograms suffer from lack of details of problematic definition, hypothesis formulation, adapted
ampling design and so data quality (Legg and Nagy, 2006). Poor method has numerous undesirable
ffects that can lead to the failure of a monitoring program (Legg and Nagy, 2006). Issues with poor
esigns used in ecological studies often have led to significant controversy (Hayward et al., 2015).
t also means that it becomes difficult to evaluate management actions and results are not very
seful for decision making (Vos et al., 2000). For example it has not been possible to evaluate
he effectiveness of US 15 billion projects of rivers restoration all around US (37 099 projects)
ecause of poor experimental design and lack of rigorous monitoring (less than 10 percent of them
ndicated a form of assessment or monitoring of project efficiency) (Bernhardt et al., 2005). Roberts
1991) and Nichols and Williams (2006) deplore too many monitorings are ‘‘planned backward
n the collect now (data), think-later (of a useful question) principle’’. A forum (Hayward et al.,
015) wrote after conflicting results were published in high-quality scientific journal. It emphases
obust methods and appropriate experimental designs must be developed and used by practitioners,
voiding controversy in studies results.
The choice of a sample size and a sampling design is a very important step in the establishment of

survey. Representativeness is brought by the random property of the sampling design (Macdonald,
009; Sica, 2006), precision by collecting enough data through a substantial sample size (Lohr,
009). A substantial sample size will increase precision on population estimation but may also
ncrease the survey cost. This is particularly true in ecology where sampling on field necessitates
uman and/or expert resources, sometimes expensive gears (boats, trucks, etc.) differing than,
or example, in some cases in sociology where survey can just be a sample on the web. In
he great barrier reef monitoring (Kang et al., 2016), divers must have the necessary skills and
ualifications to do the monitoring and statisticians must curate the data. The practitioner has
o found a trade-off (Stehman and Overton, 1996) between a sufficient amount of sample, to
chieve a precise estimation, and a price that will be reasonable for financers. Before constructing
ny survey procedure, clear objectives about total sample size and estimator quality have to be
ixed. Priority can be given to maximize estimator quality (its accuracy) or minimize total sample
ize (Guillera-Arroita et al., 2010). No survey designs will be good for all purposes (Kenkel et al.,
990).
In ecology, the studied population is almost always a spatial population because species always

isplay spatial distribution. With new developments in statistics and geostatistics, a large amount
f probabilistic sampling designs was developed last decades (McDonald, 2014). Now, a significant
umber of them are available and the issue is that it may be very tricky to determine which one is
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better to use for each surveys. This is especially true because environmental scientists are not pre-
pared to this. Some environmental studies use non-probabilistic sampling designs to draw samples
from spatially distributed populations. Unfortunately, data gathered with a non-probabilistic design
can be biased (Albert et al., 2010; Levy and Lemeshow, 2013) because the random component is
not taken into consideration. No design-based inference and statistical studies could be done from
data collected with a non-probabilistic sampling design. Probabilistic sampling designs, displaying
a random property, must be used for design-based sampling. Kermorvant et al. (2019b) published a
review of probabilistic spatially balanced sampling designs and a tutorial to use them on R software.
Simple random sampling (SRS) design is one of the most commonly used survey design in ecology,
due to its ease of use and its flexibility. Systematic sampling (SS) design sets randomly the first
sample on studied population and then distributes the other equidistantly from each other. Spatially
balanced sampling designs are probabilistic designs that spread the sampling effort evenly over the
resource. The most popular of them is generalized random tessellation stratified (GRTS) (Stevens
and Olsen, 2004). It has many desirable features including a spatially balanced sample, design-based
estimators and the ability to select spatially balanced oversamples. Spatially balanced sampling
designs are particularly useful for environmental samplings because they produce good sample
coverage over the resource, have precise design-based estimators and they can potentially reduce
the sampling cost. GRTS is not the only spatially balanced sampling. BAS — Balanced acceptance
sampling (Robertson et al., 2013, 2017), HIP — Halton iterative partitioning (Robertson et al., 2018),
SCPS — spatially correlated Poisson sampling (Grafström et al., 2012) and LPM — Local Pivotal
Method (LPM) (Grafström, 2012) are also spatially balanced sampling designs. Financial constraints
are the main reason given for using qualitative (poor) methods (Legg and Nagy, 2006), which do
not guarantee survey success. Cost-efficiency of surveys is under scrutiny.

We are not the first team that is interested into cost-efficiency optimization of monitoring
programs. Field et al. (2005) also use simulation study to show that monitoring in environment can
be optimized by using power analysis. Their method permits to select a sample size and a number
of visits that maximize statistical power within fixed budget constraints. Power analysis are, for
now, able to be calculated only for simple random sampling design and so are not very relevant
when using a more advanced sampling design (i.e. spatially balanced sampling design). Spatially
balanced sampling designs are proved to be more efficient than simple random sampling (Robertson
et al., 2013; Brown et al., 2015; Grafström and Matei, 2018; Kermorvant et al., 2019b) and so
need fewer samples to detect same level of change between two survey seasons. We believe
that overestimation of sample size is probable in such cases. As long as power analyses are not
available for these advanced sampling designs, it is very tricky to use them when the purpose is
to compare their efficiency. Another team worked on an optimization framework for monitoring
biological invasions under global change (Vicente et al., 2016). Liberts (2013) explains how to obtain
high quality estimates of population from an artificial population data with low cost. Moore and
McCarthy (2016) integrate imperfect detection and different times spent in surveying by selected
sites. Another framework, aiming at optimizing monitoring networks of multi species monitoring
programs (Carvalho et al., 2016), permits to include a predetermined number of sites while reducing
the total survey costs. Rudders (2011) shows that we can evaluate sampling designs performance
fixing the level of sampling intensity (three different levels to estimate sea scallops abundance in
this case). The methodology is valid when the practitioner wants to know how much accuracy will
be achieved with the number of samples he can find.

The major challenge of this paper is to provide a sequential method permitting to choose optimal
sampling design and optimal sample size for a survey. First of all, the process takes into account
prior data. Prior knowledge of the studied area and the population can dramatically reduce the
uncertainty in the sampling estimate (Wang et al., 2012). Without this knowledge of the population
distribution, optimization of the survey can be very tricky. This knowledge is very relevant to
provide initial idea of quantification and spatial (and/or temporal) limitations of the survey area
(and/or duration). Secondly, these data will be the basis to compare several sampling designs to
choose the most efficient on this population. Rajabi and Ataie-Ashtiani (2014) define performance
( = efficiency) as the capacity of a design strategy to require fewer samples to reach a certain level
of accuracy. In the comparison of various sampling designs, efficiency can be viewed as a measure
of quality of these sampling designs (Brown, 2003).
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Important issues with this challenge are to keep an acceptable accuracy on estimation results and
mancipate from sampling fluctuations. Following this, we choose to define the ‘‘optimal sampling
esign’’ as the more efficient design between those assessed. The ‘‘optimal sample size’’ will be
he corresponding sample size. The developed process compares sampling designs efficiency and
etermines the most optimal of them. For each assessed sampling design, the method simulates a
arge number of samples (e.g >1000) of size and calculates reached accuracy on targeted estimate
or this. If this accuracy is not smaller, or at least equal, than the accuracy fixed by the user, a
reater is assessed. Once the fixed accuracy is reached, the associated sample size is selected as
ptimal sample size for this sampling design. As sampling designs perform differently following
he statistical population, optimal sample sizes are different following the used sampling design.
he sampling design that has the smaller optimal sample size is chosen as the optimal sampling
esign and must be applied on field with its associated optimal sample size.

. Theoretical framework

Let us denote Ω a finite statistical population composed N of elementary units ω. On a purely
patial research problem, statistical population would be the area of interest and an elementary
nit would be a point, a line or a polygon. On a temporal research problem, statistical population
ould be a time lapse and an elementary unit would be a punctual date or a time interval. Finally,
n a spatio-temporal problem, statistical population and elementary unit would be a combination
f both spatial and temporal features.
Let us consider Y a numerical statistical variable of interest unknown on all statistical units ω

f a spatial statistical population. We will note Y = ω1; ω2; ...; ωn all the possible values of Y on
pecific statistical units. We want to estimate a particular parameter of this variable. In this paper,
e will focus on the total parameter. For example, if we work on total of abundance, Y would be the
umber of individuals. Let us note T (Y ) on Ω the total of variable Y on the statistical population.
n sampling theory, we need to collect some information about on a sample of statistical units. We
ill note yω1; yω2; ...; yωn the values of Y sampled in one sample of size S. To estimate the interest
arameter on from a sample, we should then construct an estimator or choose between existing
nes.
In this paper, the Horvitz–Thomson’s estimator (Horvitz and Thompson, 1952) is chosen for our

otal parameter estimation example because it is the best linear unbiased estimator (BLUE) (Tillé,
011). Horvitz–Thomson formula gives a linear estimator of total from samples values, without bias
nd valid for all probabilistic sampling designs. Horvitz–Thompson estimator of total only depends
n number of statistical units in the population, number of samples and values taken by these
amples. Hence, the chosen statistical population may have an effect on final estimates and so must
e well defined at the beginning of the study. Values taken by samples are non-manageable and so
nly sample size can affect estimation.

. Sequential process

We are interested on finding the optimal sampling design and associated sample size for a survey
ith prior data.

.1. Step 1 - data available and reconstruct Ŷ on Ω

In the following we assume that Ω is a spatial domain. The entire distribution of Y variable on
is rarely known. For example, it is difficult to know the abundance of one species within its all

iving area. But, do we have some previous data on this space or not? And, if yes, what can we
o with such data? These questions are the beginning of our process. We will now detail the two
ases: data are available or they are not.
If previous data of Y were drawn with a probabilistic sampling design (design-based method),

andom ensures data independence. In this case estimates can be derivated directly from sam-

les values, without assumption on Y distribution (Petitgas, 2001). When data are not collected
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with a random process, a model of Y spatial structure need to be inferred. The estimate is so
model-based (Cochran, 1977; Petitgas, 2001).

Spatial Interpolation Methods (SIMs) are usually used to reconstruct this spatial field. Commonly,
SIMs are divided into three main categories: non-geostatistical interpolation methods, geostatis-
tical interpolation methods and combined methods. Li and Heap (2014) provide a review of 25
methods among SIMs and a decision tree to determine the most appropriate method depending
on the data user hold. To demonstrate our sequential process can be used with geostatistical and
non-geostatistical methods, we will provide two examples based on each these SIMs categories.
For non-geostatistical interpolation methods, we will use a regression model. For geostatistical
interpolation model we will use Nearest Neighbor Gaussian Process (Datta et al., 2016).

Non-geostatistical interpolation methods link data to exogenous variables known on though a
model (i.e. GLM, GAM, etc. ). In environmental studies, these models are the basis of the family
called ‘‘species model distribution (SDM)’’ (for further information see Guillera-Arroita, 2017). For
these methods, data does not require to be geo-referenced but, to be able to extrapolate, there must
be an establish link between Y values and exogenous variables X known on each statistical units
of Ω . Main difficulties are to construct the statistical model. Statistical units and variables X must
be independent. User must choose a distribution law and a link function. Then, goodness of fit to
data has to be checked and predictions on space must have a slight confidence interval (Gregoire,
1998). Problems may also rise when wanted to model from a qualitative variable and data are
unbalanced on different modalities. As with any modeling approach, the interpretation and the
quality of model output depend on the initial data set and whether the model assumptions are
met sufficiently (Guillera-Arroita et al., 2015).

A second type of SIMs available to reconstruct Y on Ω is geostatistical interpolation methods.
There is a large literature on this type of SIM but here we choose to focus on hierarchical
nearest neighbor Gaussian process (NNGP) models (Datta et al., 2016). The main advantage of
these methods is an affordable data computation time, even for large geostatistical datasets. This
is due to subsuming estimation of the model parameters, prediction outcome and interpolation.
NNPG models allow fast-approximated computation of the Gaussian Process (GP) likelihood on
large spatial data sets. The approximation starts by writing the GP likelihood under conditional
recursive form. The conditioning variables in each conditional density are then replaced by a much
smaller subset of the variables. Choosing the nearest neighbors to condition often constitutes a good
heuristic, hence giving the Nearest Neighbor Gaussian Process denomination.

When no data are available, a method is to construct a distribution model elsewhere and adjusted
onsite. Bayesian statistical models can also be used when no data are available (Choy et al., 2009). In
this case, prior information is obtained from expert knowledge. Initial model can be progressively
updated once data are available. Third solution would be to conduct a pilot study (see Fig. 1).

We choose ‘‘meuse’’ dataset from R package sp. It comprises four heavy metals measured in the
top soil in a flood plain along the river Meuse. You can find further detail here: https://cran.r-pr
oject.org/web/packages/gstat/vignettes/gstat.pdf. We will focus on the spatial distribution of zinc
concentration in soil (in ppm).

3.1.1. Step 1.1: Available data analysis
So applied to this problem, the statistical population ω is the Meuse river watershed. We are

interested on the zinc concentration parameter, previously called Y . 155 geo-referenced samples ωj
points were done and are available (whatever the way of drawing them). Fig. 2(a) presents their
spatial dispersion. Fig. 2(b) is zinc concentration density and Fig. 2(c) is log-transformation.

3.1.2. Step 1.2: Reconstruction of Ŷ on Ω

To reconstruct Ŷ on Ω , exogenous variable dist (previously called X) is available for all statistical
units ωj of Ω . The statistical model-based Ŷ ∼ X can be constructed. Requirement for statistical
model method is to have an exogenous variable X that can be linked to explain Y and available on
all statistical units of Ω . Modeling is easier when there is a linear effect between X and Y (third plot).
So here, data were log-transformed and root-squared transformed. The statistical model used here
(Fig. 3) is a linear model log(zinc ) = α +

√
dist + ϵ . The tab in Fig. 3 represents model summary.
i 0 i i

https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
https://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf


6 C. Kermorvant, S. Coube, F. D’amico et al. / Spatial Statistics 38 (2020) 100439

R
o

r
s
l
w
l
L
t

Fig. 1. Process to reconstruct Ŷ on Ω .

Fig. 2. Visualization of Y.

esiduals plot shows the model fit well data. Last map displays a prediction of zinc concentration
n Meuse watershed with the linear model.
We choose to use linear model for this example but we could have used other methods to

econstruct this random field. Theoretically, both the SIMs method lead to a prediction map, but
ome may have better predictive power. One way to evaluate models predictive power is by using
eave-one-out cross-validation index. Cross-validation is a model validation technique mainly used
hen model goal is prediction. Leave-One-Out (or LOO) is an exhaustive cross-validation. Each

earning set is created by taking all the samples except one, the test set being the sample left out.
OO cross-validation estimate of prediction error is the mean squared of the difference between
he observed value and the predicted one:

CVn =
1
n

n∑
j=1

(
yj − ŷj
1 − hj

)2

where hj is the diagonal element of the hat matrix. It tells how much influence an observation has
on its own fit. The more this index is close to 0, the more the model’s ability to predict Ŷ on Ω (in
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Fig. 3. Model fitting and spatial prediction (Leave-One-Out Cross-Validation estimate of prediction error = 0.1914).

ur case) is good. The distribution map of Ŷ on Ω is the basis of the following step of our sequential
rocess.

.2. Step 2 – simulations and sampling designs comparisons

Once the statistical population Ŷ on Ω is reconstructed, we can start assessing performances of
chosen sampling designs.

3.2.1. Step 2.1: One by one sampling design simulation study of quality
As shown previously, the quality of a given sampling design can be assessed using efficiency of

the corresponding estimator that depends on n. For a given sampling design, we will now show
how to find the sample size that will permit to reach a wanted efficiency on the total parameter
estimation. The same process will be applied to each sampling design selected by the user to be
assessed.

Several values of n are tested. For each value n, a large number (>1000) of simulations of
samples arrangements are computed following the idea of bootstrapping technique (Fontaine et al.,
2008). This permits to remove random sampling fluctuations. Then for each combination n × j
(one simulation) we calculate the estimate following the formula ˆTn,j and V ( ˆTn,j) (for the case
where we want to estimate a total) and use the mean of the 1000 simulations T̂n and V (T̂n). The
rocess is described step by step in the following (Fig. 4): (1) Simulate 1000 samples j for both
ncreasing sampling efforts n; (2) Values of samples j are values of corresponding statistical units
j on previously reconstructed population Ŷ ; (3) For all simulations j calculate ˆTn,j and V ( ˆTn,j);

(4) Calculate mean of the 1000 simulations T̂n and V (T̂n).
These steps have to be done for all assessed sampling designs.

.2.2. Step 2.2: Define optimal design and optimal sample size
For the previously assessed sampling designs, we have now T̂n and V (T̂n) depending on sample
ize. The decision process to choose nopt for each sampling design is based on an acceptable level
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Fig. 4. Simulation process.

Fig. 5. Process to assess optimal sampling design and sample size.

Table 1
Optimal sampling designs and optimal sample sizes for zinc survey on
Meuse watershed.

SRS SSS LPM

nopt 5 10 20 5 10 20 5 10 20
% 50 26 40 40 25 15 34 20 11

of accuracy on results estimates. Therefore, the user needs to set this level called L and calculate
margin of error with this level at all sampling size. To do so, we:

(1) Set the level L of accuracy to be reached on estimates; (2) Calculate margin of error MEn of
size L for all sampling size;

MEn =
2tα

√
V (T̂n)

n

T̂n
× 100

3) When margin of error MEn is under the level L fixed in 1), optimal sample size is nopt for this
ampling design at this level of accuracy. Among the sampling assessed designs, the one that needs
ewer samples than other to reach a same margin of error in total estimation is chosen as the
ptimal sampling design Fig. 5.
Meuse dataset is still used here. We assessed simple random sampling (SRS), systematic sampling

SSS) and local pivotal method (LPM) on the random field Ŷ previously created. We set three
ifferent levels of accuracy to reach on total estimator result: 5, 10 and 20 percent, from the more
o the less accurate (see Table 1).

LPM needs fewer samples than the other designs to achieve a same accuracy on total zinc
stimation, LPM is so the optimal sampling design for this resource. The optimal sample size
epends on the level of accuracy we want to reach on zinc total estimate. Once the number of
amples is determined, user can easily define the cost of his survey depending on travel costs, survey
imes, analysis time (etc.).

. Process illustration

Before publishing this sequential process, we developed and assessed it throughout an example
f manila clam stock monitoring program (Kermorvant et al., 2017, 2019a). In Arcachon day (SW
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Fig. 6. Data gathered during 2018 monitoring and 3 possible interpolations with NNGP.

rance), scientists and commercial fishermen have developed a monitoring survey to estimate clam
tocks to assist in implementing a sustainable management strategy. The survey design used for
hese surveys was a standard stratified random sampling (StRS). The survey has been undertaken
lmost every 2 years since 2006 (Caill-Milly et al., 2006, 2008; Sanchez et al., 2010, 2012, 2014). Each
urvey costs approximately e50 000, with funding provided by ∼20% of the commercial fishermen.
ue to shortfall in funds, this monitoring was not done in 2016 and could not be made up in 2017. To
void this once again, we optimized this monitoring based on previous monitored years. We found
hat using a Generalized Tessellation Random Sampling (GRTS) instead of a simple random sampling
ould enhance estimates of the survey or decrease the survey cost. And used GRTS sampling design
or 2018 survey.

.1. Data understanding and spatial field reconstruction

To illustrate our process, we will use Manila clam monitoring in 2018 (Sanchez et al., 2018).
uring this survey 533 samples were gathered with a Generalized Tessellation Random Sampling
GRTS). The statistical population Ω in this example is defined as the places where samples can
ffectively be done. The targeted parameters are total of biomass in g.m2. We use a hierarchical
earest neighbor Gaussian process model to interpolate the spatial field Y at spatial positions ωj. The
articularity of this Gaussian process is it follows a normal distribution with a recursive conditional
orm NNGP. As it includes a random component, any simulation is just a possible image of Ŷ among
lot. We ran the optimization process part from 3 among these different simulations (Fig. 6) to

llustrate the random property.
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Table 2
Optimal sampling designs and optimal samples sizes for the three
simulated fields (Sim1, Sim 2 and Sim 3) of Manila clam survey in
Arcachon Bay.

Sampling design

GRTS SS SRS

Sim 1 99 136 138
Sim 2 97 129 133
Sim 3 103 151 151

4.2. Survey optimization

Three sampling designs were assessed: generalized tessellation sampling (GRTS - Stevens and
lsen (2004)), systematic sampling (SS) and simple random sampling (SRS). We fixed the level of
ccuracy to 10%. The following table summarizes results.
The spatially balanced sampling design (GRTS) achieves desired accuracy with less samples than

he two others sampling designs. This means GRTS is the optimal sampling design for this survey.
ptimal sample size depends on the simulated field. Higher number of simulated field must be
reated to overcome this issue (Table 2).

. Discussion

Where to sample and how many samples have to be done is often over-looked in surveys,
esulting into non precise and non reproducible data-sets. Results of inadequate surveys can be
isleading and hazardous not only because they fail to answer to the study problem but also
ecause they can create the illusion that something useful was done (Peterman, 1990). Following
hese lacks of robust survey designs and sampling strategies (also highlighted by Hayward et al.
2015)), we construct a robust and reproducible process permitting sampling strategies’ results to
e non contentious. We assess our sequential framework on the monitoring of Manila clam resource
n Arcachon bay. By selecting a more performing sampling design for this survey, we could decrease
he number of samples of the overall survey (Kermorvant et al., 2017, 2019a).

Because sampling design efficiency depends on population properties, best sampling design and
ample size will vary between studied populations. Hence, a population could be i.i.d., spatial auto-
orrelated (SAC), spatially stratified heterogeneity (SSH), both SAC and SSH and these characteristics
ill modify our method results. For example, it is now proved that spatially balanced sampling
esigns (SBS) are more efficient than simple random sampling when the studied population in
SH (Stevens and Olsen, 2004; Barabesi and Franceschi, 2011; Grafström and Tillé, 2013; Robertson
t al., 2013; Kermorvant et al., 2019b). Furthermore, if co-variates are available, some SBS can
lso balance samples in this co-variates dimensions to gain in efficiency (Brown et al., 2015).
he use of a stratified strategy could also enhance the sampling design efficiency. The spatially
tratified heterogeneity (SSH) of a population can be tested by the stratified heterogeneity q
tatistic (Wang et al., 2016). This allows to construct good zoning that is critical to provide good-
uality estimates (Li et al., 2008). Then, to estimate mean values for each strata and for the global
opulation, the sandwich estimator would be appropriate (Wang et al., 2013).
We want to warn users of our method that is always risky to build one model on top of the

ther. The reconstructed distribution of Ŷ on Ω needs to be very representative of the targeted real
population. Especially because we know the interpolation model used to reconstruct Ŷ on Ω will
have uncertainties. If this is not taken into account in studies, method results may be biased or
false. For example, the simulations will under or over-estimate the needed sample size and can fail
to select the best sampling design. The created random field must be as close as possible of that
one encounters when starting to sample. A perspective of the manila clam example is to build a Ŷ
population even more representative than we currently do. We will enhance the present method
(by doing more simulations of the spatial field, calculate confidence intervals and use environmental

data) but also compare several SIMs methods to reconstruct this spatial field.

User
高亮
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We also want to discuss about the MEn formula when samples are non-normally distributed. MEn
epends on t-statistics and so fundamental assumptions are normal distribution and independence
f data, especially for small sample sizes. This could have an impact on the L parameter of MEn
ormula. There are various methods to deal with the normality issue. The most commonly used are
he method based on the Central Limit Theorem, the Bootstrap method and the back-transformation
ethod (for further information see Pek et al., 2017).
The process we presented here differs from already published ones because it allows taking

nto account prior knowledge of the population. One of its strength is that it is based on a
imulation study (Zurell et al., 2010) and so all possible strategies can be assessed, without excessive
xpenditures. Framework result is an optimal sample size by assessed sampling design for a desired
ccuracy in the results. However, the practitioner can define more than one a priori accuracy to be
eached in the estimate and compare sampling designs and sample sizes needed to achieve them.
s sample size and total survey cost are closely related, calculating the cost-effectiveness of several
ombinations is possible and the most appropriate one can be selected, before going on field. Having
he possibilities to assess a large amount of sampling designs, choosing the best one and finding
he optimal sample size are very relevant for studies where funds are often a limiting factor. In this
ense, we choose to use virtual ecology. They reproduce as close as possible the distribution of the
ariable of interest and so they can be used to compare sampling designs (Albert et al., 2010; Zurell
t al., 2010), without being forced to assess all of them on the field.

. Conclusion

We are convinced that our general process will be useful for scientists and managers. We
eveloped it keeping in mind that it must be adaptable to any survey and its special features.
t allows choosing the more efficient sampling design, leading in reducing sampling size and/or
ncreasing accuracy of results. This process can also be employed when attempting to develop a
ew monitoring, thus by selecting the best sampling design and the best sampling size from the
eginning.
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