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Abstract
PM2.5 pollution has emerged as a global human health risk. The best measure of its impact is a population’s PM2.5 exposure
(PPM2.5E), an index that simultaneously considers PM2.5 concentrations and population spatial density. The spatiotemporal
variation of PPM2.5E over the Beijing-Tianjin-Hebei (BTH) region, which is the national capital region of China, was investi-
gated using a Bayesian space-time model, and the influence patterns of the anthropic and geographical factors were identified
using the GeoDetector model and Pearson correlation analysis. The spatial pattern of PPM2.5E maintained a stable structure over
the BTH region’s distinct terrain, which has been described as “high in the northwest, low in the southeast”. The spatial difference
of PPM2.5E intensified annually. An overall increase of 6.192 (95%CI 6.186, 6.203) ×103 μg/m3 ∙ persons/km2 per year occurred
over the BTH region from 1998 to 2017. The evolution of PPM2.5E in the region can be described as “high value, high increase”
and “low value, low increase”, since human activities related to gross domestic product (GDP) and energy consumption (EC)
were the main factors in its occurrence. GDP had the strongest explanatory power of 76% (P < 0.01), followed by EC and
elevation (EL), which accounted for 61% (P < 0.01) and 40% (P < 0.01), respectively. There were four factors, proportion of
secondary industry (PSI), normalized differential vegetation index (NDVI), relief amplitude (RA), and EL, associated negatively
with PPM2.5E and four factors, GDP, EC, annual precipitation (AP), and annual average temperature (AAT), associated posi-
tively with PPM2.5E. Remarkably, the interaction of GDP and NDVI, which was 90%, had the greatest explanatory power for
PPM2.5E ′ s diffusion and impact on the BTH region.
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Introduction

PM2.5 pollution has emerged as a global human health risk
(Cohen et al. 2017; Heft-Neal et al. (2018); Lelieveld et al.
2015). PM2.5 concentrations constantly serve as a risk

indicator for a population’s exposure to air pollution (Hystad
et al. 2011; Zhong et al. 2013). However, this measure does
not take into account the heterogeneity of a population’s den-
sity. To solve this problem, Kousa et al. (2002) created a
revised measure to represent the population’s health risk due
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to PM2.5 exposure: a population’s PM2.5 exposure (PPM2.5E),
calculated by multiplying PM2.5 concentrations with popula-
tion density.

As a major metropolitan area of China, the Beijing-Tianjin-
Hebei (BTH) region has played an important role in Chinese
society and economy, containing about 10% of the total pop-
ulation and about 9% of the gross domestic product (GDP) of
China. As a consequence of its population density and activ-
ity, the air pollution in the BTH region has created a crucial
environmental problem (Yan et al. 2018) and makes BTH the
most PM2.5-polluted area in China (Wang et al. 2014).
Coupled with the high population density in its urban areas,
especially in Beijing and Tianjin, the PM2.5 problem is grave-
ly serious, yet few researchers have studied the spatiotemporal
trends, determinants, or impact factors of PPM2.5E, even
though some studies have focused on PM2.5 concentrations
over the BTH region.

Within the existing literature, Yan et al. (2018) used spatial
clustering analysis based on Moran’s index to explore the
space-time evolution of PM2.5 concentrations over the BTH
region. Huang et al. (2018) studied the critical factors on
PM2.5 concentrations in the BTH region. Zhao et al. (2020)
employed a random forest model to estimate the daily PM2.5

concentration with a 0.01° × 0.01° spatial resolution over the
BTH region. Shen and Yao (2017) roughly analysed the spa-
tial pattern of PM2.5 concentrations and PPM2.5E in the four
urban agglomerations of China in 2014, and calculated the
Pearson correlation coefficient (PCC) between GDP and
PM2.5 concentrations, PPM2.5E, respectively. Wang et al.
(2019) and Ni et al. (2018) also explored the spatiotemporal
variation of PM2.5 concentrations in the BTH region.

However, given the advantages of the PPM2.5E index and
limited research on spatiotemporal trends and determinants of
PPM2.5E in the BTH region, our study employed a Bayesian
spatiotemporal model and GeoDetector model to investigate
the space-time evolution and determinants of PPM2.5E in the
BTH region, based on remotely sensed data of PM2.5 concen-
trations, population density, and 2015 yearbook statistics data
at the county level.

Methods

Study area

The Beijing-Tianjin-Hebei (BTH) region was chosen as the
study area for several reasons. Beijing and Tianjin are interna-
tional megalopolises that serve as the political and economic
centre of China. This area is located in North China (Fig. 1),
between 36° 42′–40° 08′ N and 114° 54′–117° 46′ E, and
covers a land area of about 218 thousands km2 with approxi-
mately 1.1 hundred million inhabitants (China, the data of the
Sixth Population Census, 2010). As a consequence of this size,

population density, and importance, the BTH region faces the
most severe environmental problems in China and has been
targeted to be developed into an “environmental improvement
demonstration region” (Chen et al. 2018; Gao et al. 2014).

Materials

The first dataset used in this research included remotely
sensed annual average PM2.5 concentrations with a spatial
resolution of 0.1 ° × 0.1° (~ 10 km × 10 km). The remotely
sensed PM2.5 data products were produced in three steps by
van Donkelaar’s team (van Donkelaar et al. 2015, 2016).
Firstly, the aerosol optical depth (AOD) data were retrieved
from multiple satellite products, the MODerate resolution
Imaging Spectroradiometer (MODIS), the Multiangle
Imaging SpectroRadiometer (MISR), and the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS). Secondly, the
GEOS-Chem chemical transport model (http://geos-chem.
org) was used to simulate the spatiotemporally varying
geophysical relationship between AOD and PM2.5

concentrations based on their relative uncertainties
determined by the ground-based sun photometer
(AERONET) observations. And then the multiple retrieved
AOD data were combined with the GEOS-Chem simulations.
Thirdly, the bias in the annual mean of these geophysically
based satellite PM2.5 was predicted by the geographically
weighted regression (GWR) model. The details and validation
of the dataset can be found in the related references (van
Donkelaar et al. 2015, 2016).

The second dataset included a global population density
data whose spatial resolution was 2.5′ × 2.5′ (~5 km × 5 km)
in 2000, 2005, 2010, and 2015 (Center for International Earth
Science Information Network - CIESIN - Columbia
University 2017). This population density dataset was consis-
tent with national censuses and population registers as
rasterized data to facilitate data integration. The continuous
yearly population density data of the BTH region from 1998
to 2017 were obtained by the linear interpolation method (van
Donkelaar et al. 2015). The spatial resolutions and projected
coordinate system of remotely sensed annual PM2.5 concen-
trations were adjusted in accordance with the population den-
sity dataset with a spatial resolution of (2.5′ × 2.5′, ~5 km ×
5 km) while the BTH region’s PPM2.5E was calculated
through multiplying the PM2.5 concentrations by the popula-
tion density in the same spatial lattice unit.

The third datasets were the influencing factors, which
included two categories of data: human activities and nat-
ural environmental factors. The former included three co-
variates: gross domestic product (GDP), proportion of the
secondary industry (PSI), and energy consumption (EC).
EC was represented with nightlight remote sensing data.
GDP and PSI were collected from the provincial statistical
yearbook of the BTH region in the corresponding year.
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The yearbook contained six covariates: annual precipita-
tion (AP), annual average temperature (AAT), normalized
differential vegetation index (NDVI), relief amplitude
(RA), annual relative humidity (ARH), and elevation
(EL). The meteorological data (AP, AAT, and ARH) were
downloaded from the Website of China (http://data.cma.
cn/site/index.html). RA was calculated with the standard
deviation of elevation divided by the mean value of
elevation in the BTH region. The lattice data of the
e l eva t ion and NDVI in the BTH reg ion we re
downloaded from the Resource and Environment Data
Cloud Platform (http://www.resdc.cn).

Bayesian space-time model

A Bayesian space-time model (BSTM) (Li et al. 2014)
was employed in our study to investigate the spatiotem-
poral patterns of PPM2.5E in the BTH region from 1998 to
2017. The BSTM, which integrates the Bayesian hierar-
chical model and spatiotemporal interaction model, can
decompose the intricate space-time process to three com-
ponents: overall spatial trend, overall temporal trend, and

local trend (Bernardinelli et al. 1995; Li et al. 2014). The
PPM2.5E can be calculated as follows (Peng et al. 2016):

Rit ¼ Θit*Ωit ð1Þ

Rit represents the PPM2.5E value (×103μg/m3 ∙ persons/
km2) in the ith spatial unit in the tth year.Θit andΩit are annual
PM2.5 concentrations and population density in the ith spatial
unit in the tth year. Considering that PPM2.5E is a continuous
variable, the likely distribution of the observed PPM2.5E was
assigned in this way:

yit∼Normal ηit;σ
2
y

� �
I 0;ð Þ∀PPM2:5E observed data ð2Þ

where yit represents the observed PPM2.5E of the ith pro-
vincial area in the tth year, ηit represents the corresponding
mean values, σ2

y is the corresponding variances of yit, and I(0,)
denotes the range of greater than zero. The space-time process
model of PPM2.5E in the BTH region from 1998 to 2017 can
be expressed with the following:

ηit ¼ γ þ Si þ K0t þ vtð Þ þ kit þ ϵit ð3Þ

Fig. 1 Geographical location of
the study area
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∀i∈ spatial domain ∀t∈ time domain: 1998–2017

γ∼Uniform −∞;þ∞ð Þ ð4Þ
Si∼CAR:Normal adj:Syi ; adj:Sni ; adj:Wi; τ

2
s

� � ð5Þ
ki∼CAR:Normal adj:Syi ; adj:Sni ; adj:Wi; τ

2
k

� � ð6Þ
ϵit∼iid Normal 0;σ2

ϵ

� � ð7Þ

where γ, whose priors used non-informative prior distribution,
represents the basic level of PPM2.5E over the BTH region from
1998 to 2017, Si represents the common spatial relative magni-
tude of the PPM2.5E in the ith spatial unit, and (K0t + vt) de-
scribes the overall trend of the PPM2.5E over the BTH region
from 2013 to 2017. The parameter vt describes the non-linear
variation of the overall trend, and its prior was assigned with
Gauss distribution. The prior distributions of the parameter of
the overall spatial relative magnitude and the local trend, Si, ki,
were assigned using the Besag York Mollie (BYM) model
(Besag et al. 1991) and integrated using a conditional
autoregressive (CAR) normal prior describing the spatial struc-
tured and unstructured effects, denoted by CAR. Normal(.) in
formulas (5) and (6). The terms adj:Syi , adj:Sni , and adj. Wi

stand for the spatial adjacency units, numbers, and weights,
respectively. The spatial adjacency relationship adopts the
first-order “Queen” adjoining form. The term ϵit represents
the Gaussian random effects, whose prior distributions were
assigned with normal distributions. The prior distributions of
the reciprocals of all variances (i.e. 1=σ2

y and 1=τ2s , 1=τ
2
k and

1=σ2
ϵ ) were assigned with Gamma distribution.
Bayesian inferences in this research were conducted in

WinBUGS 1.4 (Lunn et al. 2000). All parameters’ posterior
distributions of the model were estimated by Markov chain
Monte Carlo (MCMC) simulations. The convergence of
Bayesian inferences was evaluated by the Gelman-Rubin sta-
tistical coefficient (Gelman and Rubin 1992); the closer the
coefficient is to 1.0, the better the convergence is. The
Gelman-Rubin coefficients were less than 1.03 for all
parameters.

GeoDetector model

The GeoDetector model was first presented by Wang et al.
(2010) in 2010. The q-statistic value estimated from the

GeoDetector model can measure the degree of spatial strati-
fied heterogeneity (Wang et al. 2016). The idea behind the
GeoDetector model is that two variables would be (linearly
or non-linearly) coupled in strata if one causes another or if
there is association with each other. The difference between
the GeoDetector model and the ordinary linear regression
model is that the former will not only investigate the non-
linear association but also the interaction effects between var-
ious variables (Yang et al. 2018). The magnitude of the q-
statistic value can quantify the influencing power of the single
factor or interaction among the different factors. The q-statis-
tic value, q, can be calculated by the following formula (8):

q ¼ 1−
∑
L

h¼1
∑
i¼1

Nh

Y hi−Yh

� �2

∑
N

i¼1
Y i−Y

� �2
� 100%

¼ 1−
∑l

h¼1Nhσ2
h

Nσ2
� 100% ð8Þ

where N is the number of the spatial lattice pixels over the
BTH region stratified into the h = 1, 2,…, L stratum according
to influencing factors, Xs; stratum h includes Nh spatial statis-
tical pixels; and Yi and Yhi denote the PPM2.5E of the ith pixel
and in stratum h of the influencing factors, Xs, separately. Y
and σ2 represent the common mean and variance of PPM2.5E

over the BTH region. The stratum mean and variance, Yh and
σ2
h, can be expressed as follows:

Yh ¼
∑
i¼1

Nh

Y hi

Nh
; σ2

h ¼
∑
i¼1

Nh

Y hi−Yh

� �2

Nh
ð9Þ

where the q-statistic value is between 0 and 100%. The larger
the q-statistic value is, the stronger the influence of variable X
on Y.

The q-statistic value was calculated based on the cross-
classified stratum of two different factors: X1 and X2,
q(X1∩ X2). This value can identify the interaction effects of
X1 and X2 on the dependent variable, Y. The GeoDetector
model provides the judging rules to assess the types of effects
the interaction of X1 and X2 have on Y (Table 1) (Wang and
Hu 2012; Wang et al. 2010; Yang et al. 2018). The model can

Table 1 The interactive
categories of two factors and the
interactive relationship

Judging rules Types of the interaction effects

q(X1∩ X2) < Min (q(X1), q(X2)) Non-linearly weakened

Min(q(X1), q(X2)) < q(X1∩ X2) < Max (q(X1), q(X2)) Univariate non-linearly weakened

q(X1∩ X2) > Max (q(X1), q(X2)) Bivariate enhanced

q(X1∩ X2) = q(X1) + q(X2) Independent

q(X1∩ X2) > q(X1) + q(X2) Non-linearly enhanced
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also identify whether the two factors, X1 and X2, weaken or
enhance the influence on Y. The interaction effects can be
explained as five types of interactive relationships.
Specifically, the interaction effect can be identified as non-
linearly weakened if the interaction q-statistic value, denoted
as q(X1∩ X2), is less than the minimum of q(X1) and q(X2);
as univariate non-linearly weakened if q(X1∩ X2) is between
the minimum and maximum of q(X1) and q(X2); as bivariate
enhanced if q(X1∩ X2) is greater than the maximum of q(X1)
and q(X2); as independent if q(X1∩ X2) is equal to the sum of
q(X1) and q(X2), q(X1) + q(X2); and as non-linearly enhanced
if q(X1∩ X2) is greater than q(X1) + q(X2).

Results

Descriptive statistics of spatial PPM2.5E distribution

Generally, the spatial pattern of PPM2.5E maintained a stable
structure from 2000 to 2015. However, an increase occurred
in several cities, including Beijing, Tianjin, and Shijiazhuang.

Figure 2 shows the geospatial distribution of PPM2.5E in the
BTH region in 2000, 2005, 2010, and 2015. Five cities
(Beijing, Tianjin, Baoding, Shijiazhuang, and Handan) expe-
rienced PPM2.5E with greater than 1000×103 μg/m3 ∙ persons/
km2 in 2000, and PPM2.5E in Tangshan and Xingtai also
exceeded 1000×103 μg/m3 ∙ persons/km2. In addition, the
mean and maximum of PPM2.5E increased from 23.37×103

and 1643.79×103 in 2000 to 42.02 ×103 and 2744.95 ×103 μg/
m3 ∙ persons/km2 in 2015. Likewise, the spatial heterogeneity
of PPM2.5E over the BTH region increased from 2000 to
2015, and the coefficient of variation (CV) increased from
2.90 in 2000 to 3.32 in 2015.

Spatiotemporal trends

Overall spatial trends

Figure 3 illustrates the estimated common spatial relative
magnitude. This calculation involves the posterior median of
the parameter, exp(Si), which directly quantifies the PPM2.5E
magnitude in the ith spatial pixel relative to the average level

Fig. 2 Geospatial distribution of
PPM2.5E in the Beijing-Tianjin-
Hebei area in 2000, 2010, and
2015
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over the BTH region, namely the PPM2.5E of the ith spatial
pixel, times the average level over the BTH region. Generally,
the common spatial pattern of the level of PPM2.5E over the
BTH region exhibited a distinct geographical feature, de-
scribed as “high in the northwest, low in the southeast”.
Beijing is the largest area in the region with a common spatial
relative magnitude of PPM2.5E that is greater than 5.0. The
northern two cities, Chengde and Zhangjiakou, have the low-
est level of PPM2.5E among all 13 cities. Their corresponding
common spatial relative magnitudes are all less than 3.0. In
addition, the maximums of the common spatial relative mag-
nitude of PPM2.5E in Beijing, Tianjin, and Shijiazhuang are
47.27 (45.40, 49.12), 29.79 (22.28, 37.45), and 31.35 (24.53,
38.24), respectively.

Overall and local trends

The overall trend, K0, estimated by the BSTM was 6.192
(95% CI 6.186, 6.203) ×103 μg/m3 ∙ persons/km2 per year.
The local trends of PPM2.5E in each pixel over the BTH re-
gion, ki, were estimated by the BSTM. Figure 4 shows the
local trends of PPM2.5E over the BTH region from 1998 to

2017, including the posterior medians of the parameter, ki
(×103 μg/m3 ∙ persons/km2 per year), estimated from the
BSTM. The results show that the spatial structure of the local
trends is similar to that of the common spatial relative magni-
tude, namely “high in the northwest, low in the southeast”.
The highest increase of PPM2.5E occurred in metropolises:
specifically, Beijing, Tianjin, Shijiazhuang, Baoding, and
Tangshan. Furthermore, local trends greater than 50.0 ×103

μg/m3 ∙ persons/km2 per year only occurred in Beijing and
Tianjin, and one greater than 53.0 ×103 μg/m3 ∙ persons/km2

per year appeared only in Beijing. Thus, the maximal local
trend, 91.76 ×103 μg/m3 ∙ persons/km2 per year, emerged in
Beijing. In contrast, the urban areas in Chengde, Zhangjiakou,
Hengshui, and Cangzhou experienced a smaller increase in
PPM2.5E.

Influencing factors

Univariate analysis

This paper investigated the influence factors of PPM2.5E over
the BTH region using the GeoDetector model. Two categories

Fig. 3 The common spatial
relative magnitude of PPM2.5E
over the BTH region, including
the posterior medians of the
parameter, exp(Si), estimated
from the BSTM
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of influence factors, human activities and natural environmen-
tal factors, and nine proxy variables (Figure 5) were studied.
Table 2 lists the results of univariate analysis estimated by the

GeoDetector model. In general, the economic factors exerted
greater influence than the natural environmental factors. With
the exception of PSI, the q-statistic values of GDP and EC

Fig. 4 The local trends of
PPM2.5E over the BTH region
from 1998 to 2017, including the
posterior medians of the
parameter, ki (×10

3 μg/m3 ∙
persons/km2 per year), estimated
from the BSTM

Population's PM2.5 Exposure

Human activities Natural environmental factors

Gross domestic product 

(GDP) (X1)

Proportion of secondary 

industry (PSI) (X2)

Energy consumption

(EC) (X3)

Annual precipitation

(AP) (X4)

Relief amplitude 

(RA) (X7)

Annual average 

temperature (AAT) (X5)

Annual relative 

humidity (ARH) (X8)

Normalized 

differential vegetation 

index (NDVI) (X6)

Elevation (EL) (X9)

Fig. 5 Diagram of the influencing
factors covering the two
categories of variables
represented by nine proxy
variables
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were greater than those of all the natural environmental fac-
tors. In particular, among the nine influence factors, GDP had
the strongest explanatory power for PPM2.5E, with a corre-
sponding q-statistic value of 0.76 (P < 0.01). EC and EL
followed GDP in this regard, with q-statistic values of 0.61
(P < 0.01) and 0.40 (P < 0.01), respectively. The bottom three
weakest influence factors were PSI, AP, and ARH, whose
relevant q-statistic values were 0.19 (P < 0.05), 0.26
(P < 0.05), and 0.28 (P < 0.05), respectively.

To identify the relationship between the nine influencing
factors and PPM2.5E over the BTH region, the Pearson

correlation coefficients (PCC) between PPM2.5E and the nine
factors (Fig. 6) were studied. The PCC of PSI (− 0.15), AP
(0.26), and ARH (0.02) were all less than 0.30, indicating that
the linear associations between PPM2.5E and the two factors
were weak. This result is consistent with that of the
GeoDetector model. Moreover, PSI, NDVI, RA, and EL as-
sociated negatively with PPM2.5E, whereas GDP, EC, AP,
and AAT associated positively with PPM2.5E. A comparison
of the PCC and GeoDetector model results shows that the q-
statistics values of the GeoDetector model are greater than the
PCCs of the Pearson correlation analysis. However, the

Fig. 6 The Pearson correlation
coefficient between PPM2.5E and
the nine influencing factors over
the BTH region

Table 2 The results of univariate
analysis estimated by the
GeoDetector model for influence
factors

Factors Proxy variables q-statistics values

Economic factors Gross domestic product (GDP) 0.76 (P < 0.01)

Proportion of secondary industry (PSI) 0.19 (P < 0.01)

Energy consumption (EC) 0.61 (P < 0.01)

Natural environmental factors Annual precipitation (AP) 0.26 (P < 0.01)

Annual average temperature (AAT) 0.35 (P < 0.05)

Normalized differential vegetation index (NDVI) 0.34 (P < 0.05)

Relief amplitude (RA) 0.30 (P < 0.05)

Annual relative humidity (ARH) 0.28 (P < 0.01)

Elevation (EL) 0.40 (P < 0.05)

Environ Sci Pollut Res

User
高亮



influencing patterns of the two methods are coherent with
each other. Regarding ARH, although the PCC is 0.02, the
q-statistic value is 0.28, implying that ARH associates non-
linearly with PPM2.5E.

The interactive influences of the nine factors

Through univariate analysis, the interactive influences of the
nine factors were revealed by the GeoDetector model. The
results showed that there were only two types of interaction
effects: bivariate enhanced and non-linear enhanced. Figure 7
illustrates the results of the interactive q-statistics values with
non-linear enhanced interactive effects from two different fac-
tors that were estimated by the GeoDetector model. Figure 8
shows the network diagram of the interactive factors whose
interactive q-statistic values were greater than 0.70. The re-
sults show that there are seven pairs of two factors with inter-
active q-statistic values greater than 0.80: GDP and NDVI,
PSI and EC, GDP and RA, AP and NDVI, EC and ARH,
NDVI and ARH, EC and AAT. In addition, there are seven
pairs of two factors with interactive q-statistic values between
0.70 and 0.80. The interaction of GDP and NDVI had the
greatest explanatory power, 90.0%, for PPM2.5E over the
BTH region.

Figure 8 shows that EC has the greatest number of other
factors (PSI, AAT, EL, ARH, AP, and NDVI) with a non-
linear enhanced interaction greater than 70.0%. AP, PSI,
ARH, and NDVI also interacted with 4 other factors with a
non-linear enhanced interaction greater than 70.0%.

Discussion

Our study initially used the BSTM to investigate the spatio-
temporal trends of PPM2.5E over the BTH region from 1998
to 2017. Next, the influence factors were explored with the
GeoDetector model. Although the spatial pattern of PPM2.5E
over the BTH region remained stable, a remarkable increase in

PPM2.5E emerged in most regions, especially several big cit-
ies, across the BTH region.

PPM2.5E is very different from PM2.5 concentrations. The
former is determined simultaneously by both PM2.5 concen-
trations and population density. As a result, the levels of
PPM2.5E in urban areas of the 13 cities are higher than in the
rural areas of the BTH region. In particular, the urban areas of
the two megalopolises, Beijing and Tianjin, experienced the
highest level of PPM2.5E over the BTH region. Our study
found that the spatial structure of the local trends of
PPM2.5E is similar to that of the common spatial pattern. In
other words, the regions with higher levels of PPM2.5E expe-
rienced higher local trends. This phenomenon can be de-
scribed as “high value, high increase” and “low value, low
increase”.

The influence patterns of PPM2.5E over the BTH region
identified by the GeoDetector model and Pearson correlation
analysis indicate that GDP and EC are the main influence
factors on PPM2.5E. Natural environmental factors also influ-
ence PPM2.5E, though the corresponding influence magni-
tudes are not as high. With the exception of GDP and EC,
the influence magnitudes of the single factors were otherwise
all less than 0.50. The Pearson correlation analysis revealed
that PSI associated negatively with PPM2.5E over the BTH
region. A previous study (Huang et al. 2018) found secondary
industry output correlated positively with PM2.5 concentra-
tions over the BTH region. This difference comes from the
fact that PPM2.5E is mainly determined by population density
and is high in some cities with a high proportion of tertiary
industries but low PSI. However, the interactive influencing
magnitudes of the two different factors increased remarkably.
This phenomenon indicates that the influencing pattern main-
ly consists of interactive human activities and natural environ-
mental factors.

Despite these results, our study had some limitations. The
first is that the spatial resolution of PPM2.5E,~5 km × 5 km is
not so high. It would be better if the spatial resolution could be
1 km × 1 km or finer. The second is that population density
does not consider age structure. It is well-known that the

Fig. 7 The results of the
interactive q-statistics values with
non-linear enhanced interactive
effects of two different factors
that were estimated by the
GeoDetector model

Environ Sci Pollut Res

User
高亮



ageing population is more sensitive to PM2.5 pollution.
Therefore, the ageing population’s PM2.5 exposure should
be researched in future work.

Conclusions

The space-time variation of PPM2.5E over the BTH region
from 1998 to 2017 was researched using the BSTM. Then
the influence patterns of the nine factors on PPM2.5E in
2015 were investigated using the GeoDetector model and
Pearson correlation analysis. This study led to several
conclusions.

The common spatial pattern of PPM2.5E over the BTH
region maintained a stable structure and exhibited a distinct
geographical feature, described as “high in the northwest, low
in the southeast”. Moreover, the spatial heterogeneity of
PPM2.5E over the BTH region increased from 2000 to 2015,
and the CV increased from 2.90 in 2000 to 3.32 in 2015. An
increase of PPM2.5E with 6.192 (95% CI 6.186, 6.203) ×103

μg/m3 ∙ persons/km2 per year occurred over the BTH region
from 1998 to 2017. The spatial structure of the local trends is
similar to that of the common spatial relative magnitude. This
feature of the local trends can be described as “high value,
high increase” and “low value, low increase”. GDP and EC
were the main influence factors on PPM2.5E over the BTH
region. GDP had the strongest explanatory power for
PPM2.5E. The corresponding q-statistic value was 0.76
(P < 0.01), followed by EC and EL whose q-statistic values
were 0.61 (P < 0.01) and 0.40 (P < 0.01), respectively. PSI,
NDVI, RA, and EL associated negatively with PPM2.5E.
GDP, EC, AP, and AAT associated positively with
PPM2.5E. The interactive influencing magnitudes of the two
different factors increased remarkably. The interaction of
GDP and NDVI had the greatest explanatory power, 90.0%,
on PPM2.5E over the BTH region.
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