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Abstract
An urban agglomeration (UA), similar to a megalopolis or a metropolitan area, is a region where cities and people are concen-
trated, and where air pollution has adversely impacted on sustainable and high quality development. Studies on the spatio-
temporal trends and the factors which influence PM2.5 concentrations may be used as a reference to support air pollution control
policy for major UAs throughout the world. Nineteen UAs in China covering the years 2000–2016 were chosen as the research
object, the PM2.5 concentrations being used to reflect air pollution and being estimated from analysis of remote sensing images.
The Exploratory Spatial Data Analysis method was used to study the spatio-temporal trends for PM2.5 concentrations, and the
Geodetector method was used to examine the factors influencing the PM2.5 concentrations. The results revealed that (i) the
temporal trend for the average values of the PM2.5 concentrations in the UAs followed an inverted U-shaped curve and the
inflection points of the curve occurred in 2007. (ii) The PM2.5 concentrations in the UAs exhibited significant global spatial
autocorrelation with the high–high type and the low–low type being the main categories. (iii) The rate of land urbanization and
the structure of energy consumption were the main factors which influenced the PM2.5 concentrations in the UAs.
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Highlights
• Spatio-temporal trends for PM2.5 concentrations were studied using the
Exploratory Spatial Data Analysis method.
• Factors which influenced PM2.5 concentrations were examined using
the Geodetector method.

• Temporal trends for the average PM2.5 concentrations followed an
inverted U-shaped curve.

• PM2.5 concentrations exhibited significant global spatial
autocorrelation, the main categories being the high–high and the
low–low type categories.

• Main factors which influenced PM2.5 concentrations were the rate of
land urbanization and the structure of energy consumption.
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Introduction

With the reform and opening up of China in 1978, the country
has seen rapid urbanization. The resident population in urban
areas increased from 173 million in 1978 to 831 million in
2018. The rate of urbanization increased from 17.9% in 1978
to 59.6% in 2018. The level of urbanization successively
surpassed low-income countries in 1980, lower middle-
income countries in 1997, middle-income countries in 2009,
and the world average in 2014 (Li 2018). Urbanization has
become an important engine for modernization in China, be-
cause urbanization has absorbed a large proportion of the rural
work force via new employment, improved the allocation ef-
ficiency of production factors, facilitated the sustained and
rapid development of the national economy, and promoted
profound changes in social structure and the overall progress
of social undertakings. However, together with urbanization
and industrialization, air pollution has increased due to exten-
sive and inefficient development modes, adversely influenced
the physical and mental health of the residents, and impacted
negatively on the sustainable development and international
image of China. For instance, the Beijing Tianjin Hebei urban
agglomeration (UA) is a major strategic area for China’s econ-
omy and reflects the competitiveness of the country (Lu
2015). However, this UA also suffers from severe air pollution
(Parrish and Zhu 2009); for instance, in 2014 and 2015 the
area accounted for 8 and 7 of the 10 worst cities in China for
air quality, respectively. Atmospheric particulate matter that
has a size diameter of less than 2.5 μm (PM2.5) is an important
category of air pollution, and it is known there are regional and
a number of complex features associated with its distribution
(Zhou et al. 2019). Rapid urbanization and industrialization,
large-scale consumption of energy, industrial emissions, dusts
originating from urban construction, and emissions from mo-
tor vehicles are the main sources of particulate matter account-
ing for the increase of suspended fine particles in the atmo-
sphere of which PM2.5 is a major concern (Liu et al. 2018a, b;
Du et al. 2019). The PM2.5, which is closely related to human
activities, extends to the troposphere, and can reduce visibility
and form new pollutants via participation in chemical reac-
tions in the atmosphere. Medical studies show that PM2.5 can
seriously affect human health. On inhalation, PM2.5 can cause
respiratory and cardiovascular disease, and the immune sys-
tem can be compromised such that the risk of death in exposed
populations increases (Delfino et al. 2005; Laden et al. 2000,
2006; Samet et al. 2000; Samet and Chung 2018). The number
of premature deaths as a result of exposure to air pollution
over a long period of time is in excess of 1.25 million persons,
and about 40% of the world’s population is considered to be at
increased health risk from air pollution (Wang et al. 2012).

As a new approach to space utilization between nearby
cities, UAs have become one of the main means to promote
new urbanizations in China and are a key vehicle for

facilitating economic activity and competition at a global
scale. The spatial organization pattern of UAs in China has
been gradually evolving. There are now five national large-
scale UAs, eight regional medium-scale UAs, and six regional
small-scale UAs in the national UA spatial structure system
(Fang et al. 2018a, b). A UA may be defined as a highly
developed urbanization region with a megacity at its core
and whose main purpose is to drive forward the coordinated
development of the different cities (Fang et al. 2018a, b). The
concept of a UA is similar to those of the megalopolis
(Gottmann 1957) and megaregions (Meijers and Burger
2010). A UA is a region with a high population density and
a large economy. However, because of the lack of unified
environmental protection measures in the extended space
structure, a conflict arises between urbanization and environ-
mental protection. At the same time, a UA can become a zone
for the collection and accumulation of PM2.5 pollution (Liu
et al. 2017). Thus, PM2.5 pollution in UAs attracts the atten-
tion of government departments and researchers.

Literature review

Computational method for PM2.5

In previous studies, PM2.5 concentrations were obtained by
calculating the ground observational data and by inversion
of the satellite remote sensing (RS) data. Calculation of the
ground observational data included consideration of the fol-
lowing sources: The hourly data released by the Ministry of
Ecology and Environment of China as used in studies by
Wang et al. (2014) on the spatial and temporal variations of
PM2.5, and including the concentrations of PM10, CO, SO2,
and NO2 in 31 major cities in China between March 2013 and
February 2014. The data were collected by Fu et al. (2018)
and included the spatial and temporal variations for six criteria
concerning the levels of CO, SO2, NO2, and O3 at 37 sites in
nine major cities within Fujian Province between January
2015 and December 2016. For inversion of the satellite RS
data, various sources were consulted. The PM2.5 data for 2000
to 2015 were determined from inversion of the National
Aeronautics and Space Administration (NASA) atmospheric
RS images published in the study of Zhou et al. (2019), and
the variability in the spatio-temporal evolution patterns for
PM2.5 in China were then evaluated. The study of Wan et al.
(2019) utilized the raster dataset for the annual average vari-
ability in the global atmospheric PM2.5 in order to analyze the
spatio-temporal evolution of PM2.5 in the Yangtze River
Economic Belt at different regional scales.

The accuracy and temporal resolution of the ground
observational data were higher than the data for the RS
inverted images; however, the data from the monitoring
stations cannot fully reflect the spatial differences of
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PM2.5 in large-scale regions. Particularly in mountainous
areas with complex terrain or cities with complex land
surfaces and high-density populations, estimating the ef-
fect of PM2.5 on human health using calculated ground
observational data may produce errors. Compared with
the calculated ground observational data, in the case of
the inverted satellite RS data, we can obtain the PM2.5

data at a large scale and on a continuous basis.
Furthermore, we can obtain the PM2.5 in regions without
ground observation stations.

Spatial heterogeneity of PM2.5

After calculation of the PM2.5, the spatial heterogeneity,
or the spatial pattern of the PM2.5 in various regions, was
studied. Peng et al. (2016) found that the areas most pol-
luted by PM2.5 were south of Hebei, north of Henan, and
west of Shandong provinces and the health risk in the
central and eastern areas of China was the highest. Liu
et al. (2018a, b) found that the spatial heterogeneity of
PM2.5 in the Beijing Tianjin Hebei UA was characterized
as high in the southeast and low in the northwest. Wang
et al. (2019) reported that the health risk of PM2.5 was
higher in Eastern China compared with Western China
and the Hu Huanyong Line was the demarcation line;
also, the rate of increase of PM2.5 in Eastern China was
higher than that of Western China. Bai et al. (2019) also
judged that the Hu Huanyong Line was a demarcation line
for the PM2.5 distributions in China; moreover, the spatial
heterogeneity for PM2.5 in the Southeast was higher than
that for the Northwest; the concentration of PM2.5 in the
North China Plain was found to be the highest. Zheng
et al. (2019) also found that the spatial distribution of
PM2.5 in China was remarkable with high-value clusters
for cities being concentrated in most parts of Shandong,
Henan, Hebei, Jiangsu, Anhui, Hunan, Hubei, and eastern
Sichuan, while low-value clusters for cities were encoun-
tered in Inner Mongolia, northwestern Heilongjiang,
Xinjiang, Tibet, Taiwan, Hainan, Fujian, and other re-
gions. In general for air pollution in China, the degree
of pollution in the east of the country tends to be more
serious than that in the west, and the developed areas have
more serious pollution than the less developed areas.

The city was chosen as the basic research object for inves-
tigation of the spatial heterogeneity of the PM2.5 distribution.
A UA consists of different cities and typically is a region with
severe air pollution. When selecting a UA as the research
object, what will be the characteristics of the spatial heteroge-
neity of the PM2.5 in such a large-scale region? As the status of
UAs becomes more and more important, it is necessary to
view the UA as a basic unit of space in order to study the
spatial heterogeneity of PM2.5.

Factors which influence the PM2.5 concentrations

Research on the factors which influence the PM2.5 concentra-
tions may provide a reference for implementing measures to
control air pollution. Lin et al. (2019) studied the effects of
land use on PM2.5 and their removal at regional spatial scales
and found that forested land and industrial land had greater
impact on the PM2.5 than did other land-use types; also, in-
dustrial land and built-up land had greater effects on the PM2.5

in winter than in summer. Fan et al. (2019) proposed that the
distribution of the scale of urbanization, agglomeration, and
haze pollution presented complex asymmetrical features, with
the former two exhibiting a “core-periphery” distribution,
while the latter had a tendency to spread. Similarly, Han
et al. (2014) investigated the impact of urbanization on
PM2.5 at the prefectural level in China and demonstrated that
urbanization had considerable impact on PM2.5. Li et al.
(2019) studied the impact of the urban spatial structure on
air pollution in China and found positive relationships be-
tween poly-centricity, dispersion, and PM2.5 concentrations
in cities. Several researchers have studied the impact of
socioeconomic factors on the PM2.5 concentrations. Han
et al. (2019) found that areas in China having PM2.5 levels >
35 μg/m3 increased from 39 to 42%. Huang et al. (2019)
pointed out that economic density, the proportion of second-
ary industries, population density, and the rate of urbanization
had a positive effect on the increase of PM2.5 in the Yangtze
River Economic Belt. Air pollution is considered a key re-
search topic in environmental economics, as evidenced by
the frequent use of the Environmental Kuznets Curve (EKC)
(Grossman and Krueger 1995) for studying the effects of ur-
banization (Fang et al. 2015), population density (Hixson et al.
2012), urban form (2017), energy consumption (Yuan et al.
2015), and industrial production (Lin and Wang 2016) on air
pollution. Hence, present research can be considered as a type
of focused study on the factors which influence PM2.5 con-
centrations in UAs.

The PM2.5 concentrations are affected by various natural
and socio-economic factors, and the main factors influencing
the PM2.5 concentrations are different in different regions. For
regions with highly developed urbanization and industrializa-
tion, socioeconomic factors will be the main factors, while for
remote regions, natural factors such as the meteorology and
topography will be the main factors. Clearly, studies are war-
ranted on the factors which influence the PM2.5 concentrations
in UAs.

In this study, 19 UAs in China were selected as the research
object and the PM2.5 concentrations were assessed using the
inverted atmospheric RS images of NASA. The spatio-
temporal trends for the PM2.5 concentrations in the UAs were
studied using the Exploratory Spatial Data Analysis method,
and the factors influencing the PM2.5 concentrations were ex-
amined using the Geodetector method. The novelty and
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contributions of this research include the following: A UA
was chosen as the study object (rather than a city) to explore
the spatio-temporal trends of PM2.5, given that such informa-
tion will enhance the knowledge base concerning air pollution
in UAs. Urban agglomerations play an important role in
China’s economic and social development. Solving air pollu-
tion problems in UAs contributes to the sustainable develop-
ment and construction of ecological civilization in China.
Studying the spatio-temporal trends and influencing factors
of PM2.5 may lead to new practical ideas and countermeasures
for controlling air pollution in UAs.

Research object

China has established 19 UAs as part of the National New
Urbanization Plan (2014–2020) (http://politics.people.com.
cn/n/2014/0317/c1001-24649809.html), and these 19 UAs
were selected for study by Wang and Yang (2018). The same
UAs were chosen as research objects in the present study (Fig.
1). Among them, the Beijing Tianjin Hebei UA, the Yangtze
River Delta UA, the Pearl River Delta UA, the middle reaches
of the Yangtze River UA, and the Chengdu Chongqing UA
are representative of the national large-scale UAs. The South
Central Liaoning UA, the Shandong Peninsula UA, the west
coast of the Taiwan Strait UA, the Harbin Changchun UA, the
Central Henan UA, the Guanzhong Plain UA, the Beibu Gulf
UA, and the Northern slope of the Tianshan Mountains UA
are the regional medium-scale UAs. The Central Shanxi UA,
the Hohhot Baotou Erdos Yulin UA, the Central Yunnan UA,
the Central Guizhou UA, the Lanzhou Xining UA, and the
Ningxia along the Yellow River UA are representative of
regional small-scale UAs. The national large-scale UAs are
drivers for national economic growth delivering competitive-
ness and global influence. At the core of the regional medium-
scale UA is a central city, and its function is to drive forward
regional economic growth. The regional small-scale UAs are
at an early stage of formation and cultivation, and their func-
tion is to drive forward the economic growth of the provinces
and absorb people moving from rural to urban areas. The
scope for each UA is referred to in the planning document
for UAs as proposed by the State Council of China. Table 1
lists the cities in the 19 UAs.

Data and methods

Data sources

The research data consists of three types: (1) the PM2.5 data
are derived from inversion of RS images. The raster data for
the variability in the global atmospheric PM2.5 data (http://
earthdata.nasa.gov) for the years 2000 to 2016, published by

NASA and having a resolution ratio of 0.1°, were used as the
basic research data. The aerosol optical depth (AOD) data
inverted from the RS images have the advantages of low cost,
wide regional coverage, and high precision; thus, such data are
widely regarded as an index of PM2.5. (2) The geographic data
and the administrative boundaries for the UAs were derived
from basic geographic data (1:4 million items) for China. (3)
The socioeconomic data were derived from the China
Statistical Yearbook (2001–2017a) and the China Urban
Statistical Yearbook (2001–2017b).

Methodology

Spatial autocorrelation model

Global spatial autocorrelation and local spatial autocorrelation
were used to study the spatial autocorrelation of PM2.5 in the
UAs. Some 223 cities in the UAs were selected as space units.
The research procedures and formulae adopted were based on
the work of Xue et al. (2020).

(1) Global spatial autocorrelation
The average similarity of PM2.5 concentrations between

adjacent regions may be determined by the Global Moran’s I
value and may be measured using Eqs. (1) to (4):

I ¼ n
S0

� ∑n
i¼1∑

n
j¼1wijziz j

∑
n

i¼1
z2i

ð1Þ

S0 ¼ ∑
n

i¼1
∑
n

j¼1
wij ð2Þ

Zi ¼ Y i−Y ð3Þ
Z j ¼ Y j−Y ð4Þ

where I denotes the index of global spatial autocorrelation, Yi
and Yj denote the PM2.5 concentrations of cities i and j, Y
denotes the average concentration value of PM2.5, wij denotes
the spatial weight matrix, and n denotes the number of space
units. If I is greater than 0, the space units have a positive
spatial autocorrelation, and the larger the value is, the stronger
is the spatial agglomeration of the PM2.5 between different
cities. Conversely, when I is less than 0, the PM2.5 has a
negative spatial autocorrelation, and a smaller value indicates
a stronger spatial dispersion of the PM2.5 concentrations be-
tween different cities. The significance test for the Global
Moran’s I value may be measured using Eq. (5):

Z Ið Þ ¼ I−E Ið Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ið Þp ð5Þ

where Z(I) denotes the significance of Moran’s I, E(I) denotes
the mathematical expectation ofMoran’s I, and Var(I) denotes
the variance of Moran’s I.
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(2) Local spatial autocorrelation
Local spatial autocorrelation can reflect the level of influ-

ence of local space units to global space units and the degree
of correlation of PM2.5 values between a region and its neigh-
bors. It can be measured using Eq. (6) as follows:

I
0 ¼

n xi−x
� �

∑m
j¼1Wij x j−x

� �

∑n
i¼1 xi−x

� �2 ; i≠ jð Þ ð6Þ

where xi and xj denote the PM2.5 concentrations of cities i and
j, wij denotes the spatial weight matrix, n denotes the number
of space units, and m denotes the number of contiguous space
units of city i. The significance test for local Moran’s I can be
calculated by Z(I), and the formula is similar to Eq. (5). If I′ is

significantly positive, this indicates that there is a significant
local spatial positive autocorrelation and spatial clustering. In
contrast, if I′ is significantly negative, this indicates that there
is a significant local negative spatial autocorrelation and spa-
tial dispersion.

The space units with a significance reaching a certain
threshold (p = 0.05) can be categorized into four types of
spatial autocorrelation by comparing the numerical value of
Z(I) and the significance of I. If I is significantly positive and
Z(I > 0, the space unit is termed a “high–high” type and this
indicates that the PM2.5 concentrations in this space unit and in
the contiguous space units are high; this type can be termed a
hot spot. If I is significantly positive and Z(I < 0, the space unit
is termed a “low–low” type and this indicates that the PM2.5

concentrations in this space unit and contiguous space units

Table 1 Cities in the 19 urban agglomerations

UA City

Beijing Tianjin Hebei UA Beijing, Tianjin, Tangshan, Baoding, Langfang, Qinhuangdao,
Cangzhou, Zhangjiakou, Chengde, Shijiazhuang, Xingtai, Hengshui, Handan

Yangtze River Delta UA Shanghai, Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yancheng,
Yangzhou, Zhenjiang, Taizhou, Hangzhou, Ningbo, Jiaxing, Huzhou,
Shaoxing, Jinhua, Zhoushan, Taizhou, Hefei, Wuhu, Maanshan,
Tongling, Anqing, Chuzhou, Chizhou, Xuancheng

Pearl River Delta UA Guangzhou, Shenzhen, Zhuhai, Foshan, Jiangmen, Zhongshan,
Dongguan, Huizhou, Zhaoqing

Middle reaches of Yangtze River UA Wuhan, Huangshi, Ezhou, Huanggang, Xiaogan, Xianning, Xiantao,
Qianjiang, Tianmen, Xiangyang, Yichang, Jingzhou, Jingmen,
Changsha, Zhuzhou, Xiangtan, Yueyang, Yiyang, Changde, Hengyang,
Loudi, Nanchang, Jiujiang, Jingdezhen, Yingtan, Xinyu, Yichun, Pingxiang,
Shangrao, Fuzhou, Anji

Chengdu Chongqing UA Chongqing, Chengdu, Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang,
Leshan, Nanchong, Meishan, Yibin, Guangan, Dazhou, Yaan, Ziyang

South Central Liaoning UA Shenyang, Dalian, Anshan, Yingkou, Fushun, Tieling, Dandong, Panjin, Benxi,
Liaoyang, Fuxin, Huludao, Jinzhou

Shandong Peninsula UA Jinan, Qingdao, Zibo, Zaozhuang, Dongying, Yantai, Weifang, Jining, Taian,
Weihai, Rizhao, Binzhou, Dehou, Liaocheng, Linyi, Heze, Laiwu

West coast of Taiwan Strait UA Fuzhou, Quanzhou, Xiamen, Zhangzhou, Putian, Ningde, Chaozhou, Jieyang,
Shantou, Shanwei, Wenzhou

Harbin Changchun UA Harbin, Daqing, Qiqihar, Suihua, Mudanjiang, Changchun, Jilin, Siping,
Liaoyuan, Songyuan, Yanbian

Central Henan UA Zhengzhou, Kaifeng, Luoyang, Pingdingshan, Xinxiang, Jiaozuo,
Xuchang, Luohe, Jiyuan, Hebi, Shangqiu, Zhoukou, Jincheng, Bozhou

Guanzhong Plain UA Xian, Baoji, Xianyang, Tongchuan, Weinan, Shangluo, Yuncheng, Linfen,
Tianshui, Pingliang, Qingyang

Beibu Gulf UA Nanning, Beihai, Qinzhou, Fangchenggang, Yulin, Chongzuo, Zhanjiang, Maoming,
Yangjiang, Haikou, Danzhou, Dongfang

Northern slope of Tianshan Mountains UA Urumqi, Karamay, Shihezi, Changji, Fukang, Kuitun, Wusu, Wujiaqu

Central Shanxi UA Taiyuan, Yangquan, Jinzhong, Xinzhou, Changzhi, Fenyang, Xiaoyi

Hohhot Baotou Erdos Yulin UA Hohhot, Baotou, Erdos, Yulin

Central Yunnan UA Kunming, Qujing, Yuxi, Chuxiong

Central Guizhou UA Guiyang, Zunyi, Anshun, Bijie

Lanzhou Xining UA Lanzhou, Xining, Baiyin, Dingxi, Haidong, Linxia

Ningxia along the Yellow River UA Yinchuan, Shizuishan, Wuzhong, Zhongwei
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are low; this type can be termed a cold spot. If I is significantly
negative and Z(I > 0, the space unit is termed a “high–low”
type and indicates that the high PM2.5 space units are
surrounded by low contiguous space units. If I is significantly
negative and Z(I < 0, the space unit is termed a “low–high”
type and indicates that the low PM2.5 space units are
surrounded by high contiguous space units.

Geodetector method

The spatial heterogeneity of the data set can be searched using
the Geodetector method to reveal the factors influencing the
research object. The core idea of the Geodetector method is as
follows: If an independent variable has influence on a depen-
dent variable, then the spatial distributions of the independent
variable and the dependent variable should be similar (Wang
et al. 2010). The method is applicable to not only numerical
data but also determinate data, and the relationship between
different factors and dependent variables can be analyzed
(Wang and Xu 2017). Factor detection in this model can test
whether one factor is the reason for the difference in the spatial
distribution of a certain index value or not. The specific ap-
proach used is to compare the total variance of the index in the
different categories with the total variance of the index for the

whole study area. The research procedure and formula
adopted are based on the work of Liu and Hao (2020). The
model is described as follows:

PD;H ¼ 1−
1

nσ2
H

∑
n

i¼1
nD;iσ

2

HD; J
ð7Þ

where PD, H indicates the explanatory power for the factor
which influences the PM2.5 concentration; D indicates the
factors influencing the PM2.5 concentrations; n and σ

2 indicate
the overall sample quantity and the variance of the research
region, respectively; m indicates the number of categories of
factors which influence the PM2.5 concentrations; nD, i indi-
cates the number of the D index for category-i samples; and
PD, H ranges from 0 to 1, and a larger value indicates the factor
has a stronger explanatory power to change the PM2.5

concentration.

Spatio-temporal trends of PM2.5

Temporal characteristics of PM2.5

The temporal trends for the PM2.5 concentrations for the 19
UAs in 2000–2016 are illustrated in Fig. 2. The average values

Fig. 1 The 19 urban agglomerations in China
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for the PM2.5 concentrations in the 19 UAs when plotted on a
time basis gave an inverted U-shaped curve. In the period
2000–2007, the average PM2.5 concentrations increased from
32.18 to 44.79 μg/m3, and for 2008–2016 the values de-
creased from 44.04 to 37.32 μg/m3. The PM2.5 variability
for the Yangtze River Delta UA, the Pearl River Delta UA,
the Chengdu Chongqing UA, the Central Guizhou UA, the
Shandong Peninsula UA, the west coast of the Taiwan Strait
UA, the Central Shanxi UA, the Beibu Gulf UA, the middle
reaches of the Yangtze River UA, and the Lanzhou Xining
UA also exhibited inverted U-shaped curves, the inflection
points corresponding to the years 2008, 2008, 2006, 2005,
2007, 2007, 2006, 2008, 2007, and 2006, respectively.
Inflection points for the Beijing Tianjin Hebei UA, the
Central Henan UA, and the Guanzhong Plain UA were also
observed, but the PM2.5 variabilities exhibited upward trends
for some years after the inflection points. Thus, the PM2.5

temporal profiles for these UAs exhibited N-shaped curves.
The PM2.5 values for the Central Yunnan UA, the Hohhot
Baotou Erdos Yulin UA, the Ningxia along the Yellow
River UA, and the Northern slope of the Tianshan
Mountains UA were lower than for the other urban UAs.
The PM2.5 values for the South-Central Liaoning UA and
the Harbin Changchun UA did not exhibit inflection points,
the PM2.5 values showing an increasing upward trend. In gen-
eral, the PM2.5 values for most of the UAs exhibited inflection
points in the temporal profiles, reflecting significant changes
and developments in the built environment and environmental
protection policies. Adjustments to the industrial structure and

improvements in energy efficiency also had an effect on the
suppression of particulate emissions including the PM2.5.

Spatial characteristics of PM2.5

Global spatial autocorrelation

A spatial autocorrelation test for the PM2.5 concentrations in
the 19 UAs for 2000–2016 was performed using ArcGIS, and
the results are presented in Table 2. The Global Moran’s I
values were positive, and the values passed the 5% signifi-
cance test. The results reflect similarities in the spatial charac-
teristics of the PM2.5 concentrations for the 19 UAs; therefore,
statistical analysis of hot and cold spots may be performed.
The Global Moran’s I value peaked in 2012 and then de-
creased year by year; thus, the spatial agglomeration of the
PM2.5 levels for the 19 UAs reached an inflection point in
2012 and appeared later than the time of the inflection point
of PM2.5. This explains the time lag effect for the spatial au-
tocorrelation of PM2.5. The main reason for the time lag is that
once the PM2.5 exhibits spatial agglomeration characteristics,
it will bemore difficult to control the air pollution, which leads
to the time lag and the later appearance of the inflection point.

Local spatial autocorrelation

The results for local spatial autocorrelation analysis of the
PM2.5 concentrations for the 19 UAs in 2000, 2005, 2010,
and 2016 are displayed in Fig. 3. The results for the other

Fig. 2 Temporal trends for the PM2.5 concentrations in the 19 urban agglomeration in China
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years are presented as Supplementary material. The city-level
space units in the UAs, which exhibit significant local spatial
autocorrelation, can be divided into four types based on local
spatial autocorrelation analysis, that is, high–high, low–low,
high–low, and low–high.

The high–low type is where the PM2.5 concentrations in
one city are significantly higher than that of adjacent cities,
and the spatial pattern is high in the middle and low in the
peripheries. Xianyang city (Guanzhong Plain UA) in 2008,
2010, and 2015 belonged to this category. The level of
PM2.5 concentrations for the UAs in Northwest China is lower
than in other UAs. Thus, once a city in this region exhibits
serious pollution after a few years, the high–low category will
appear.

The low–high type is where the PM2.5 concentrations in a
particular city are significantly lower than that of adjacent
cities, and the spatial pattern is low in the middle and high
in the peripheries. Yicheng city (Yangtze River Delta UA) in
2002–2016, Xingtai city (Beijing Tianjin Hebei UA) in 2000–
2015, and Yichang city (middle reaches of Yangtze River
UA) in 2000–2001, 2009–2010, and 2013–2014 belonged to
this category. This situation may reflect the fact that the pol-
lution levels in these three cities are relatively low considering
their UAs as a whole.

The high–high type is where the PM2.5 concentrations for a
particular city and the adjacent cities are high, such that there
are consistently high PM2.5 concentrations. The Beijing
Tianjin Hebei UA, the Yangtze River Delta UA, the
Shandong Peninsula UA, and the Central Henan UA for

2000–2016 all belonged to this category. Also, the Chengdu
Chongqing UA in 2000–2013 belonged to this type, while the
number of UAs belonging to this type began to decrease sig-
nificantly after 2014. The middle reaches of the Yangtze River
UA belonged to the high–high type except for the years 2005,
2007, and 2012. It is clear that these four UAs are character-
ized as having large populations and large amounts of indus-
trial emissions; thus, there is a close relationship between pop-
ulation agglomeration, industrialization, and air pollution.

The low–low type is where the PM2.5 concentration in a
particular city and adjacent cities are low, and where there are
consistently low PM2.5 concentrations. There was a declining
trend in the number of cities of this type with 44 in 2000 and
37 in 2017. In the year 2000, the cities of this type were
distributed in the Northern slope of the Tianshan Mountains
UA, the Hohhot Baotou Erdos Yulin UA, the Ningxia along
the Yellow River UA, the Lanzhou Xining UA, the Harbin
Changchun UA, the South Central Liaoning UA, the Central
Yunnan UA, and the west coast of the Taiwan Strait UA. In
2016, cities of the low–low type were distributed in the
Northern slope of the Tianshan Mountains UA, the Hohhot
Baotou Erdos Yulin UA, the Ningxia along the Yellow River
UA, the Lanzhou Xining UA, the Central Yunnan UA, and
the west coast of the Taiwan Strait UA. Except for the west
coast of the Taiwan Strait UA, all other UAs are located in the
central and western regions of China. It is also of interest to
note that the central and western regions of the country were
less polluted than the eastern regions.

Influencing factors of PM2.5 in UAs

AUA is an area where the cities and the inhabitants are highly
concentrated, and the natural conditions of the area confer
certain advantageous. In this study, the influence of socioeco-
nomic factors on the concentrations of PM2.5 in the UAs was
examined. Eight socioeconomic factors were chosen in an
attempt to estimate their contributions to PM2.5 formation in
the UAs. The eight factors were economic growth, industrial
structure, economic openness, the rate of population urbani-
zation, the rate of land urbanization, technical advancement,
the extent of environmental regulation, and the structure of
energy consumption. The relevant data were obtained from
the China Urban Statistical Yearbook (2001–2017b) and the
China Energy Statistical Yearbook (2001–2017c).

Economic growth, expressed as per capita GDP, will cor-
respond to an increase in output level per unit time, and this
expansion of output may lead to an increase in industrial emis-
sions unless new cleaner technologies are adopted (Zhang and
Wang 2014). The industrial sector is a large contributor of
airborne emissions (Shao et al. 2011), and the greater the
proportion of secondary industries in the industrial structure,
the less probability there will be of airborne emissions being

Table 2 TheGlobalMoran’s I values for PM2.5 concentrations in the 19
urban agglomerations

Year Global Moran’s I P value

2000 0.8271 0.0276

2001 0.8225 0.0241

2002 0.8226 0.0168

2003 0.8254 0.0183

2004 0.8300 0.0191

2005 0.8286 0.0215

2006 0.8244 0.0181

2007 0.8128 0.0176

2008 0.8059 0.0164

2009 0.8092 0.0168

2010 0.8187 0.0148

2011 0.8326 0.0139

2012 0.8261 0.0154

2013 0.8149 0.0161

2014 0.8033 0.0212

2015 0.8015 0.0252

2016 0.7982 0.0308
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reduced. Economic opennessmay be expressed in terms of the
amount of foreign capital utilized per 10,000 persons, and this
factor has a dual impact on air pollution (He 2006; Wagner
and Timmins 2009); thus, this factor should be taken as one of
the factors influencing PM2.5 concentrations. The rate of pop-
ulation urbanization expressed by the urban population ratio,
the rate of land urbanization expressed by the proportion of
built-up areas, urbanization will increase the demand for en-
ergy and resources (Perry 2013), which will have an impact on
the atmospheric environment. Technical advancement
expressed by the number of patents granted per 10,000 people,
should not only contribute to a reduction in air pollutant emis-
sions, but may also increase emissions of air pollutants (Shao
et al. 2019); hence, the overall impact on air pollution is un-
certain. The extent of environmental regulation expressed by
the extent of environment-friendly municipal solid waste
treatment operations, and stricter environmental regulations,
will force enterprises to either opt for emissions reduction
technology or relocate; hence, it is vital to restrict air pollutant
emissions (Huang and Lin 2013). Finally, the structure of

energy consumption expressed by the proportion of coal con-
sumption is a critical factor, given that coal combustion rep-
resents a considerable source of air pollution. Thus, maintain-
ing a high proportion of coal in the energy market structure is
not conducive to reducing airborne emissions.

Table 3 lists the q value data for the factors influencing the
PM2.5 concentrations. According to the results, the contribu-
tions from the rate of land urbanization and the structure of
energy consumption were significantly higher than the other
factors, and the contribution of these two factors has continued
to increase gradually over time. Therefore, the rate of land
urbanization and the structure of energy consumption may
be regarded as the main factors which influence PM2.5 pollu-
tion in UAs in China. Land urbanization is a main driver for
promoting the rapid development of China’s urbanization, and
it is growing at a faster rate than that of population urbaniza-
tion. In land urbanization, China has embarked on what might
be called “urban sprawl construction,” a process whereby der-
elict land is developed and used for construction of buildings
and infrastructure and for cultivation purposes. Construction

Fig. 3 Local spatial autocorrelation of PM2.5 concentrations in 2000, 2005, 2010 and 2016
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land in China will continue to be made available (Jin et al.
2019), such that the country will see an increase in land for
construction purposes and various industrial activities will in-
crease and spread. Uncontrolled expansion and a disorderly
spread of urban construction have resulted in an increase in air
pollution in the last two decades as reported by Deng et al.
(2015). The energy consumption structure in China is domi-
nated by coal (Lin and Wang 2020); hence, UAs are associat-
ed with coal combustion and elevated concentrations of air
pollutants such as SO2, CO, CO2, NOX, and other toxic gases,
smoke, dusts, and radioactive particles which are emitted dur-
ing coal combustion.

Conclusions and policy recommendations

Conclusions

In this research, 19 UAs in China were chosen as the research
areas, and the PM2.5 concentrations were evaluated from anal-
ysis of the RS images. The Exploratory Spatial Data Analysis
method was used to study the spatio-temporal trends of the
PM2.5 concentrations, and the Geodetector method was used
to examine the influencing factors of PM2.5 concentrations.
Based on the temporal trends in the data, the average concen-
trations for PM2.5 in the UAs exhibited an inverted U-shaped
curve, the inflection point occurred in 2007.With regard to the

results for the spatial distributions, the PM2.5 in the UAs ex-
hibited clear global spatial autocorrelation, the high–high and
the low–low space unit types being the main agglomeration
modes. The high–high type was a feature of the Beijing
Tianjin Hebei UA, the Yangtze River Delta UA, the
Shandong Peninsula UA, and the Central Henan UA, while
the low–low type occurred in the Northern slope of the
Tianshan Mountains UA, the Hohhot Baotou Erdos Yulin
UA, the Ningxia along the Yellow River UA, the Lanzhou
Xining UA, the Harbin Changchun UA, the South Central
Liaoning UA, the Central Yunnan UA, and the west coast of
the Taiwan Strait UA. With respect to the results for the fac-
tors influencing the PM2.5 in the UAs, the rate of land urban-
ization and the structure of energy consumption were the main
factors.

The contributions and scientific value of this research are
reflected in the following: By exploring the spatio-temporal
trends and the factors which influence the concentrations of
PM2.5 in the UAs, scenarios which simulate air pollution in the
UAs have been realized such that new knowledge concerning
the occurrence of air pollution in the UAs has been realized.
This work also contributes to the identification and confirma-
tion of the key socioeconomic factors which influence air
pollution in the UAs and hence can aid in the rational devel-
opment of appropriate pollution control measures for UAs. Of
course, this study has limitations, given that only the socio-
economic factors were examined. Clearly, the PM2.5

Table 3 q value detection results for the factors influencing PM2.5 concentrations

Year Economic
growth

Industrial
structure

Economic
openness

Rate of population
urbanization

Rate of land
urbanization

Technical
advancement

Extent of
environmental
regulation

Structure of energy
consumption

2000 0.0072 0.0665 0.0345** 0.0387 0.2454 0.0853** 0.0072 0.3109

2001 0.0089 0.0635 0.0423** 0.0542 0.2412 0.0973** 0.0091 0.3224

2002 0.0123 0.0234 0.0315** 0.0521 0.3894 0.0652 0.0152 0.3745

2003 0.0132 0.0355 0.0379** 0.0324 0.3421 0.0523 0.0110 0.3893

2004 0.0133 0.0598 0.0399** 0.0424 0.4921 0.0342 0.0142 0.3987

2005 0.0157 0.0672 0.0489** 0.0268 0.5234 0.0432 0.0197 0.3823

2006 0.0189 0.0824 0.0499 0.0389 0.5893 0.0578 0.0174 0.4123

2007 0.0246 0.0642 0.0589** 0.0274 0.5123 0.0576 0.0187 0.4145

2008 0.0296 0.0654 0.0634** 0.0521 0.6394 0.0678 0.0219 0.4239

2009 0.0287 0.0678 0.0646** 0.0562 0.7942 0.0783** 0.0231 0.4398

2010 0.0360 0.0399 0.0787** 0.0372 0.7189 0.0624** 0.0238 0.4528

2011 0.0268 0.0462 0.0854** 0.0467 0.8989 0.0893 0.0187 0.4828

2012 0.0236 0.0569 0.0689** 0.0578 0.5341 0.0789** 0.0256 0.5212

2013 0.0220 0.0438 0.0677** 0.0356 0.9234 0.0659** 0.0278 0.5403

2014 0.0128 0.0562 0.0623** 0.0523 0.9340 0.0442** 0.0319 0.5523

2015 0.0100 0.0768 0.0486** 0.0412 0.9432 0.0372** 0.0328 0.5689

2016 0.0137 0.0653 0.0482** 0.0324 0.9674 0.0238** 0.0397 0.5810

**is significant at the 5% level; others are significant at the 1% level
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concentrations in UAs are also influenced by topographical
and climatic conditions in addition to other external factors
and future work will seek to clarify the importance of these
sources relative to the socioeconomic factors examined in the
present study.

Policy recommendations

Extensive and inefficient land urbanization is one of the main
causes of air pollution in UAs. Therefore, judicious planning of
the geographical layout of industry and people in public spaces is
necessary to realize an efficient economic development model in
UAs. First, UAs in China should plan to undertake urban con-
struction at a purposeful scale and avoid a dilution of resources
caused by excessive urban dispersion. Second, ecological space
can play a role in improving and even purifying air quality;
however, the current proportion of ecological space in UAs is
low, and the proportion of construction land is high; thus, eco-
logical construction and green space expansion should to be
carried out in the UAs. Third, in the process of urbanization in
China, large-scale construction of new towns and new districts
will lead to rapid land urbanization, and also to the problem of
the waste of resources and air pollution. Therefore, the develop-
ment of new towns and new districts needs to be planned prop-
erly with approval being given to the introduction of new and
higher regulatory standards with respect to the environment and
the buildings infrastructure.

The coal-dominated energy consumption structure is an
important source of air pollution in UAs. Moves towards the
decarbonization of energy consumption would play a key role
in solving air pollution problems in the UAs. First, adjust-
ments in how the energy market operates with control of en-
ergy prices and reform of energy systems are needed. The
energy prices should reflect supply and demand, the market
price, and the costs for environmental regulation. Private cap-
ital should be attracted to the energy sector to realize a diver-
sification in energy investments. The arrangements for carbon
trading and quotas for carbon emissions should be optimized
to achieve an internalization in the costs of environmental
pollution and low carbon emissions from energy consump-
tion. Second, measures should be taken at the technical level,
to introduce new production and energy consumption technol-
ogies. Clean energy cannot replace conventional fossil fuels in
the short time scale; therefore, improving production and en-
ergy consumption technologies can be seen as an effective
way to reduce the sources of PM2.5. Clean technology based
on desulfurization and denitrification, and improved quality of
fuels are needed especially in areas exposed to high concen-
trations of SO2 and NOX. Development and utilization of new
low carbon and clean energy technologies are needed in UAs,
including, for example, use of natural gas, wind, and nuclear
power generation as replacements for traditional fossil fuel-
based power generation.
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