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Abstract: Fire is an important disturbance in terms 
of forest management. A comprehensive 
understanding of the relationships between the 
spatial distribution of fire occurrence and its driving 
factors are critical for effective forest fire management. 
To reveal biogeoclimatic and anthropogenic 
influences, this study introduced a geographical 
detector model to quantitatively examine the effects 
of multiple individual factors and their combinations 
on spatial patterns of fire occurrence in the Greater 
Khingan Mountains between 1980 and 2009. The 
geographical detector computes the explanatory 
power (q value) to measure the connection between 
driving factors and spatial distributions of fire 
occurrence. Kernel density estimation revealed the 
spatial variability of fire occurrence which was 
impacted by bandwidth. 30 km might be the optimal 
bandwidth in this study. The biogeoclimatic and 
anthropogenic effects were explored using topography, 
climate, vegetation, and human activity factors as 
proxies. Our results indicated that solar radiation had 

the most influence on the spatial pattern of fire 
occurrence in the study area. Meanwhile, Normalized 
Difference Vegetation Index, temperature, wind speed, 
and vegetation type were determined as the major 
driving factors. For various groups of driving factors, 
climate variables were the dominant factors for the 
density of fire occurrence, while vegetation exerted a 
strong influence. The interactions between the driving 
factors had a more significant impact than a single 
factor. Individually, the factors in the topography and 
human activity groups exhibited weaker influences. 
However, their effects were enhanced when combined 
with climate and vegetation factors. This study 
improves our understanding of various driving factors 
and their combined influences on fire occurrences of 
the study area in a spatial context. The findings of this 
study verify that the geographical detector is 
applicable in revealing the driving factors of fire 
occurrence. 
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Introduction  

Fire plays a primary role in shaping fire-prone 
forest ecosystems (Amatulli et al. 2007; de Groot et 
al. 2013; Hu and Zhou 2014). Forest fires have 
long-term effects on species composition, structure, 
succession, and regeneration (Beck et al. 2011; Yi et 
al. 2013). Meanwhile, fires present serious threats 
to social systems, causing loss of life and damage to 
property (Syphard et al. 2012, 2013). Forest fire 
management requires an understanding of the 
spatial characteristics of fire occurrence patterns 
and a quantification approach for assessing the 
relative importance of various driving factors at a 
regional scale (Mundo et al. 2013). 

Fire occurrence is a complex process (Yang et 
al. 2007). Its spatial distribution is regulated by 
ignition agents and the environment (Faivre et al. 
2014). Fire occurrence is affected by multiple 
factors, such as climate, weather, vegetation, 
topography, and human activity. Climate is 
generally considered as a top-down control for fire 
patterns (Fan et al. 2017). Weather conditions are 
more important when predicting short-term fire 
behavior on an hourly or daily basis (Hawbaker et 
al. 2013) and determine the probability of ignition 
and spread (Littell 2018). Vegetation provides fuel 
in the form of live and dead plants. The 
flammability of the fuel is also determined by 
physical properties of vegetation. Topographical 
factors influence the spatial variability of fuel 
moisture and consequently affect fire occurrence 
(Lafon et al. 2007). Human activity factors may 
change the spatial patterns of fire occurrence 
because human-caused fires generally occur in 
proximity to roads and in areas with moderate road 
density due to accessibility (Faivre et al. 2014). 

Studies have examined the driving factors of 
fire occurrence in various regions using 
quantitative methods, such as the Poisson point 
process model (Yang et al. 2007; Liu et al. 2012), 
the classification and regression tree (Flatley et al. 
2011), random forest (Wu et al. 2014; Rihan et al. 
2019), logistic regression (Fan et al. 2017), and 
Poisson regression (Faivre et al. 2014). These 
methods can quantitatively reveal the effects of 
different factors on fire occurrence. However, two 
challenges have been observed. First, 
multicollinearity is common among various 
explanatory variables (Verdú et al. 2012), which 

can generate uncertainties in quantifying the 
contributions of individual factors. Although the 
variance inflation factor (VIF) has been used to 
reduce the multicollinearity effects and optimize 
the selection of the variables for models (Chen et al. 
2015, Verdú et al. 2012, Wu et al. 2014), a reliance 
on VIF values could cause powerful explanatory 
variables for fire occurrence to be missed. For 
instance, Wu et al. (2014) found that duff moisture 
content showed strong multicollinearities within 
the climatic variable group (VIF=43.4). However, 
one study indicated that duff moisture content was 
the most significant predictor of fire occurrence 
(Wotton and Martell 2005). Moreover, different 
VIF value have been used to select the driving 
factors in various studies (Chen et al. 2015; Verdú 
et al. 2012; Wu et al. 2014). Thus, the development 
of a new method that avoids multicollinearity 
among independent explanatory variables is 
needed. In addition, the need for improvements to 
quantitative approaches for assessing the effects of 
interactions has been recognized (Cary et al. 2006; 
Dillon et al. 2011; Falk et al. 2007). Rollins et al. 
(2002) suggested that topography, vegetation, and 
climate acted together on the spatial patterns of 
fire occurrences. Abatzoglou and Williams (2016) 
indicated that the changes in fire activity due to 
climate were modulated by the co-occurrence of 
changes in land management and human activity. 
There is a lack of evidence demonstrating that 
various factors interact to amplify or deamplify 
their influence on fire occurrence patterns (Flatley 
et al. 2011; Hawbaker et al. 2013). Using a 
quantitative model to identify the complex 
interactions among various factors that affect fire 
occurrence is a critical concern. 

Geographical detector can describe the 
relationship between geographical phenomena and 
driving factors without any linear hypotheses or 
restrictions (Wang et al. 2010). Initially, this 
method was developed to detect control factors 
underlying neural tube defect incidences. In the 
context of medical geography, the method has been 
applied to assess the spatial association between 
dissection density and environmental factors (Luo 
et al. 2016), identify the relationship between 
planting patterns and residual fluoroquinolones in 
soil (Li et al. 2013), and explore the impacts of 
physical and socioeconomic factors of built-up land 
expansion (Ju et al. 2016). The geographical 

User
高亮



J. Mt. Sci. (2020) 17(11): 2674-2690 

 2676

detector method can quantitatively characterize the 
separate effects of factors on geographical 
phenomena and avoids the multicollinearity among 
the driving factors. Moreover, this method can be 
used to quantitatively probe the interactive effects 
between different variables on geographical 
phenomena. 

A large number of forest fires occurred in 
Greater Khingan Mountains in recent decades 
(Zhong et al. 2003). This area is considered a 
notably fire-prone region in China (Liu et al. 2012). 
The fire suppression policy has altered the fire 
regimes in this region (Chang et al. 2008). The 
management operations on forest fire suppression 
have been invested in infrastructures, such as 
lookout towers, fire extinguishing planes, and fire 
barrier systems. At present, 98% of the total area is 
monitored by lookout towers in the Greater 
Khingan Mountains, and a team of fire-inspectors 
is deployed during the fire season. In addition, 
prescribed burns have been used to reduce fuel 
loads at assigned locations. Three homogeneous 
fire environment zones have also been defined for 
designing fire management plans (Wu et al. 2015). 
The interactions among driving factors of fire 
occurrence across the heterogeneous region are 
complex. A comprehensive understanding of the 
relative effects of various factors on the spatial 
pattern of fire occurrence is necessary to improve 
forest management plans. Consequently, the study 
area offers a good opportunity to identify the 
influences of individual factors and their 
interactions on the spatial pattern of fire 
occurrence by using the geographical detector 
method. 

The primary objective 
of this study was to 
quantitatively explore the 
spatial association between 
fire occurrence and the 
driving factors based on 
historical fire records and 
multisource biogeoclimatic 
and anthropogenic data. 
We addressed the following 
questions: (1) what were 
the driving factor and their 
relative importance in 
determining the spatial 
distribution of fire 

occurrence in the Greater Khingan Mountains? and 
(2) what would be the interactive influences 
between pairs of driving factors on fire occurrence? 

1    Materials and Method 

1.1 Study area 

The Greater Khingan Mountains are situated 
in the Northeast China on the border with Russia 
(Figure 1). The study area covers a total area of 
8.32×104 km2 and lies between 50°33′-53°32′ N 
and 121°9′-127°0′ E. The elevation varies from 150 
to 1500 m above sea level. A large proportion (81%) 
of the study area is covered by forested land. This 
interior region is characterized by a cool 
continental monsoon climate with long cold 
winters and short warm summers. The average 
annual temperature and precipitation range from 
 -4°C to -2°C and 350 to 500 mm, respectively (Hu 
and Zhou 2014). The study area spans two 
ecozones according to the Terrestrial Ecoregions of 
the World (Olson et al. 2001), with conifer and 
mixed forests observed in the west and east, 
respectively. Dominant tree species include 
Dahurian larch (Larix gmelini (Rupr.) Kuzen), 
Scotch pine (Pinus sylvestris Linn. var. mongolica 
Litvinov), Korean spruce (Picea koraiensis Nakai), 
Japanese white birch (Betula platyphylla), two 
species of aspen (Populus davidiana Dode and 
Populus suaveolens Fisch.), and Mongolian oak 
(Quercus mongolica Fisch. Ex Ledeb.) (Fang et al. 
2015). 

Figure 1 Map of the study area showing (a) extent of the Greater Khingan 
Mountains in Northeast China (dark gray area) and (b) locations of fire ignitions 
during 1980-2009 as displayed on top of the DEM image. 
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Surface fires are the main forest fires in the 
Greater Khingan Mountains (Xu 1998). Fire 
occurrences have been frequent with low intensity 
(Yi et al. 2013). According to the historical fire 
records, the fire return interval ranged from 15 to 
120 years for various tree species between 1971 and 
1980 (Zheng et al. 1986). The fire return interval 
has extended to ~500 years due to the fire 
suppression policy since the 1950s. Moreover, fires 
have become infrequent, but more intense than 
before (Chang et al. 2007; Liu et al. 2012). Fire 
occurrence obviously exhibits seasonal differences 
in the study area, with more ignition events 
occurring in the spring and fall. Therefore, two fire 
seasons are designated every year: from 15 March 
to 15 June and from 15 August to 15 November 
(Chang et al. 2007). 

1.2 Data 

1.2.1 Fire occurrence records 

Fire occurrence records were collected by 
forest managers and provided by the forest and 

grass fire prevention agency of Heilongjiang 
Province. A total of 607 fire events were recorded 
during the period 1980-2009 (Figure 1). 
Unfortunately, these records provide incomplete 
information about the causes of ignitions. 

1.2.2 Driving factors 

Based on an extensive literature review and 
available data, sixteen potential driving factors 
were chosen for the study area (Table 1). 

The elevation at a 30-arc-second 
(approximately 1 km2) spatial resolution was 
derived from the GTOPO30 digital elevation model 
(DEM) product (Figure 2), which was available on 
line through the USGS (https://earthexplorer. 
usgs.gov/). The aspect and slope surfaces were 
created by the DEM dataset using the surface 
toolbox of the ArcGIS 10.3 program (Figure 2). 
Slope was expressed in units of degrees. Aspect was 
divided into eight aspect classes (Figure 2). The 
TPI was calculated from the DEM as the difference 
between a cell elevation value and the average 
elevation of the neighborhood around that cell in a 

Table 1 Driving factors used to explain the spatial pattern of fire occurrence in the Greater Khingan Mountains, 
China. 

Category Factor Data source 

Topography 

Elevation (Faivre et al. 2014, Fan et al. 2017, Liu et al. 2012, 
Parisien and Moritz 2009, Prasad et al. 2008, Verdú et al. 2012, 
Wu et al. 2014) 

Global topography data (GTOPO30)

Aspect (Faivre et al. 2014, Parks et al. 2011, Verdú et al. 2012) GTOPO30 
Slope (Prasad et al. 2008; Liu et al. 2012; Verdú et al. 2012; Faivre 
et al. 2014; Wu et al. 2014; Fan et al. 2017) GTOPO30 

Topographic position index (TPI) (Prasad et al. 2008; Liu et al. 
2012; Verdú et al. 2012) GTOPO30 

Slope position (Prasad et al. 2008; Flatley et al. 2011) GTOPO30 

Geomorphology Geomorphology Map of the People’s 
Republic of China (1:1,000,000) 

Climate 

Annual total precipitation (Fan et al. 2017, Liu et al. 2012, Prasad 
et al. 2008, Verdú et al. 2012, Wu et al. 2014) WorldClim Version2.1 

Annual mean temperature (Liu et al. 2012, Prasad et al. 2008, 
Verdú et al. 2012, Wu et al. 2014) 

WorldClim Version2.1 

Daily mean solar radiation (Parisien and Moritz 2009, Verdú et al. 
2012) WorldClim Version2.1 

Mean wind speed (Fan et al. 2017) WorldClim Version2.1 

Vegetation 

Vegetation type (Liu et al. 2012, Parisien and Moritz 2009, Rollins 
et al. 2002, Wu et al. 2014) 

Vegetation Map of the People’s 
Republic of China (1:1,000,000) 

Normalized difference vegetation index (NDVI) (Hawbaker et al. 
2013; Fan et al. 2017) 

Global Inventory Modeling and 
Mapping Studies (GIMMS) 3g V1  

Human 
activity 

Population density (Faivre et al. 2014, Narayanaraj and Wimberly 
2012, Prasad et al. 2008) 1-km Gridded population of China 

Distance to the nearest settlement (Liu et al. 2012; Faivre et al. 
2014; Wu et al. 2014) 

National Geomatics Center of China 
(NGCC) 

Distance to the nearest road (Faivre et al., 2014, Fan et al. 2017, 
Liu et al. 2012, Narayanaraj and Wimberly 2012, Wu et al. 2014) 

NGCC 

Road density (Faivre et al. 2014, Fan et al. 2017, Liu et al. 2012, 
Narayanaraj and Wimberly 2012) NGCC 
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3×3 pixel window (Figure 2) (Prasad et al. 2008). 
SAGA 7.7 software was employed to calculate TPI. 
The slope position was a combination of the TPI 
and slope, and the landscape was classified into 
four categories based on the slope and TPI (Weiss 
2001): ridge (TPI > 8), upper slope (-8 < TPI ≤ 8 
and slope ≥ 6°), lower slope (-8 < TPI ≤ 8 and slope 
< 6°), and bottom (TPI ≤ -8) (Figure 2) (Prasad et 
al. 2008). The geomorphology was freely 
downloaded from the Resources and 
Environmental Data Cloud Platform (http://www. 
resdc.cn) as a polygon shapefile (Figure 2) (Cheng 
et al. 2011). 

The annual total precipitation, annual mean 
temperature, daily mean solar radiation, and mean 
wind speed were selected as climatic variables 
(Figure 3). Those climate variables were masked 
from gridded WorldClim Version 2.1 datasets, 
which were interpolated at 30-arc-second 
(approximately 1 km2) resolution over the period 
1970-2000 (Fick and Hijmans 2017). The global 
WorldClim dataset was obtained from a website 
(http://www.worldclim.org/). The original data 
were monthly values of precipitation and mean 
temperature. Thus, monthly precipitation and 
mean temperature were used to calculate the 

annual total precipitation and annual mean 
temperature, respectively. 

The dataset of vegetation types was acquired 
from a digital map originally published by the 
Chinese Academy of Sciences in 1982, and it was 
employed as a proxy dataset for the surface fuel 
map because the fuel conditions were difficult to 
describe (Fang et al. 2015). Vegetation types were 
represented by a number of polygons (Figure 4). 
The vegetation cover of the study area consists of 
needleleaf forests, needleleaf and broadleaf mixed 
forests, broadleaf forests, scrubs, marshes, 
meadows, and cropland. It was assumed that the 
vegetation within the study area was unchanged 
during the study period because primary tree 
species were planted in the burned and harvested 
areas by forest managers (Wu et al. 2014). The 
GIMMS 3g V1 NDVI dataset was available from the 
National Aeronautics and Space Administration 
Ames Ecological Forecasting Lab (https://ecocast. 
arc.nasa.gov/data/pub/gimms/). This dataset has 
a 15-day interval and spatial resolution of 1/12° 
(approximately 8 km2). Maximum value 
composition was used to obtain the annual NDVI. 
Then, the NDVI was calculated based on the mean 
annual NDVI during the period 1982-2009 (Figure 4). 

 
Figure 2 Spatial pattern of the topographical factors. The numbers in parentheses in the legends indicate the rank of 
categories for each driving factor. For the geomorphology, LAP= low altitude plain; LAPL=low altitude platform; 
LAH=low altitude hill; MAP=middle altitude plain; MAH=middle altitude hill; LRLAM=low relief low altitude 
mountain; LRMAM=low relief middle altitude mountain; and MRMAM=middle relief middle altitude mountain. 



J. Mt. Sci. (2020) 17(11): 2674-2690 

 2679

The population 
density, distance to the 
nearest settlement, 
distance to the nearest 
road, and road density 
were considered to 
represent human activity 
(Figure 5). Population 
density data were masked 
from the Gridded 
Population of China 
dataset at a 1 km2 
resolution that was also 
obtained from the 
Resources and 
Environmental Data Cloud 
Platform. The vector 
datasets of settlements 
and major roads were 
obtained from National 
Geomatics Center of China 
(NGCC) (http://www.ngc 
c.cn/) at a 1:1,000,000 
scale. The transportation 
network included province, 
county, and town level 
roads but not local road 
systems. We calculated the 
Euclidean distance from 
each cell centroid of the 
fire density map to the 
nearest road and 
settlement. The road density was estimated at the 1 
km2 grid cell level. 

1.3 Analysis 

1.3.1 Fire occurrence density 

The location of fire ignition was not a precise 
geographical position as it was the post-fire record. 
A continuous surface is able to minimize the effect 
of fire location uncertainty (Amatulli et al. 2007). 
Kernel density estimation (KDE) was employed to 
model the distribution of fire occurrences in the 
Greater Khingan Mountains in this study. The KDE 
method takes into account the symmetric 
probability density function for each point location 
to produce a smooth cumulative density function 
(Amatulli et al. 2007). The normal distribution 
function has been selected in the study. The size of 

bandwidth considerably influences the surface of 
the spatial fire pattern. Several methods were 
introduced to define the appropriate size of 
bandwidth in this study, including mean random 
distance (Riva et al. 2004; Koutsias et al. 2004), 
Silverman’s rule of thumb (Silverman 1986), 
Scott’s rule of thumb (Scott 1992), cross-validation 
(Diggle 1985), and likelihood cross-validation 
(Loader 1999). Bandwidth parameters derived 
from various methods were calculated using the 
‘spatstat’ package in R statistical software. Fire 
occurrence surface of KDE were formed the data 
output at a spatial resolution of 1 km. 

1.3.2 Effects of driving factors 

The effects of driving factors on fire 
occurrence density were examined using the 
geographical detector. This method is suitable for 
study area with strong spatial heterogeneity (Wang 

Figure 3 Spatial pattern of climate factors. The numbers in parentheses of legends 
indicate the rank of categories for each driving factor. 
 

Figure 4 Spatial pattern of two vegetation factors. The numbers in parentheses of 
legends indicate the rank of categories for each driving factor. 
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et al. 2016). According to 
the principle of the 
geographical detector 
(Figure 6), fire occurrence 
density should exhibit a 
spatial pattern similar to 
that of a driving factor 
responsible for fire 
occurrence (Wang et al. 
2010). Geographical 
detector belongs to 
analysis of variance scope 
(Wang and Xu 2017). 
Unlike the traditional 
regression model, the 
geographical detector 
method has no linear 
assumptions or 
restrictions, such as the 
homogeneity of variances 
or independent error. 
Therefore, it is not 
necessary to consider 
multicollinearity among 
the explanatory variables 
since their effect intensity 
is tested separately (Zhan 
et al. 2017). The method 
can detect implicit 
interrelationships 
between driving factors 
and fire occurrence 
density with respect to the 
explanatory and response 
variables (Xu 2017). The 
geographical detector 
includes four detectors: 
the factor detector, risk detector, interaction 
detector and ecological detector. In this study, the 
first three detectors were selected in the analysis. 

The geographical detector can accommodate 
explanatory variables that are categorical variables 
(e.g., vegetation type) and quantitative variables 
(e.g., elevation). However, quantitative variables 
should be segmented into various categories. The 
aspect, slope position, geomorphology and 
vegetation type were categorical variables with 
eight, four, eight, and seven classes each, 
respectively. A portion of quantitative variables, i.e., 
elevation, slope, TPI, precipitation, temperature, 

solar radiation, wind speed, NDVI, and road 
density, were segmented into five categories each 
using the natural break method. The rest of 
quantitative variables, i.e., population density, 
distance to the nearest settlement, and distance to 
the nearest road were also segmented into five 
categories based on spatial variation. The selection 
of five categories to discrete quantitative variables 
was based on reported applications of geographical 
detector review. There were fewer categories in the 
study area, which might lead to an inefficient 
ability to reflect the spatial heterogeneity of fire 
occurrence. In contrast, there were more categories 
that could scatter the data. The natural break 

Figure 5 Spatial pattern of four human factors. The numbers in parentheses of 
legends indicate the rank of categories for each driving factor. 

 

 
Figure 6 Illustration of the geographical detector, including (a) the classified map 
representing the driving factor xi; (b) the grid layer representing the response 
variable y; and (c) the overlay of driving factor xi and response variable y. There are 
three categories denoted by h1, h2 and h3 (L=3) for driving factor xi; eight units 
(N=8) in the study area; and there are three, three and two units for categories h1, h2 
and h3, respectively (N h1=3, N h2=3, and N h3=2). 
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method can help identify the minimum and 
maximum variance within and among intervals. 
The polygons or pixels with the same attribute were 
aggregated as a category for a driving factor. Each 
polygon or continuous pixels with same the 
attribute were considered to be a unit. Categorized 
attributes of all driving factors were extracted for 
each cell of fire occurrence density. The density 
values of all cells and their attributes of all driving 
factors were inputted into the geographical 
detector software which was obtained from 
http://www.geodetector.org/. 

In the geographical detector model, the factor 
detector was used to quantify the degree of the 
separate effect of each driving factor on the 
observed spatial pattern of fire occurrence density. 
The factor detector is used to explore driving 
factors by comparing the variances of fire 
occurrence density in different categories with the 
variance of fire occurrence density over the entire 
study area. If a factor is a determinant of fire 
occurrence density, then the dispersion variance of 
the fire occurrence area of each category is small; 
otherwise, the variance between categories is large. 
Initially, the effect of a factor was generally 
measured by the power of determinant (PD) value 
in the factor detector (Wang et al. 2010). The PD 
value was recently renamed the q statistic and is 
defined as follows (Wang et al. 2016): 

2
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where N represents the number of units in the 
study area for a certain driving factor; σ2 represents 
global variance of fire occurrence density in the 

entire study area; h=1, 2, 3, … , L, with L 
representing the number of categories of the 
driving factor, i.e., L is 8 for aspect (Figure 2) and L 
is 5 for temperature (Figure 3); Nh  represents the 
number of units in category h; ߪ௛ଶ  represents the 
local variance of category h; ym represents the value 
of the mth unit from the entire study area; y is the 
global mean of y over the entire study area; yh,k 
represents the value of the kth unit of y in category 
h; and ݕ௛തതത represents the local mean of y in category 
h. The value of q is typically within the range [0,1], 
with values close to 1 indicating that a factor has a 
strong influence on fire occurrence density and 
values close to 0 indicating a weak influence on fire 
occurrence density. Therefore, the q value 
represents the determinant power or relative 
importance of a factor. The corresponding p-value 
is based on a noncentral F-distribution (Wang et al. 
2016). 

The risk detector was used to search for the 
fire-prone areas in the Greater Khingan Mountains. 
In this study, risk is identified by magnitude of 
average fire occurrence density in a category for a 
certain driving factor. Meanwhile, the risk detector 
can be used to examine whether the density of fire 
occurrence was significantly different between any 
two categories for each factor based on a t-test.  

The interaction detector was used to identify 
whether any two driving factors impart synergistic 
effects on the spatial pattern of fire occurrence 
density in the Greater Khingan Mountains. The 
interaction between two driving factors xi and xj is 
assessed by comparing values of interaction qij with 
values of qi and qj, where qij is the power of 
determinant for a new factor created by overlaying 
factors xi and xj (Figure 7). There may be three 
primary types of interaction relationships, 
including combined weakened effects, combined 
enhanced effects, and completely independent 
effects on spatial patterns of fire occurrence. In 
detail, the interaction detector can define seven 

Figure 7 Illustration of the interaction effects using the geographical detector method: (a) layer of driving factor xi; 
(b) layer of driving factor xj; (c) a new layer created by overlaying driving factors xi and xj ൫ݔ௜  ௝൯. Then, the q valueݔ⋂
of the new factor is calculated vis Eq. (2). 
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interaction relationships (Table 2). 

2    Results 

2.1 Fire occurrences modeling 

The bandwidth parameters estimated from 
mean random distance, likelihood cross-validation, 
cross-validation, Scott’s rule of thumb, and 
Silverman’s rule of thumb are 5853 m, 11,168 m, 
12,770 m, 31,635 m, and 32,562 m, respectively. To 
perform a visual-subjective evaluation, KDE was 
applied using seven alternative bandwidths, those 
of 5 km, 10 km, 15 km, 20 km, 25 km, 30 km, and 
35 km (Figure 8). The maximum densities for 
various surface decrease with bandwidths 
increasing. There are scattered patterns of fire 
occurrences using a less than or equal to 
bandwidths of 15 km. Meanwhile, the fire ignition 
density explicitly presents spatial patterns of fire 
occurrence variability when the bandwidths are 
over 20 km. Koutsias et al. (2004) suggested that 
an appropriate bandwidth produced density 
estimates whose values tend to follow a normal 
distribution. Therefore, a Kolmogorv-Smirnov test 
was used to test whether the estimates follow a 
normal distribution. Results of the test indicated 
that the bandwidth of 30 km was appropriate to be 
estimated fire occurrence density in the study area. 

2.2 Sensitivity of the geographical detector 
to bandwidths of KDE 

In order to understanding sensitivity of the 
geographical detector for different smooth surfaces, 
factor detector was applied to various fire density 
surfaces which were derived from seven alternative 
bandwidths of KDE (Figure 9). The q values of all 
the driving factors are statistically significant 
(p<0.01) for various fire density surfaces. Most of 
the q values for single driving factor tended to 
increase with increasing bandwidths, with 
exception of those for geomorphology and four 
human activity factors. The q values and ranks of 
geomorphology showed distinctly instable for fire 
density surface derived from various bandwidths. 
The bandwidths of KDE primarily impact on 
explanatory power of driving factors. Note that the 
factors with relatively high q values displayed 

similar ranks when factor detector was applied for 
fi re density surfaces at the bandwidths of 30 and 
35 km. Taking into account appropriate bandwidth 
and the sensitivity of geographical detector to 
bandwidths, the fire density surface derived from 
30 km bandwidth was used for the following 
analysis. 

2.3 Factor detector 

The factor detector was used to determine the 
relative influence of single driving factors on the 
incidence of fire. Solar radiation shows the biggest 
q value (0.2381) among all factors, indicating that 
it is the most influential factor on fire occurrence 
density over the period 1980-2009. The q values of 
four other factors (NDVI, temperature, wind speed, 
and vegetation type) were relatively high with 
values ranging from 0.1044 to 0.1756. We consider 
these five variables with q values greater than 0.1 
as being the major driving factors determining the 
spatial patterns of fire occurrence in the study area. 
It is notable that all major determinants are 
climate and vegetation factors. The contribution of 
topographic and human activity factors is clearly 
lower than the contribution of climate and 
vegetation factors. To compare the relative 
influence of the topographic, climatic, vegetation, 
and human activity variables on the spatial pattern 
of fire occurrence, we calculated the average q 
values for various groups of driving factors. In 
descending order, the average q values of climate, 
vegetation, topography, and human activity factors 
are 0.1470, 0.1400, 0.0169, and 0.0070, 
respectively. 

Table 2 Seven potential interactions between pairs of 
driving factors and the relationships between individual 
q values and the interactive q value of any two factors 
(Xu 2017). 

Interaction relationship Description 

Nonlinear weakness q (A ∩ B) < q (A) and q (B) 
Univariate weakness q (A ∩ B) < q (A) or q (B) 
Weakness q (A ∩ B) < q (A) + q (B) 
Enhancement q (A ∩ B) > q (A) or q (B) 
Bivariate enhancement q (A ∩ B) > q (A) and q (B) 
Nonlinear enhancement q (A ∩ B) > q (A) + q (B) 
Independent q (A ∩ B) = q (A) + q (B) 

Note: the symbol ‘∩’ denotes the interaction between A 
and B. 
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2.4 Risk detector 

We used the risk detector to investigate the 
density of fire occurrences for various categories of 
the major driving factors in the Greater Khingan 
Mountains (Table 3). The highest density of fire 
occurrence (0.0113 per km2) was found in a region 
with greater than 12,641 kJ/m2·day (rank 5) of 
solar radiation. A relatively high density of fire 
occurrence (greater than 0.01 per km2) was 
observed in a category where the NDVI is less than 
0.8773 (rank 1) and in mars hes vegetation types 
(rank 5). The fire occurrence density increases with 
increasing solar radiation in the study area. In 
contrast, the fire density increases with decreasing 
NDVI. Furthermore, significant differences in the 
magnitude of the average fire occurrence density 
are common in various categories for the major 
driving factors.  

2.5 Interaction detector 

The interaction detector was used to examine 
the combined effects of two factors on the density 
of fire occurrence in the Greater Khingan 
Mountains (Figure 10). In total, 120 pairs of 
interactions existed between any two factors in this 
study. All interaction relationships showed either 
bivariate or nonlinear enhancement. The 
interactive q value of solar radiation and wind 
speed was the biggest (0.3476), whereas the q 
values of the interactions between solar radiation 

and elevation and distance to the nearest 
settlement exceeded 0.3. Over 70% of the 
interactions exhibited nonlinear enhancement. For 
instance, the q value of the NDVI was 0.1756 and 
that of the wind speed was 0.1084. The sum of the 
individual q values of NDVI and wind speed 
(0.2840) was lower than the interactive q value 
between the NDVI and wind speed (0.2960). 
Nevertheless, the interactions between climate and 
vegetation driving factors commonly showed 
bivariate enhancement, except the interaction 
between wind speed and solar radiation and NDVI, 
which exhibited nonlinear enhancement. For 
instance, the q value of solar radiation was 0.2381, 

Figure 8 Fire occurrence density using the Kernel density estimation at various bandwidths in the Greater Khingan 
Mountains. 

Table 3 Power of determinant of all selected driving 
factors for the spatial pattern of fire occurrence density. 

Factor q Factor q
SolRad 0.2381 DisSet 0.0195
NDVI 0.1756 Slope 0.0083
Temp 0.1454 PopDen 0.0041
WinSpd 0.1084 TPI 0.0035
Veg 0.1044 Aspect 0.0031
Prec 0.0960 RdDen 0.0027
Elevation 0.0458 DisRd 0.0018
GeoMop 0.0367 SloPos 0.0010

Note: Factors with underlines are considered to be 
major driving factors. SolRad = daily mean solar 
radiation; NDVI = normalized difference vegetation 
index; Temp = annual mean temperature; WinSpd = 
mean wind speed; Veg = vegetation type; Prec = annual 
total precipitation; GeoMop = geomorphology; DisSet = 
distance to the nearest settlement; PopDen = 
population density; TPI = topographic position index; 
RdDen = road density; DisRd = distance to the nearest 
road; and SloPos = slope position. 
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while that of NDVI was 0.1756. The q value of the 
interaction between solar radiation and NDVI was 
0.2864, which was higher than that of either factor 
alone (solar radiation or NDVI) but lower than the 
sum of the individual q values of solar radiation 
and temperature (0.4137). 

3    Discussion 

3.1 Determinants of fire occurrence 

Previous study has shown that the q value is 
sensitive to the classification of quantitative 
variables but has not found an explicit relationship 
between q values and the classification method (Ju 
et al. 2016). Studies suggested that optimal 

classification algorithms and prior knowledge were 
needed to categorize the quantitative variables, 
which would improve the efficiency of the 
geographical detector (Wang et al. 2010; Xu and 
Zhang 2014). Hu et al. (2011) suggested that it be 
difficult to present the actual spatial associations 
between driving factor and geographical 
phenomena using an arbitrary classification 
approach. In this study, the natural break method 
and consideration of spatial variations were 
defined with optimal algorithms to categorize the 
quantitative variables. The natural break method 
generated the greatest similarity and differences 
within each and among various categories. With 
uneven human population distribution and 
characteristics of accessibility, the spatial 
variations were considered helpful to classify 

 
Figure 9 Sensitivity of q values and the ranks of the factors to fire density surfaces at various bandwidths. (KDE, 
Kernel density estimation) 
 

 
Figure 10 All q values for interactions between any two driving factors on the spatial pattern of fire occurrence. 
Uncolored cells denote bivariate enhancement, and gray cells denote nonlinear enhancement. Factors with boldface 
are major driving factors. SolRad=daily mean solar radiation; NDVI=normalized difference vegetation index; 
Temp=annual mean temperature; WinSpd=mean wind speed; Veg=vegetation type; Prec=annual total precipitation; 
GeoMop=geomorphology; DisSet=distance to the nearest settlement; PopDen=population density; TPI=topographic 
position index; RdDen=road density; DisRd=distance to the nearest road; and SloPos=slope position. 

User
高亮

User
高亮



J. Mt. Sci. (2020) 17(11): 2674-2690 

 2685

human activity factors. Therefore, our methods 
demonstrated are liability for discretizing 
quantitative variables. 

The factor detector suggested that climate 
variables presented the greatest contribution to the 
spatial pattern of fire occurrence over the entire 
study area, followed by vegetation and topography, 
while human activity factors contributed the least. 
These findings are consistent with those of a 
previous study in which climate and vegetation 
were demonstrated to be the primary drivers 
underlying fire occurrence (Hawbaker et al. 2013). 
We expected that climate variables would have a 
strong influence on fire occurrence in the forest 
ecosystems at a regional scale. Wu et al. (2014) 
indicated that the density of fire occurrence was 
greatly affected by climate factors at regional and 
landscape scales in this area. Climate influences 
fire regimes through modulating fuel abundance, 
fuel flammability, or both (Abatzoglou and 
Williams 2016; Littell et al. 2018). It has been 
shown that climate factors are not only a strong 
driver of spatial distributions but also affect the 
temporal patterns of fires (Flatley et al. 2011). 
Consequently, long-term climate trends play a top-
down control role in fire disturbances in forest 
ecosystems. Climate is the most important 
determinant, suggesting that climate change may 
lead to future change in the spatial pattern of fire 
occurrence in the study area. Liu et al. (2012) 
predicted that the fire occurrence density in the 
boreal forest of Northeast China could increase by 
30%-230% by the end of the 2100s due to climate 
change. Moreover, climate change might 
substantially increase the occurrence of lightning-
ignited fires in summer (Fan et al. 2017). The 
greater importance of biogeoclimatic factors 
compared to human activity factors reflect non-
human-caused fires that dominate the spatial 
pattern of fire occurrence in the study area during 
the period 1980-2009. This agrees with previous 
study in this region. One study indicated that the 
number of lightning-caused fires accounted for 
more than 60% of fire incidents (Chen et al. 2015). 

An unexpected finding was that solar radiation 
had the strongest influence on the spatial pattern 
of fire occurrences among all the driving factors in 
the Greater Khingan Mountains. Generally, 
potential solar radiation derived from slope and 
aspect has been used as a topographic variable for 

revealing fire regimes (Dillon et al. 2011; Parisien 
et al. 2013; Fang et al. 2015; Stralberg et al. 2018). 
In this study, solar radiation interpolated from 
weather station observations was regarded as 
climate variable. Observed solar radiation has been 
used as a predictor for fire suitability (Parisien and 
Moritz 2009). However, this study lacked attention 
to the impacts of solar radiation on the spatial 
pattern of fire occurrence. In the study of Verdú et 
al. (2012), solar radiation was discarded because 
strong multicollinearity was found between solar 
radiation and temperature. Our finding suggests 
that solar radiation should not be ignored. Solar 
radiation influences the moisture content of fuel 
via variations in slope and aspect (Zumbrunnen et 
al. 2012). Meanwhile, forest fuels can ignite due to 
the focused solar radiation effect (Baranovskiy and 
Yankovich 2015). The q  values of temperature 
indicated that the driving factors have a 
considerable influence on the spatial pattern of fire 
occurrences. Solar radiation and temperature were 
more important than precipitation, implying that 
the study area was energy limited (Meyn et al. 
2007). In general, temperature directly affects fuel 
moisture. High temperature reduces deal fuel 
moisture, and so as the fires occurrence. Our result 
suggested that wind speed has a substantial 
influence for long-term fire occurrence. The study 
area is characterized with high wind speed 
condition, which increases the flammability 
because of desiccation of fuel. Moreover, wind in 
term of fire weather also has a large effect on fire 
occurrence. Fan et al. (2017) reported that fire 
occurrences were generally accompanied by 
stronger winds in the fire season. According to the 
statistical data, 80% of the major fire events 
occurred along with a force of 5 (19-24 mph) wind 
speed in the study area (Hu 2011). Precipitation 
exhibited a weaker effect on spatial pattern of fire 
occurrence than other climate factors. Annual 
precipitation mainly falls in summer which is 
considered to be outside of the fire seasons in the 
Greater Khingan Mountains. However, 
precipitation could exert a major control on other 
term of the fire regime, such as burned area 
(Holden et al. 2018). 

Studies have suggested that vegetation factors 
significantly affect fire occurrence (Liu and 
Wimberly 2015; Parisien et al. 2014; Rollins et al. 
2002). Vegetation factors reflect the inherent 
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variability of fuel physical properties, including 
composition, loading, moisture, and flammability. 
This study found that the NDVI and vegetation 
type had a considerable influence on the spatial 
pattern of fire occurrences. Generally, NDVI could 
be used to describe vegetation classes at a broad 
scale. The minimum NDVI value in the study area 
was 0.84, which suggested that the range of NDVI 
variation was not significant enough to be used to 
identify vegetation classes. Previous studies have 
shown that NDVI is well correlated with live fuel 
moisture content (Chuvieco et al. 2004; Yebra et al. 
2008), which depends on vegetation physiological 
characteristics (Myoung et al. 2018). 
Correspondingly, the moisture content of dead 
vegetation is highly related to atmospheric 
variability (Yebra et al. 2008; Myoung et al. 2018). 
Therefore, we suggest that NDVI represents the 
spatial variability of live fuel moisture conditions in 
the study. Along with the results of the risk 
detector, there is a clear negative relationship 
between the NDVI and fire density (Table 4). Fuel 
moisture is a strong predictor of fire occurrence 
and significantly affects the occurrence of fires in 
the Chinese boreal forest region (Fan et al. 2017). 
Vegetation type is related to fuel composition. 
Marshes and broadleaf forests displayed a higher 
average density of fire ignition than the other 
vegetation types. The study area is located in a cold 
temperate zone, and low temperatures lead to 
frozen ground in the study area in the fire season 
(spring and autumn), while marsh plants are 
converted into withered grass. The main tree 
species in the broadleaf forests of this area are 
deciduous. Fuels such as forest litter and fallen 
leaves accumulate. Meanwhile, precipitation is 
insufficient in the fire season, resulting in 
decreasing fuel moisture. Therefore, both 
vegetation types are relatively flammable during 
the fire season. As driving factors that underlie the 
spatial pattern of fire occurrence, live moisture 

content is obviously more important than 
composition (Table 4) because live fuel is abundant 
across all vegetation types in our study area (Fang 
et al. 2015). 

Topographical variables impact runoff, wind 
direction, and solar radiation, which in turn 
influence flammability through fuel moisture and 
production (Flatley et al. 2011). In the Greater 
Khingan Mountains, however, the average q value 
of the topographical factors was 0.0169, indicating 
that the topographical factors had a marginal effect 
on the spatial pattern of fire occurrences at a 
regional scale. Individual topographical factors 
play a limited role in the entire study area. The 
explanatory powers of slope and aspect were 
consistently ranked as the least important factors 
in determining fire occurrence based on a random 
forest model (Wu et al. 2014) since the study area 
has a relatively flat terrain and presents low spatial 
variation in the terrain. According to our results, 
the study area is located in a fire-prone climatic 
setting that may have weaker topographical 
patterns of fire than an area in a less fire-prone 
environment because climate modulates impacts of 
single topographical variable on spatial pattern of 
fire occurrence at regional scale (Flatley et al. 2011). 
However, topography may act as a local- and 
micro-scale driving factor on fire occurrence. A 
previous study reported that lightning-caused fires 
cluster in the Huzhong forestry bureau, which has 
the highest elevations in the Greater Khingan 
Mountains (Wu et al. 2014). 

Studies have suggested that human activities 
alter the fire regime through fire ignition or 
suppression (Yang et al. 2007; Faivre et al. 2014). 
However, our results indicate that human activity 
factors had the lowest influence on the spatial 
pattern of fire occurrence in the Greater Khingan 
Mountains. Hu and Zhou (2014) reported that fire 
frequency and burned area of human-caused fires 
decreased significantly in this area over the period 

Table 4 Average fire occurrence densities for each category of various major impact factors. The numbers in the first 
line represent the categories (ranks) for these driving factors. 

Factors 1 2 3 4 5 6 7 
SolRad 0.0042 0.0054 0.0066 0.0078 0.0113 - - 
NDVI 0.0107 0.0078 0.0068 0.0056 0.0053 - - 
Temp 0.0051 0.0059 0.0056 0.0077 0.0092 - - 
WindSpd 0.0055 0.0040 0.0054 0.0071 0.0080 - - 
Veg 0.0059 0.0084 0.0052 0.0068 0.0102 0.0066 0.0053

Note: SolRad=daily mean solar radiation; NDVI=normalized difference vegetation index; Temp=annual mean 
temperature; WinSpd=mean wind speed; Veg=vegetation type. 
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1967-2006, which implies that the influences of 
human activity factors on fire regimes have 
gradually weakened. In particular, a catastrophic 
fire burned a total area of approximately 1.3×104 
km2 in the study area in 1987 (Chang et al. 2007); 
since then, fire management and prevention have 
been more vigilant and enforced (Chang et al. 2007; 
Fan et al. 2017). Forest harvesting has also been 
strictly limited due to experiments in the Natural 
Forest Protection Project since 1998. This 
restriction has significantly reduced open sparks 
from logging machines and smoking loggers. 
Additionally, a number of protected areas have 
been established, such as the Huzhong National 
Natural Reserve, Nanwenghe National Natural 
Reserve, and Panzhong National Natural Reserve, 
greatly decreasing the impacts of anthropogenic 
disturbances in these protected areas. 

The identification of zones of high fire risk in 
fire-prone areas is important. The results of the 
risk detector can provide useful information 
regarding fire occurrence density in various 
categories, and the distribution of the identified 
fire occurrence hotspots can offer effective benefits 
for optimizing the allocation of fire management 
resources (Gonzalez-Olabarria et al. 2012; Wu et al. 
2014). According to the risk detector results (Table 
4), management strategies should focus on known 
high-density zones, such as areas with high solar 
radiation and temperature and low NDVI. 
Moreover, significant differences typically occur 
among various categories for each major factor, 
which further reinforces that the fire occurrence 
spatial pattern is heterogeneous among the driving 
factors. 

3.2 Interactions between pairs of factors on 
fire occurrence 

Complex interactions generally exist in the 
driving factors that influence of fire occurrence 
patterns (Schoennagel et al. 2004). Thus, 
identifying how climate, topography, vegetation, 
and human activity factors mutually interact is 
important because these results are necessary for 
the management or prediction of fire occurrence. 
The geographical detector model fills a critical gap 
by providing a framework to quantitatively 
measure the interactions between pairs of driving 
factors, and this capability provides unique insight 

into the study of the spatial pattern of fire 
occurrence. Our study indicates that all 
interactions between pairs of driving factors had an 
enhancing influence on the spatial pattern of fire 
occurrence in the Greater Khingan Mountains. We 
found no case of independent or weakening 
interactions. This finding suggests that relative to 
the influence of individual factors, the interactions 
between driving factors played a more important 
role in shaping the spatial pattern of fire 
occurrence. The results of the interaction detector 
reveal that despite the weak influence of single 
topographical and human activity factors, the 
effects of interactions between any two groups 
should not be ignored. This work supports previous 
results that the interaction among climate, 
vegetation, topographical, and human factors 
together determine the spatial pattern of fire 
occurrence (Rollins et al. 2002; Hawbaker et al. 
2013). Therefore, we suggest that comprehensive 
effects among various factors should receive 
greater attention rather than any single factor 
alone when forest managers make policy for fire 
management. 

It has been demonstrated that interactions 
between top-down and bottom-up controls could 
result in a nonlinear relationship between fire 
activity and fire-induced ecological consequences 
(Peters et al. 2004). In the Greater Khingan 
Mountains, over 70% of the interactions between 
pairs of driving factors exhibited nonlinear 
enhancement, which mainly involves topography 
and human activity factors. According to Table 2, 
nonlinear enhancement is stronger than bivariate 
enhancement. Although single topographic and 
human activity factors have weak effects on the 
density of fire ignition events, these factors 
contributed more strongly to the spatial pattern of 
fire occurrence when they interacted with climate 
and vegetation factors, which indicates the 
importance of both group’s factors. Human 
activities could play an important role in certain 
areas of the Greater Khingan Mountains. For 
instance, the Jiagedaqi District is located at the 
southwestern study area, which has the strongest 
fire occurrence density. It is the administrative 
center of the Greater Khingan Mountains 
Prefecture and has the highest human population 
density. Fire ignition records show that human 
activities are the main cause of fire occurrence in 
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the Jiagedaqi District. Meanwhile, it is 
characterized by the higher solar radiation and 
temperature than elsewhere, which promotes the 
ignition of the biomass of broadleaf forests. Achard 
et al. (2008) found that two-thirds of fires were 
caused by the joint occurrence of climate anomalies 
and human disturbance in the Russian boreal 
forest. Timber harvesting and human activities in 
protected areas and forestlands have been 
restricted in the study area. However, with 
economic development, human activities correlate 
with infrastructure and built-up land expansion 
changes local climate patterns as a result of the 
enhanced interactive effect on fire activity. One 
study demonstrated that anthropogenic climate 
change, such as human caused increase in 
temperature and vapor pressure deficit, nearly 
doubled fire area in comparison to area burned 
expected from natural climate variability in the 
western US forest ecosystem (Abatzoglou and 
Williams 2016). Hu and Zhou (2014) suggested 
that high temperatures improve residents’ 
awareness of fire safety regarding increased fire 
risk. The strength of topographic factors on the 
spatial pattern of fire occurrence trends varied 
according to the climatic context in the southern 
and central Appalachian Mountains (Flatley et al. 
2011). Topographic relief and drainage can 
redistribute land surface heat and moisture, which 
are from solar radiation and precipitation, 
respectively. Massifs and vegetation reduce wind 
speed and change the wind direction. In 
additionally, wind reduces fuel moisture which can 
be characterized by NDVI. Therefore, appropriate 
climate and vegetation factors combined with 
topography and human activities further improve 
the explanation of the spatial pattern of fire 
occurrences in the Greater Khingan Mountains. 

The interactive relationships between pairs of 
climate and vegetation factors in the study area 
generally exhibited bivariate enhancement, which 
is a weaker enhancement than nonlinear 
enhancement. In other words, climate and 
vegetation factors appropriately enhanced each 
other when driving the distribution of fire 
occurrences. This condition is likely due to the 
strengths of the linkages among climate and 
vegetation factors. The long-term climate 
determines the spatial pattern of major vegetation 

types (Liu and Wimberly 2015), i.e. climate 
controls the spatial distribution of fuels and fuel 
loads. Therefore, interactions between climate and 
vegetation factors merely enhance the effects of 
each factor on fire occurrence density. 

4    Conclusions 

The geographical detector is an effective 
method for analyzing the driving factors of spatial 
variations in fire occurrence density. In particular, 
the method is useful for quantitatively 
characterizing the interactions between a complex 
set of factors of fire occurrence. Our study shows 
that solar radiation plays the greatest role in fire 
occurrence in the Greater Khingan Mountains, 
followed by NDVI, temperature, wind speed, and 
vegetation type. According to variable groups, 
climate and vegetation variables rather than 
topography and humans are primary determinants 
of the spatial pattern of fire occurrence at a 
regional scale. Any pair of factors had a stronger 
influence on the spatial pattern of fire occurrence 
than any single factor. The interactions between 
most of the climate and vegetation factors generally 
showed bivariate enhancement whereas the 
interactions that involved topographical and 
human activity factors showed a nonlinear 
enhancement. Although the topographical and 
human factors alone had a weak influence on the 
spatial pattern of fire occurrence, this influence 
was enhanced when combined with climate and 
vegetation factors. The results offer a perspective 
for understanding the driving factors of the spatial 
patterns of fire occurrence. The approach of this 
study can be helpful to forest managers when 
implementing fire polices based on the influence of 
climate, vegetation, topography and human 
activities and their interactions. 
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