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Abstract

Background: Hand, foot and mouth disease (HFMD) is a common infectious disease whose mechanism of
transmission continues to remain a puzzle for researchers. The measurement and prediction of the HFMD incidence
can be combined to improve the estimation accuracy, and provide a novel perspective to explore the spatiotemporal
patterns and determinant factors of an HFMD epidemic.

Methods: In this study, we collected weekly HFMD incidence reports for a total of 138 districts in Shandong province,
China, from May 2008 to March 2009. A Kalman filter was integrated with geographically weighted regression (GWR) to
estimate the HFMD incidence. Spatiotemporal variation characteristics were explored and potential risk regions were
identified, along with quantitatively evaluating the influence of meteorological and socioeconomic factors on the
HFMD incidence.

Results: The results showed that the average error covariance of the estimated HFMD incidence by district was
reduced from 03841 to 0.1846 compared to the measured incidence, indicating an overall improvement of over 50%
in error reduction. Furthermore, three specific categories of potential risk regions of HFMD epidemics in Shandong
were identified by the filter processing, with manifest filtering oscillations in the initial, local and long-term periods,
respectively. Amongst meteorological and socioeconomic factors, the temperature and number of hospital beds per
capita, respectively, were recognized as the dominant determinants that influence HFMD incidence variation.

Conclusions: The estimation accuracy of the HFMD incidence can be significantly improved by integrating a Kalman
filter with GWR and the integration is effective for exploring spatiotemporal patterns and determinants of an HFMD
epidemic. Our findings could help establish more accurate HFMD prevention and control strategies in Shandong. The
present study demonstrates a novel approach to exploring spatiotemporal patterns and determinant factors of HFMD
epidemics, and it can be easily extended to other regions and other infectious diseases similar to HFMD.
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Background

Hand, foot and mouth disease (HFMD) is a common
infectious disease caused by at least 20 enteroviruses
including enterovirus 71 (EV-A71) and Coxsackie virus
A16 (CA-V16) [1]. HFMD usually affects infants and
children under five and its main symptoms include fever,
mouth ulcers and blisters or vesicles on the hands, feet,
and mouth. Existing vaccines are only partially effective
for specific HFMD pathogens [2]. The transmission
mechanism of HFMD epidemics is complicated and its
spatiotemporal pattern is not yet fully understood [3].
During the last decades, HFMD has been widespread in
Asian countries, such as Japan, Malaysia, and Singapore
[4—6]. In China, the first large-scale outbreaks of HFMD
occurred in Linyi city, Shandong province in 2007 [7]
and in Fuyang city, Anhui province in 2008 [8]. Next, in
May 2008 the Ministry of Health of China listed HFMD
as a statutorily notifiable infectious category C disease.
China’s infectious disease automated alert and response
system (CIDARS) was developed in the same year for
the early detection and rapid response to the outbreaks
of infectious diseases, and the system performance was
satisfactory in the detection of HFM disease outbreaks,
with a sensitivity of 92.7% and a specificity of 95.0% [9].
An extensive three-level HFMD surveillance laboratory
network was established in mainland China since 2008,
and the surveillance data from 2008 to 2017 indicated a
high incidence of HFMD occurred every 2 years and the
high-risk regions were located in southern, eastern, and
central China [10]. Numerous studies on HFMD epi-
demics were implemented in various regions, particu-
larly in provinces with serious epidemics, such as
Guangdong [11, 12], Sichuan [13, 14], Henan [15, 16],
Shandong [17, 18], and others.

Previous studies have mainly focused on characteris-
tics of the epidemic [1, 15, 19], such as spatiotemporal
patterns and correlations with various risk factors.
HEMD epidemics have significant temporal variations
and seasonality features, which vary between regions
[20-23]. HEMD epidemics were spatially dispersed
across counties in mainland China in the summer and
winter, while clustered in spring and autumn; they were
also geographically clustered in and closely linked to re-
gions with high levels of monthly precipitation [3, 24].
In addition, HFMD epidemics follow complicated spatio-
temporal patterns and transmission mechanisms, and
are associated with several types of risk factors. For ex-
ample, the HFMD incidence in Singapore has been
found to be affected in a non-linear manner by the max-
imum temperature and rainfall, with a time lag of 1-2
weeks, and thresholds of 32°C and 75 mm, respectively
[25]. Furthermore, in Japan and Vietnam, temperature
and humidity had significant effects on the HFMD inci-
dence [21, 26]. The spatial variation of HFMD in
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counties across mainland China was found to be affected
by a combination of climate variables, while the spatio-
temporal transmission was largely driven by variations in
temperature, with a 7-week lag [3]. Extreme precipita-
tion was significantly associated with childhood HFMD
in Hefei, China, and the susceptible risk in urban areas
was much higher than that in rural ones [27]. High-risk
areas of HFMD incidence temporally varied from north-
east to southwest in Sichuan, China, and temperature
and per capita gross domestic product (GDP) were the
main positive driving factors [13].

Non-linear associations have been found between the
HFMD incidence and meteorological, land-use, normal-
ized difference vegetation index (NDVI) and socioeco-
nomic factors in Shandong, China [18]. Many other
studies have also focused on exploring of HFMD spatio-
temporal patterns and the associated driving factors, by
considering a variety of methods [3, 11-14, 16, 18, 20,
22-24, 26-34]. However, the measurement and predic-
tion of the HFMD incidence are usually considered sep-
arately, and rarely in an integrated fashion. The former
is mainly accomplished by using case reports, while the
latter requires specific quantitative models. The model-
ing of HEMD transmission and the corresponding ana-
lysis results could be influenced by explanatory variable
selection, spatial autocorrelation, spatial stratified het-
erogeneity, spatiotemporal nonstationary, etc. Excluding
the above factors, the unsatisfactory performance of
some specific models is probably caused by both the
prediction uncertainty and the measurement noise. On
the other hand, the measurement and prediction could
be combined recursively in the modeling of HFMD
transmission. Considering both the measurement noise
and the prediction uncertainty can positively improve
the estimation accuracy of the HFMD incidence, and
could possibly offer a fresh perspective in exploring spa-
tiotemporal patterns and determinant factors of the epi-
demic. This study aims to estimate the spatiotemporal
evolution of the HFMD incidence by districts using a
Kalman filter integrated with geographically weighted re-
gression (GWR), to explore the spatiotemporal variation
characteristics and potential risk regions, and to quanti-
tatively evaluate the influence of meteorological and so-
cioeconomic factors on the HFMD variation.

Methods

Study region

Shandong is an eastern coastal province of China and is
located between 34° 23" and 38° 24" north latitude and
between 114° 48" and 122° 42’ east longitude (Fig. 1). It
extends to the Yellow Sea in the east and is bordered by
the Hebei, Henan, Anhui and Jiangsu provinces from
northwest to southwest. The Shandong province has a
total population of approximately 100.47 million and a
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Fig. 1 Location of Shandong province and weekly average incidence rates of HFMD in Thiessen polygons with 138 central sample locations.
Shandong geographic database were provided by National Geomatics Center of China (http://www.ngcc.cn/ngcc/) at a 1:1,000,000 scale as the
layer's attribute. Thematic mapping was implemented in the ArcGIS platform (ESRI Inc)
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total land area of 157,100 km”. The gross domestic prod-
uct (GDP) of Shandong province was 7646.97 billion Yuan
in 2018. Shandong falls in the warm temperate monsoon
climate zone, with an annual average temperature and
precipitation in the ranges of 11-14.°C and 550-590 mm,
respectively. More than 60% of the annual rainfall in the
Shandong province is registered in the summer, and high
temperatures usually occur in seasons with high
precipitation.

Data

From May 1st, 2008 to March 19th, 2009 (47 weeks),
weekly HFMD incidence reports for a total of 138 dis-
tricts in Shandong were collected from the Chinese
Centre for Disease Control and Prevention. To reduce
the influence of population size, weekly incidence rates
were calculated to reflect the risk of the HFMD epi-
demic for sample locations, and the corresponding
Thiessen polygons were constructed to account for
spatial effects (Fig. 1). Monthly meteorological data from
May 2008 to March 2009 were obtained from the China

National Meteorological Information Center (http://data.
cma.cn/), including the daily average, maximum, and
minimum temperatures (°C), the air pressure (hPa), rela-
tive humidity (%), wind speed (m/s), precipitation (mm)
and sunshine hours (h). The socioeconomic data were
collected from the 2008 statistic Yearbook of Shandong
province, including GDP (10,000 Yuan), ratio of the
number of primary school students to the total popula-
tion (%) and number of hospital beds per capita. u;—ug
and uo—u;; are used to denote the above eight meteoro-
logical factors and three socioeconomic factors, respect-
ively. Spatial Kriging methods were used to calculate the
weekly average meteorological factors for each sample
location during the 47-week study of HFMD epidemics.
Both dynamic meteorological factors and static socioeco-
nomic factors were normalized to the range of 0-1.

Geographically weighted regression model

Compared with the global multivariate regression model,
local models can be more effective at describing poten-
tial local variations in relationships between dependent
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and independent variables. The geographically weighted
regression [35, 36] is a typical local multivariate regres-
sion model extensively applied to measure the spatial re-
lationships between variables and corresponding local
variations across an entire area. Moreover, GWR model
can clearly detect and interpret any non-stationary fea-
tures of spatial patterns and associations, and has been
widely used to estimate the epidemic risk and assess the
influence of the epidemic determinants [37, 38]. The
GWR model used in this study is as follows:

v = a(u,vi) + Y Blw v+ Y yzi+e (1)
% ]

where y; is the HFMD incidence rate at location i with
coordinates u; and v, a (u; v;) is the corresponding
intercept constant, x;; are a series of independent vari-
ables describing local variations, i (u;, v;) are the local
regression coefficients to be estimated, which vary with
location, z;; are a series of independent variables con-
nected with the global stability, y; are the corresponding
static coefficients, and ¢; indicates the estimation error.

To approximate the HFMD incidence rate of each
sample location in Shandong province, we take the dy-
namic meteorological factors as the local variables x; in
the above GWR model, and the static socioeconomic
factors as the global variables z;. Therefore, every loca-
tion in the study area has a set of specific coefficients to
reflect the associations between the HFMD incidence
rate and the global or local variables. To solve the pro-
posed GWR model, we apply a Gaussian distance-decay
function to represent the relative importance between
locations and an adaptive kernel scheme to determine
the bandwidth (optimal number of neighboring loca-
tions), which is calculated through an iterative
optimization process according to the Akaike Informa-
tion Criterion (AIC). Meanwhile, the significance of the
estimated global/local coefficients was checked with
pseudo t tests and the model significance was tested by
variance analysis (F tests).

Kalman filter

The Kalman filter (KF) is a data fusion algorithm initially
designed to solve the discrete-data linear filtering prob-
lem and provides a recursive solution to estimate the
state variable of a time-varying system [39, 40]. In this
study, KF is used to estimate the HFMD incidence and
quantitatively assess the influence of risk factors. For a
specific district, we define a multivariate state space X,
which includes the HFMD incidence and several static
socioeconomic factors. The state space is time-varying
and calculated using the following parametric formula:

Xt =AXi 1 +BU + o (2)
where X, is the state vector containing the HFMD
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incidence and socioeconomic factors at time ¢, A is the
state transition matrix indicating the effects of each state
variable at time £-1 on the state vector at time ¢, U, is a
vector containing control variables which are dynamic
meteorological and static socioeconomic factors relevant
to this study, B is the control coefficient matrix indicat-
ing the effects of each control variable on the state vec-
tor, and w;, is a random variable representing the process
noise, which is drawn from a zero-mean Gaussian distri-
bution N(0, Q). Last, Q stands for the prediction noise
variance and accounts for the prediction uncertainty
compared with the real process. The prediction of the
time-varying state vector could be implemented as
follows:

X[:AX,_1+BUt (3)

where X, is the prediction state vector at time ¢ and X, ;
is the estimated (filtered) state vector at time ¢-1. The a
priori estimation error covariance of the above predic-
tion model propagates according to the equation:

P, = AP, AT +Q (4)

where P, is the estimation error covariance of the pre-
diction model at time ¢. Furthermore, by considering the
HFMD incidence Y as the most important variable in
the state vector X, we define a simple linear relationship
linking the measurement Y to the state vector X:

Yt = CX,j + Vs (5)

where Y, is the measurement HFMD incidence at time ¢
which is the observed incidence calculated based on the
reported cases, C is the observation operator matrix, and
v; is a random variable representing the measurement
noise which is also assumed to be drawn from a zero-
mean Gaussian distribution N(0, R). Similarly, R stands
for the measurement noise variance and represents the
measurement uncertainty.

When both the process prediction and the measure-
ment are considered, the a priori estimation error co-
variance f’t and the measurement noise variance R are
combined to generate the Kalman gain:

K, =P,C"/(CP,.CT +R) (6)

where K, stands for the Kalman gain at time ¢ and is ap-
plied to compute the a posteriori estimation of the state
vector at time ¢ as the following linear combination of
the a priori estimation X, and the actual measurement
Y

X, =X; + K, (Y~CX,) (7)

As a function of the state vector covariance and the
measurement noise, the Kalman gain K, is noticeably
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high if the estimation error covariance is much higher
than the measurement noise and the a posteriori estima-
tion of the state vector significantly follows the measure-
ments. Conversely, when K, is low, the filter will
essentially follow the predictions. In fact, K, establishes
the best combination between the process prediction
and the measurement in order to minimize the mean
square error between the a posteriori estimation X, and
its true value. After the update of the state vector as de-
scribed above, the a posteriori estimation error covari-
ance can be expressed as:

P, = (I-CK,)P, (8)

where [ is an identity matrix and P, indicates the estima-
tion error covariance after the prediction and the update
at time ¢. The a priori estimations take place at each step
of the recursive solution based on the last a posteriori
estimations, according to Egs. (3) and (4), the Kalman
gain at each step is computed according to Eq. (6), and
the a posteriori estimations which are also the a priori
estimations of the next step are generated according to
Egs. (7) and (8). Beginning from the initial state, the pre-
diction and the update appear at every single step of the
KF recursive solution.

Integration of the Kalman filter with the GWR model
Weekly averages of HFMD incidences in the sample lo-
cations were collected; the corresponding spatial auto-
correlation was weak, with a Moran’s I of 0.0208 (p =
0.5460, calculated in ArcGIS Pro 2.3, https://pro.arcgis.
com). However, the spatial stratified heterogeneity of the
HFMD incidence among counties was statistically sig-
nificant, with a GeoDetector g-statistic of 0.2153 (p <
0.001) [41, 42]. Therefore, GWR model was applied to
explore the global or local associations between the
HFMD incidence and meteorological or socioeconomic
factors. Eight meteorological factors (u;—ug) were ap-
plied to be local (varying) variables and three socioeco-
nomic factors (ug—u1;) were used as global (fixed)
variables. The GWR model to estimate the spatial distri-
bution of HFMD incidences can be described as:

Y, =a; + Z Bk + Z Yz + & 9)
% ]

where y; is the incidence at location i, a; is the intercept,
and ¢; indicates the estimation error. x;; denote the local
factors (u;—ug) and By, are the varying coefficients of
local meteorological variables at location i. z;; indicate
the global factors (u9—u;;) and y; are the static coeffi-
cients of global socioeconomic variables. For 138 moni-
tored districts of the studied area, coefficients y; are
constant, and coefficients f3;; are organized into a matrix
composed by 138 rows and 8 columns respectively.
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The GWR analysis was accomplished in GWR 4.0.90
software (https://gwrtools.github.io/) and produced an
overall coefficient of determination R* of 0.2482, which
was only an approximately 14% improvement compared
with the global regression prediction. No significant
local coefficients were found with an alpha level of 0.05
(see more in Additional file 1). Whereas specific correc-
tions can optimize the coefficient significance of pseudo
t test (e.g., a correction to avoid false positives in GWR
[43]), there might be false negatives in our results. These
were possibly caused by the measurement noise in the
HFMD incidence, as well as the prediction noise of the
GWR model. To better explore the spatiotemporal pat-
terns and assess the determinant factors of the HFMD
epidemic, we combined the Kalman filter with the GWR
model (Fig. 2). The filtering allows to couple the mea-
sured and predicted incidences, and improve the inci-
dence estimation accuracy. On the other hand, GWR
model indicates the associations between incidence and
determinant factors, and therefore could provide the
prediction modeling of state vector varying in the Kal-
man filter. Notice that, during the time-varying process
of Kalman filtering, the measurement and prediction
would be combined together to improve the estimation
accuracy recursively, and thus, the prediction effective-
ness of the state space model derived by GWR is not
pre-required. Furthermore, the influence sensitivity of
the control variables can be evaluated during the inci-
dence filtering process, and the corresponding determi-
nants of HFMD incidence can be quantitively assessed.

In our proposed Kalman filter, the multivariate state
vector X is composed by HFMD incidence (y) and static
socioeconomic factors (uo—111). Y indicates the mea-
sured incidence and the parameter C is a simple obser-
vation operator matrix that indicates the transition
between the state vector X and the measured incidence
Y. Notice that, the measurement Y can be a vector con-
sist of multiple explained variables (e.g. incidence and
prevalence), and therefore, Kalman filter is effective to
solve multivariate multiple regression problems.

The state transition matrix A models the variation of
the state vector that consists of the HFMD incidence
and the static socioeconomic factors from time ¢-1 to
time ¢. Coefficients y; derived from Eq. (9) indicate the
global relationships between the incidence (y) and static
factors (u9—u11). With a short 1-week timestep, the so-
cioeconomic variables are constant along with the recur-
sive solution. Thus, matrix A can be easily organized by
an identity matrix and a row vector of coefficients y;.

Both dynamic meteorological and static socioeconomic
factors were selected as the vector containing controls in
the Kalman filter. That is to say, vector U in Eq. (3) was
consisted of meteorological factors (u;—ug) and socio-
economic factors (uo—u11). The control coefficient
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matrix B in Eq. (3) indicates the effects of each control
variable on the state vector, and therefore, coefficients
B derived from Eq. (9) could be applied to generate the
parameter B in Eq. (3).

For different districts in the study area, the global and
local effects of the determinant factors on the HFMD in-
cidence vary spatially. Therefore, as shown in Fig. 2, we
integrated the GWR model into the Kalman filter, de-
rived the space-varying parameters A and B, and gener-
ated multiple filters for the various districts (138 filters
for 138 districts). The integration has two implications:
one is the variable correspondence and the other is the
parameter transitivity. The HFMD incidence was the ex-
plained variable in GWR model, as well as the measure-
ment Y in the Kalman filter. The local and global
explanatory variables in the GWR model were the meteoro-
logical and socioeconomic factors, which also constitutes
the control vector U of the Kalman filter. Moreover, the
state vector X in the Kalman filter contains the HFMD inci-
dence and the socioeconomic factors. For each district, the
global coefficients y; and the local coefficients f5;;, which in-
dicate the associations between the incidence and deter-
minant factors, were obtained from the GWR result. Thus,
the corresponding parameter A in the Kalman filter could
be constructed from the global regression coefficients in
the GWR model, while the parameter B using the local re-
gression coefficients. Different from the parameters A and
C, the control coefficient matrix B is district-dependent
(various Bs for districts), and the corresponding multiple fil-
ters describe the spatial variation of the HFMD incidence
evolution patterns and determinant influence effects.

During the recursive filtering process, the prediction

X; at time ¢ was calculated by the state space model with

the estimation X,; at time ¢-1 according to Eq. (3), and
the a priori estimation error covariance at time ¢ was
calculated with the a posteriori one at time ¢-1 according
to Eq. (4). The Kalman gain K; at time ¢ could be derived
from the a priori estimation error covariance and the
measurement noise variance according to Eq. (6). And
the a posteriori estimation X, at time ¢ was updated ac-
cording to Eq. (7), which indicates the estimated HFMD
incidence of a specific district at time ¢. The correspond-
ing a posteriori estimation error at time ¢ could be calcu-
lated according to Eq. (8). After the time-varying
recursion, the estimations and errors of HFMD inci-
dences of all sample locations could be implemented.

Results

Kalman filtering validation

The HFMD incidence rates of 138 monitored districts
were obtained in 47 weeks (from May 1st, 2008 to
March 19th, 2009). For each of the sample districts con-
tinuous weekly incidence rates were available, the week
index varying from 1 to 47. The average weekly inci-
dence by district varied with time and had a mean value
of approximately 0.936 x10™* (in a range of 0.043 x
10" *-4.851 x 10" *). Eight meteorological factors (air
pressure, daily average, maximum, and minimum tem-
peratures, precipitation, relative humidity, wind speed
and sunshine hours) were selected as the local dynamic
independent variables (u#;—ug), and the global static inde-
pendent variables (u9—u;;) were the following three so-
cioeconomic factors: GDP, ratio of primary school
students and number of hospital beds per capita. Both
dynamic and static variables were normalized to the
range of 0-1.
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To evaluate the overall efficiency of the Kalman filter
for HFMD incidence assessment, weekly incidence rates
and meteorological variables for the studied districts
were first aggregated to weekly average values. Next,
using the static socioeconomic variables, the regression
coefficients were calculated with the ordinary least
squares (OLS) linear regression method. Subsequently,
these coefficients were applied to generate the parame-
ters B and C within the Kalman filter model, and the ini-
tial prediction and measurement errors were assumed to
be drawn from a standardized Gaussian distribution. As
shown in Fig. 3a, the filtering provided an adjustment to
the weekly average HFMD incidences in the 138 districts
to some extent compared to the corresponding mea-
sured values, and the estimated HFMD incidences
followed a similar distribution as the measurements. Fig-
ure 3b illustrates that the original measurement errors
varied among districts, high-value errors correlating to
districts with high-value measurements; the estimation
errors after filtering only apparently approach zero (the
blue error curve presents an approximately horizontal
line around the x axis). Even in districts with high-value
measured incidence, the Kalman filter satisfactorily re-
duces the estimation errors. The measurement and esti-
mation errors of the HFMD incidences in districts are
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mapped in Fig. 4a. The HFMD incidence errors were re-
duced from the range of —3.55 x 10" *~3.64 x 10™* to -
0.21 x 10" *~0.41 x 10~ % The Kalman filter significantly
reduced the incidence errors for the majority of the dis-
tricts, especially for those with large measurement er-
rors. Figure 4b illustrates the reduced error distribution
after filtering: although several districts received negative
error reductions, the errors that increased were small
and approximately 10% of the reduced ones. Regions
with large error reductions and large HFMD incidences
had similar reduced error distributions and were sur-
rounded by regions with negative error reductions (the
light-yellow polygons surround the dark-green ones).
Overall, the Kalman filter plays an effective role for
HFMD incidence assessment even if the filter parame-
ters are derived from the OLS linear regression without
spatial variances. The measurement error covariance was
0.5686, whereas the estimation error covariance was sub-
stantially reduced to 0.0211 after filtering.

The spatiotemporal pattern of HFMD incidence filtering

After the overall validation of the Kalman filtering for
the HFMD incidence assessment, we applied this model
to explore the spatiotemporal patterns of HFMD inci-
dences for all 138 districts. The local and global

15 T T T

| @

—_
(=]
[

HFMD Incidence
i

- - - Measurement
— Estimation

120 140

Error

4 I I I
0 20 40 60

Measurement and estimation errors

County ID

Fig. 3 Efficiency evaluation of the Kalman Filter for the HFMD incidence assessment. (@) Measurement and estimation incidences. (b)

80 100 120 140




Hu et al. BMC Public Health (2020) 20:479 Page 8 of 15

2
Reduced Errors
-31-.00
.01-.26
.27 - .61
62-1.05

Estimation Error Measurement Error
o -21-.10 © -355--62

® 1M-4 @ -61-.14 [ 1.06 - 2.02
County @ 15-60 N 2.03 - 3.60
ey © o114 County
O 143-364 - Clty.
~ Main Rivers
0 25 50 100 km 0 25 50 100 km
- -

Fig. 4 Error distributions of the global HFMD incidence filtering. (a) Measurement and estimation errors. (b) Reduced errors. Shandong
geographic database were provided by National Geomatics Center of China (http://www.ngcc.cn/ngcc/) at a 1:1,000,000 scale as the layer's
attribute. Thematic mapping was implemented in the ArcGIS platform (ESRI Inc)

J

coefficients of dynamic meteorological factors (u;—usg)
and static socioeconomic factors (#9—1£1;) on the HFMD
incidences of each district were separately calculated
using the GWR model. The corresponding parameter B
of the Kalman filter is a matrix array that includes 138
control coefficient matrices ([11 x 4]), indicating the ef-
fects of meteorological and socioeconomic factors (u;—
u11) on the state vector for 138 districts, respectively. A
total of 138 Kalman filters with spatial variations were
used to assess the temporal changes of HFMD incidences
in the studied districts under the determinant factors (z;—
u11). As shown in Fig. 5a, the average errors of measured
incidences started with a high initial value and varied from
week 1 to week 47; the error interval of 1 standard devi-
ation (1-StdDev) around the average showed local fluctua-
tions, which are probably related to the abnormal
temporal intervals of the HFMD incidence evolution. For
instance, there was a tiny error increase that appeared in
the 28th week (beginning on November 6th) accompany-
ing a substantial interval expansion; the error intervals ex-
panded significantly even when the error mean decreased
to nearly zero in weeks 46 and 47 (beginning on March
12th). Figure 5b shows that, compared to the measure-
ments, the error means and 1-StdDev intervals of meas-
urement incidences were reduced. However, considering
the above-mentioned temporal anomalies, even after fil-
tering the error means and 1-StdDev intervals were still
large in the first 8 weeks (beginning on May 1st). That is
to say, the HFMD epidemic in Shandong probably had
pronounced seasonality features, usually evolving from
mid-March, increasing until late June and with a potential
reversal in early November.

To explore the spatial variation of the HFMD inci-
dence filtering, the error covariances of incidence mea-
surements and estimations by district were analyzed as
shown in Fig. 6a. The majority of districts had

satisfactory reductions of error covariances after filtering
and several districts received noticeable reductions even
when the original error covariances were large. However,
the error covariances of several districts were still signifi-
cant after filtering, and the Kalman filters played a weak
role in these districts (their positions are indicated by
red arrows). Figure 6b illustrates the spatial variation of
the reduced error covariances by district after HFMD in-
cidence filtering. The average error covariance of mea-
sured incidences was 0.3841, whereas the average
estimated incidence error covariance was reduced to
0.1846, indicating an overall improvement of over 50%
error reduction. However, several districts with signifi-
cant error reductions overlapped to a certain extent with
districts of large estimated incidence error covariances
(Fig. 6). In other words, the HFMD incidence evolutions
in these districts were abnormal, deeming such areas as
potential risk regions of HFMD epidemic outbreaks.
Further considerations were proposed in these specific
districts, and among them (Fig. 6b), error covariances of
estimated incidences were classified in natural breaks
and mapped in Fig. 7a. Judging by the temporal varia-
tions of the filtered HFMD incidence errors in each dis-
trict, three classes of potential risk areas were
distinguished, and presented separately in Fig. 7b, ¢ and
d, respectively. The temporal measurement curves and
the estimation errors in two districts of the same class
were extremely similar to each other. Although the
spatial aggregation feature of these abnormal districts
was weak (Fig. 7a), we could still classify potential
HFMD risk regions into three categories by using the
Kalman filter model in association with the meteoro-
logical and socioeconomic factors. As shown in Fig. 7b,
the error curves of HFMD incidence filtering greatly var-
ied in the early period but maintained a long-term
steady trend. The second type of potential risk regions is
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Fig. 5 Temporal variation of the average errors of filtered HFMD incidence by district (the shaded area denotes the interval of 1 standard
deviation around the average error). (@) Measurement errors. (b) Estimation errors

illustrated in Fig. 7c¢; such regions present a relatively
long-term steady trend with slight variations within a
few intervals. Last, the third type had significant oscilla-
tions during the long-term period and unsteady oscilla-
tions appear in unpredictable localized time intervals
(Fig. 7d). Evidently, the former two types of potential
HEMD risk regions raise concerns during the localized
periods, especially in HFMD high-incidence seasons. Al-
though the risk regions of the latter type were probably
characterized by relatively low incidences, the HFMD
epidemic evolutions were unsteady in the long-term,
thus more prevention and control policies (e.g. long-
term epidemic surveillance) should be implemented in
these specific districts. Overall, the proposed HFMD in-
cidence filtering in Shandong showed a strong seasonal

dependence and several specific potential HFMD risk re-
gions were found without significant spatial clustering.

Influence sensitivity of determinant factors

The control coefficient matrix B of the Kalman filter was
generated from the GWR results to indicate the relation-
ships between the HFMD incidence and meteorological
or socioeconomic factors. To assess the influence that
each factor has on the HFMD incidence, we defined an
index {; (j= 1-11) to describe the assumed enhancement
effect of determinant factors (u;—u;;). Experiments were
repeated to evaluate the influence sensitivity of each dy-
namic or static factor on the HFMD incidence filtering.
In experiment j, {; varied from 0 to 5 with a step of 0.5,
which indicates that the enhancement effect of factor u;
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had a step size of 50% increase, while the {; (i #j) of
other factors was kept invariant. The average errors and
covariances of incidence estimations by district were ap-
plied to assess the influence sensitivity of meteorological
and socioeconomic factors.

Figure 8a and b demonstrate the variations of the aver-
age estimation errors and covariances of HFMD inci-
dence filtering along with the variation of each
meteorological factor. As expected, the temperature fac-
tors (up—uy) played the most important roles in the rela-
tionship with HFMD incidence filtering, and the average
estimation errors and covariances were both sensitive to
their enhancement effects, suggesting that higher
temperature variations would cause a higher HFMD
variation. Air pressure (;) was a secondary determinant
affecting the HFMD variation approximately 25% as
strongly as the temperature factors (Table 1). The next
secondary determinants were sunshine hours, relative
humidity, and precipitation (us, us, us). Compared to the
latter rainfall factors, the effect of sunshine hours on the
HFMD incidence variation was almost twice as much
(Table 1). As shown in Fig. 8a and b, the wind speed
(147) played a very weak role in HFMD incidence filter-
ing, with a relative variation of nearly zero, reflecting
that the HFMD epidemic probably had little airborne
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contagious transmission. Figure 8c and d illustrate the
influence of socioeconomic factors on the HFMD inci-
dence filtering. The number of hospital beds per capita
(#11) was the dominant determinant, followed by the
GDP (uo), which influenced the HFMD incidence ap-
proximately 30% as strongly as the dominant factor
(Table 1). The relative variation of HFMD incidence fil-
tering with the ratio of primary school students (i)
was very slight (Table 1), suggesting that the amount of
susceptible population in the studied region was prob-
ably not the leading cause of the HFMD variation. Over-
all, the daily average, maximum, and minimum
temperatures and air pressure were the dominant me-
teorological factors, while the number of hospital beds
per capita and GDP were the dominant socioeconomic
ones that influenced the HFMD incidence variation in
Shandong. Concomitantly, the HFMD variation was ex-
tremely slight even at high values of the wind speed and
ratio of primary school students.

Discussion

In recent years, Kalman filters have been extensively
used in a variety of applications, such as land cover clas-
sification [44] or landslide susceptibility evaluation [45].
Typical applications in Earth science concentrate on
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Table 1 Relative variations of average errors and covariances of HFMD incidence filtering with meteorological and socioeconomic

factors
Determinant factors Variable Relative variation (%)

Average error Average covariance
Air pressure (hPa) Uy 495 278
Daily average temperature (°C) U 21.05 11.92
Daily maximum temperature (°C) us 18.05 10.65
Daily minimum temperature (°C) Uy 1714 8.07
Precipitation (mm) Us 148 048
Relative humidity (%) Ug 1.49 042
Wind speed (m/s) Uy 044 0.12
Sunshine hours (h) Ug 277 0.96
Gross domestic product (GDP) (107 CNY) Ug 0.65 1.54
Ratio of primary school students (%) Uio 0.19 044
Number of hospital beds per capita U 2.78 4.95

remote sensing image processing [44, 46—49] and data
assimilations in the fields of agriculture [50-52], agrol-
ogy [53, 54], ecology [55], hydrology [56, 57], oceanog-
raphy [58] and others. In epidemiology, Kalman filters
are usually applied to the mathematical modeling of epi-
demic spreads for diseases such as HIV/AIDS and Ebola
[59-61]. In the present study, a Kalman filter was used
to estimate the spatiotemporal evolution of HFMD inci-
dence in 138 districts of the Shandong province, China,
by integration with a GWR model to identify the local
relationships between the HFMD incidence and risk fac-
tors. The proposed integrated model showed significant
improvement in the HFMD incidence estimation accur-
acy. The spatiotemporal variation characteristics and po-
tential risk regions of HFMD incidence were explored,
and the influence of meteorological and socioeconomic
factors on the HFMD variation were assessed. The re-
sults showed that the Kalman filter was effective for the
HFMD incidence assessment in Shandong and produced
a reduction of error covariance from 0.5686 to 0.0211 at
the provincial scale. Considering the spatial variation of
Kalman filters for various districts, the error covariance
was reduced from 0.3841 to 0.1846 after filtering. Fur-
thermore, filter processing allowed to identify potential
HEMD risk regions: three categories of risk regions
could be distinguished, with manifest filtering oscilla-
tions in the initial, local and long-term periods, respect-
ively. Although the detected potential risk regions did
not exhibit significant spatial clustering, more attention
should be paid to these districts, especially the ones in
the third category, with long-term filtering oscillations.
In addition to exploring the HFMD spatiotemporal
patterns, the influence sensitivity of meteorological and
socioeconomic factors was determined. We found that
three temperature factors were the dominant meteoro-
logical determinants of the HFMD epidemic in

Shandong, although the air pressure also affected the
HFMD epidemic to a certain extent; however, wind
speed had no manifest effect. Intense variations of
temperature or air pressure produced high variations of
HFMD incidence, whereas the influence of wind speed
on the epidemic incidence was negligible and unclear.
The HEMD related viruses are probably sensible to tem-
peratures and air pressure. The main transmission
routes of HFMD epidemic are the intimate contacts, and
the wind speed influences slightly to the epidemic
spread. With an overall shortage of rainfall in Shandong
province, the HFMD epidemic spread might have less
sensitivity to precipitation and relative humidity in a
low-value level. Our findings are consistent with a num-
ber of previous studies [13, 18, 25, 26, 62, 63]. The envir-
onmental temperature relates to behavioral patterns
such as increased contact among young children,
thereby facilitating the spread of an HFMD infection
[16]. However, our results indicate that meteorological
factors such as precipitation, relative humidity and sun-
shine hours were not strongly associated with HFMD in-
cidence, which is partially inconsistent with some of the
previous studies. For instance, precipitation was strongly
correlated with HFMD incidence in Singapore [25], and
the number of HEMD cases increased significantly with
increasing relative humidity in Japan [26]. HEMD cases
at the county level across mainland China were spatially
clustered and closely linked to the amounts of monthly
precipitation in the region [24]. Relative humidity and
precipitation were also found as the dominant driving
factors of HFMD incidence in Henan, China [16]. More-
over, compared to GDP and ratio of primary school stu-
dents to the total population, the number of hospital
beds per capita appeared to be more dominant in
HFMD incidence in Shandong. The children behavior
patterns were possibly consistent amongst the districts
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with various economic levels around Shandong province.
The influence of the population density background was
already partially reduced during the calculation The
HFMD incidence. The healthcare level played a manifest
role in the controls of the HFMD epidemic spread in
Shandong province. This result differs from other stud-
ies as well. For instance, GDP was the primary risk fac-
tor contributing to the spatial distribution of HFMD
incidence in Sichuan and Henan, China [13, 16]. Possible
reasons for this discrepancy include the differences be-
tween the studied regions, different transmission mecha-
nisms of the HFMD epidemics, seasonal variations of
meteorological factors, scale effects, zoning effects and
others.

This study provides a multi-perspective on estimating
the spread of an HFMD epidemic by combining meas-
urement noise with prediction uncertainty and demon-
strates a novel approach to exploring the spatiotemporal
patterns and determinant factors of an HFMD epidemic.
Nevertheless, there are several limitations to this study,
described as follows. First, we generated the basic local
associations between the HFMD incidence and meteoro-
logical and socioeconomic factors using a GWR model
without considering an HFMD mathematical model.
Also, a limited number of driving factors were selected,
which could have led to an insufficient description and
interpretation of the HFMD epidemic dynamic mechan-
ism. Second, our method was trained on county-level
data from the Shandong Province of China from 2008 to
2009, and applied only for the pattern exploration and
risk assessment of the HFMD epidemic. This approach
could easily be extended to other regions and infectious
diseases similar to HFMD, although it should be accom-
panied by a thorough analysis and benchmarking of the
model on the new problem. Lastly, it was hypothesized
that the measurement and prediction noises of the Kal-
man filter followed a zero-mean Gaussian distribution,
and the model of the state vector and control variables
was linear. These assumptions might have limited the
applicability of the model; appropriate improvements
could include non-linear filters and non-Gaussian noise
distributions such as an extended Kalman filter (EKF),
an unscented Kalman filter (UKF), or a particle filter
(PE).

Conclusion

This study introduces a novel perspective to explore the
spatiotemporal patterns and determinant factors of an
HFMD epidemic. To this purpose, a Kalman filter
method integrated with the GWR model with the aim to
identify the global and local relationships between
HEMD incidence and dynamic meteorological and static
socioeconomic factors was designed. The proposed
method considers both measurement noise and
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prediction uncertainty, which reduces the estimation
error covariance of the HFMD incidence and improves
the estimation accuracy. The filter processing could help
explore the spatiotemporal patterns and determinants of
the HFMD epidemic. As a result, three specific categor-
ies of potential risk regions of HFMD epidemics in
Shandong were identified, with temperature factors and
number of hospital beds per capita as the dominant de-
terminants of the epidemic incidence. Furthermore, our
approach can be extended to other regions and other in-
fectious diseases similar to HFMD.
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