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Abstract Soil quality prediction maps are important
tools for environmental scientists and policymakers.
An 18 ha grassland was selected to create soil qual-
ity prediction maps. A total of 30 sampling points
were selected, and samples were collected from top
soil (0–20 cm depth). Twelve of the sampling points
were selected randomly and 18 of the sampling
points were selected based on a square shaped grid
plan. The soil samples were then analyzed for pH,
electrical conductivity (EC), organic matter (OM),
water content, dissolved total carbon (DTC), dis-
solved organic carbon (DOC), dissolved inorganic
carbon (DIC), and dissolved total nitrogen (DTN).
Ordinary kriging (OK) and ordinary cokriging
(OCK) spatial interpolation methods were used for
the prediction of spatial distribution. The prediction
errors showed that the parameters in the grid sam-
pling scheme showed better prediction in the OK
technique. The highest reduction in prediction errors
was obtained in the DOC in grid sampling scheme
after using OCK.

Keywords Soil sampling . Soil parameters . Spatial
statistics . Dissolved organic carbon . Ordinary kriging .

Ordinary cokriging

Introduction

Digital soil maps or, in other words, prediction maps
(Dharumarajan et al. 2019) have been used since 1990
(Zhang et al. 2017). Especially during the first quarter of
the twenty-first century, statistical models have been
used to create soil maps which are useful for environ-
mental scientists (Li and Heap 2014) and other stake-
holders in overcoming environmental issues (Keskin
and Gruwald 2018). There is an important increase in
soil quality mapping due to new policies around effi-
cient land use management and sustainable develop-
ment. The soil quality parameters are effective indica-
tors when testing the sustainability of any land (Gong
et al. 2015), particularly when we consider that econom-
ic development and increased quality of life can cause
serious problems with regard to sustainable land man-
agement (Mandal et al. 2010).

When making such assessments, spatial distribution
maps are often preferred to point source information (Li
and Heap 2014). Due to the demand for continuous
spatial information, geostatistical prediction techniques
have been used in different branches of study since the
1960s (Oliver and Webster 2014), and geostatistical
methods enable the estimation of unsampled points
through modeling the spatial correlation between mea-
sured and predicted variables (Wu et al. 2009).

Environ Monit Assess         (2020) 192:300 
https://doi.org/10.1007/s10661-020-08281-7

G. Gök (*)
Department of Environmental Engineering, Aksaray University,
E-90 Highway 7th Km, 68100 Aksaray, Turkey
e-mail: gokgulden@gmail.com

O. A. Gürbüz
Nigde Vocational School of Social Sciences, Nigde Omer
Halisdemir University, Asagi Kayabasi Campus, Suleyman Fethi
Avenue, Nigde, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s10661-020-08281-7&domain=pdf


OK is one of the most used geostatistical techniques
(Hou et al. 2017) when creating spatial distribution maps
for different soil parameters such as pH, OM, EC
(Houlong et al. 2016), soil organic carbon (Chabala
et al. 2017), soil total nitrogen (Wu et al. 2009), and
heavy metals (Liu et al. 2010). OCK, that is another
geostatistical interpolation method, uses an auxiliary var-
iable to decrease prediction errors of the model (Ersahin
2003), and the correlated variables have been used to
decide auxiliary variables for more accurate predictions
(Adhikary et al. 2017).

One of the most important steps of geostatistical anal-
ysis is the sampling scheme. In general, there are two
sampling designs which are the following: statistical and
geometric (Biswas and Zhang 2018). In simple sampling,
sampling points are selected randomly (Brus and Gruijer
1997), although it has not been used by many studies
(Biswas and Zhang 2018). Furthermore, one of the most
prevalent sampling types is grid sampling wherein the
distance between sampling points kept at a constant (Brus
2019). A study in 2016 done by Houlong et al. compared
the two sampling plans for OK and found that simple
random sampling showed better interpolations for pH,
total phosphorus, and available phosphorus. In the same
study, the grid sampling plan showed less prediction
errors for OM, total nitrogen, and cation exchange
capacity.

Since application of geostatistical modeling is impor-
tant for generating soil quality prediction maps, in this
study, we chose a grassland just outside downtown
Nigde. The objectives of this study were to show the
spatial distribution of soil quality parameters of the
study area, to compare two sampling schemes for OK,
and finally, in order to reduce prediction errors, to apply
OCK for correlated soil parameters.

Materials and methods

Study area

The study site in question is located in the province of
Nigde, which is in the central region of Turkey; the site
is located around 2 km outside the city. The coordinates
of the study area are 34°41′59.46″E and 37°56′59.67″N.
The surface area of the field is around 18 ha. There is
one bus terminal and one gas station to the north of the
site. One afforestation site is also located on the south
side. A cement factory is located to the southwest, and

there is additionally the D805 intercity road and the O21
south Nigde road located on each side of the study area.
The slope of the study site is increasing from east to
west. Furthermore, the field can be classified as a grass-
land. Nowadays, the site has been selected by Gover-
norship of Nigde as one of the afforestation sites of
territory, and Pinus brutia (Turkish pine) has been
planted on the study site (Fig. 1).

The climate of the study site is denoted as a steppe
climate and has a mean precipitation of 338 mm. The
difference in precipitation between the wettest and driest
months is about 50 mm. The average annual tempera-
ture is around 10.1 °C and the coldest month was
January with an average temperature of − 0.2 °C. The
hottest month of the area was July with a mean temper-
ature of 21.3 °C (AM Online Projects n.d.).

Soil sampling and analysis

When determining the sampling points, three softwares
were used throughout the research. Google Earth Pro
was one of them and was used for identifying the
borders of the grassland. Secondly, ArcGIS v. 10.5
employed when projecting geographical coordinates
and, lastly, PNNL’s Visual Sample Plan (VSP) software
was used to identify the grid sampling point locations
and random sampling point locations (Saito and
McKenna 2007). A total of 30 soil sampling points were
selected (Fig. 1), and their coordinates were transferred
to a GPS device. The distance between the points in the
grid sampling scheme (N = 18) was 100 m.

Soil samples were collected in November 2018.
Samples were collected from the top soil (0–20 cm)
via using a shovel and placed in sampling bags.

The Hach HQ411D branded digital laboratory EC
and pH meter was used for analyzing the pH and EC of
sampled soil. Water content and OMwere also analyzed
through gravimetric methods. For water, content sam-
ples were dried for 24 h at 104 °C. For OM, samples
were burned for 2 h at 600 °C.

The soil samples were dried and sifted through a
0.5mm sieve before DTC, DOC, DIC, andDTN analysis.
Before starting the analysis, 10 g of samples were taken,
and 160ml of purified water was added. In order to set the
pH level at 5.0, 0.5 N glacial acetic acid was added to
samples, and then samples were mixed for 24 h for eluate
extraction. At the end of the 24 h, purified water was
added to the marked part, and filtration was performed
(Lowenbach 1978). After filtration, samples were placed
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in centrifuge tubes and stored at 4 °C. The stored samples
were diluted 50 times before analyzed in the Shimadzu
Total Organic Carbon Analyzer and the Total Nitrogen
Analyzer Kit for catalytic oxidation (EPAMethod 9060a).

Statistical methods

IBM SPSS v. 18 was used to estimate the deterministic
statistics for pH, water content, EC, OM, DTC, DOC,
and DTN from 30 sampling points. Maximum value,
minimum value, standard deviation, mean value, skew-
ness, and kurtosis values were determined for the soil
parameters. To test the distribution of variables,

Kolmogorov-Smirnov and Shapiro-Wilk tests were
used, and the Pearson correlation coefficient was also
estimated to test the statistical correlation of soil param-
eters (Paz-Gonzalez et al. 2001).

Spatial statistics

To show the characteristics of a random field, spatial
autocorrelation and spatial stratified heterogeneity
are important statistical indicators that are used to-
gether. The term spatial autocorrelation explains the
relationship between characteristics of spatial data
and their location. Closer sites have similar attributes

Fig. 1 , DEM map, distribution
of the sampling locations, and
location of the study site distances
among points in simple random
sampling scheme (N = 12) were
varied between 60 and 700 m.
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and vice versa (Wang et al. 2016). Moran’s I statistic
is an index of spatial autocorrelation and calculated
as follows (Eq. 1):

I ¼ n

∑n
i¼1 yi−yð Þ2

" #
�

∑n
i¼1∑

n
j¼1wij yi−yð Þ y j−y

� �
∑n

i¼1∑
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j¼1wij

2
4

3
5 ð1Þ

where ij is the locations, n is the number of parame-
ters, y is the overall mean, and yi and yj are means at
specific locations (O’Sullivan and Unwin 2010).

The measure of spatial autocorrelation at the local
level could identify the heterogeneity via spatial cluster
patterns. LocalMoran’s I index (LISA) can be estimated
as (Eq. 2):

I i ¼ zi−z
σ2

∑n
j¼1; j≠1 Wi; j z j−z

� �� � ð2Þ

where zi is the value of variable at the ith location, zj is
the value of variable at the jth location, wi.j is the
weighted distance between i and j, and σ2 is the variance
of variable (Fu et al. 2014).

Interpolation methods

The spatial distribution of parameters was interpolated
through OK which is a geostatistical technique that uses
semi variance modeling in order to estimate unknown
values. The equation of OK is as follows (Eq. 3):

Z
0
x0ð Þ ¼ ∑n

i¼1 λi Z xið Þ ð3Þ

where λi is the kriging weight, Z′(x0) is the interpolated
value of DOC of the unsampled location, and Z(xi) is the
known value of DOC from sampled location (Chabala
et al. 2017)

OCK is an advanced modeling technique delivered
from OK. OCK is a geostatistical interpolation tech-
nique that uses two correlated parameters together to
estimate unknown values and their spatial distribution.
OCK estimation is as follows (Eq. 4):

Z
0
x0ð Þ ¼ ∑n

i1 ωi1Z xi1ð Þ þ ∑m
i2 ωi2V xi2ð Þ ð4Þ

(with)∑m
i1¼1ωi1 ¼ 1;∑m

i2¼1ωi2 ¼ 0 where Z′(x0) estimat-
ed value of the first parameter,ωi1 andωi2 are the kriging
weights according to sampling points, Z and V are the
first and second parameter, respectively, and n andm are
the number of sampling points for both parameters
(Adhikary et al. 2017).

Data validation

Data validation procedure for this study included leave-
one-out cross validation (LOOCV), average standard-
ized error (ASE), root mean square error (RMSE), and
root mean square standardized error (RMSSE)
(Houlong et al. 2016) (Chabala et al. 2017) (Gong
et al. 2014).

LOOCV statistical method was used for the precision
of the models that were used for interpolation of mea-
sured data. This cross-validation technique eliminated a
known variable and tested the model results with pre-
dicted variable of the eliminated point (Chabala et al.
2017). Arc GIS v 10.5 automatically uses LOOCV for
interpolationmethods that were used in this study (Gong
et al. 2014).

ASE, RMSE, and RMSSE are described in Eq. 5, Eq.
6, and Eq. 7, and these prediction error values for
measured data were estimated in IBM SPSS v. 18.

ASE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1 σ ið Þ
r

ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
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i¼1 Z xið Þ−Z 0 xið Þ½ �2
r

ð6Þ

RMSSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N
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σ ið Þ

	 
2s
ð7Þ

where Z(xi) is the measured value of any parameter, and
Z ′ (xi) is the predicted value of the same variable. σ(i) is
the standard error for the location i, and N is the total
number of samples (Houlong et al. 2016) (Chabala et al.
2017) (Gong et al. 2014).

When estimating the reduction of the prediction er-
rors between OK and OCK, the relative reduction in
RMSE (RRMSE) was used. The evaluated method was
OCK, and the estimated one was OK. RRMSE can be
defined by (Eq. 8) as:

RRMSE ¼ RMSEOK−RMSEOCK

RMSEOK
� 100% ð8Þ

where RMSEOK is the root mean square error of any
parameter estimated after OK, RMSEOCK is the root
mean square error of any parameter estimated after
OCK, and RRMSE is the percent reduction of error
between OCK and OK (Pang et al. 2009).
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Results and discussion

Descriptive statistics

The list of descriptive statistics (the skewness of
pH, water content, OM, DTC, and DTN for grid
sampling plan) can be seen in Table 1. The soil pH
ranges from 8.16 to 8.59, and the average grassland
pH was 8.41 for random sampling points. EC had
the highest skewness among other parameters for
grid sampling, and similar results were found by
Korkanç et al. (2018) in the same region near
Akkaya Dam in Nigde. According to the results
of that study, the pH value of the grassland near
Akkaya Dam was 8.57, and the pH value in a
poplar grove near the dam was 8.02. The mean
moisture holding capacity for the grassland area
and the poplar plantation area were 15.92 and
15.10, respectively. The mean EC value was
191.99 μS/cm for the grassland.

The level of dispersion of the variables was deter-
mined through coefficient of variation (CV). If the CV
value is between 0.1 and 0.9, then the distribution level
will be moderate. CV values lower than 0.1 are consid-
ered as poor distribution, and where CV values are

higher than 0.9, then it is considered as significant
dispersion (Yao et al. 2019). The dispersion levels were
moderate for DTC, DOC, DTN, and DIC in both sam-
pling plans (see Table 1).

Table 1 also shows the Kolmogorov-Smirov (Pk-s)
and Shapiro-Wilk (Ps-w) test results. According to
the results of the normality test, the water content,
pH, OM, DOC, DTC, DTN showed normal levels of
distribution for points planned on the grid scheme.
In simple random sampling, the values of pH, EC,
DOC, DTC, and DTN were also distributed normal-
ly. In the geostatistical analysis, estimation methods
give statistically significant results with normally
distributed data (Webster and Oliver 2007). Also,
the Pearson correlation matrix, the prediction
models, and maps were estimated based on normally
distributed parameters.

Table 2 shows the Pearson correlation matrix.
According to Table 2 based on grid sampling plan,
there was a positive relationship between water
content OM and DOC-DTC. The level of correla-
tion between water content and OM was significant
at 0.05. There was a strong correlation between
DOC and DTC at 0.01. Among the points in the
simple random sampling scheme, the only

Table 1 Descriptive statistics of 30 sampling points

Sampling plans Soil Parameters Minimum Maximum Mean Std. Deviation Skewness Kurtosis CV pk-s ps-w

Grid sampling plan
N = 18

Water content [%] 0.03 0.07 0.05 0.01 0.66 2.97 0.19 0.18 0.11

pH 8.33 8.58 8.47 0.07 − 0.49 − 0.23 0.01 0.20 0.81

EC [μS/cm] 108.30 557.00 175.08 99.91 3.65 14.34 0.57 0.00 0.00

OM [%] 5 8 6 0.01 − 0.15 − 0.20 0.12 0.20 0.95

DOC [mg/L] 1.17 3.23 2.00 0.50 0.35 1.35 0.25 0.01 0.06

DTC [mg/L] 1.32 3.35 2.12 0.49 0.43 1.48 0.23 0.01 0.06

DIC [mg/L] 0.11 0.15 0.12 0.01 0.62 − 0.97 0.12 0.01 0.04

DTN [mg/L] 0.21 0.93 0.58 0.17 − 0.33 0.31 0.30 0.20 0.83

Simple random
Sampling plan N = 12

Water content [%] 0.03 0.07 0.04 0.01 1.20 0.91 0.29 0.01 0.03

pH 8.16 8.59 8.41 0.12 − 0.63 0.60 0.01 0.20 0.78

EC 114.50 165.80 136.99 15.59 0.46 − 0.30 0.11 0.20 0.70

OM[%] 5 11 7 0.01 1.69 4.39 0.19 0.19 0.04

DOC [mg/L] 1.20 2.78 2.06 0.44 − 0.24 − 0.04 0.21 0.20 0.99

DTC [mg/L] 1.77 3.42 2.36 0.48 0.90 0.63 0.20 0.20 0.43

DIC [mg/L] 0.12 2.21 0.30 0.60 3.46 12.00 2.01 0.00 0.00

DTN [mg/L] 0.29 0.99 0.55 0.20 1.18 1.04 0.37 0.20 0.11

CV coefficient of variation, pk-s p value of Kolmogorov-Smirov test, ps-w p value of Shapiro-Wilk test
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correlation was found between DOC and DTN.
These values were used in the OCK model in
order to obtain a precise spatial distribution. A
similar correlation was done by Yao et al. (2019)
between soil organic carbon stock values and
topographic factors. Yao et al. (2019) estimated
that there was a positive relationship between ele-
vation values and soil carbon stock values. Xu
et al. (2017) also found a positive and statistically
significant relationship between soil organic carbon
and soil nitrogen.

Spatial autocorrelation and cluster/outlier analysis

Global and local Moran’s I were estimated for DTC,
DOC, and DTN for grid and random sampling schemes
as can be seen in Table 3. According to Table 3, Moran’s
I results showed that there was a possitive autocorrela-
tion in DTN in grid sampling scheme and DTC in
random sampling scheme. DTN in grid sample plan
was the strongest possitive autocorrelation. The stron-
gest neggative autocorrelation was DOC in simple ran-
dom sampling scheme.

Table 3 Moran’s I and LISA results

Sampling design Soil parameters Moran’s I z-score p value Pattern LISA

Grid sampling plan
N = 18

DOC [mg/L] − 0.18278 − 0.704401 0.481183 Random 1; cluster:high
1;cluster:low
1; high outlier

DTC [mg/L] − 0.18424 − 0.715202 0.474484 Random 1; cluster:high
1;cluster:low
1; high outlier

DTN [mg/L] 0.372094 2.380418 0.017293 Clustered 1; cluster low

Simple random
sampling plan N = 12

DOC [mg/L] − 0.01587 0.291199 0.770899 Random Not significant

DTC [mg/L] 0.154509 0.976397 0.328868 Random 1;low cluster

DTN [mg/L] − 0.13628 − 0.183441 0.854452 Random 2;low outlier

Table 2 Pearson correlation matrix

Sampling plan Parameters Water content pH OM DOC DTN DTC

Grid sampling plan
N = 18

Water content 1.00

pH 0.18 1.00

OM 0.54* − 0.32 1.00

DOC 0.13 − 0.15 0.38 1.00

DTN 0.24 0.09 0.20 0.46 1.00

DTC 0.14 − 0.15 0.38 1.00** 0.45 1.00

Sampling plan Parameters pH EC DOC DTN DTC

Simple random
sampling plan N = 12

pH 1.00

EC − 0.48 1.00

DOC − 0.11 − 0.09 1.00

DTN − 0.10 0.05 0.65* 1.00

DTC − 0.41 − 0.20 0.14 0.30 1.00

*Correlation is significant at 0.05 level

**Correlation is significant at 0.01 level

  300 Page 6 of 12 Environ Monit Assess         (2020) 192:300 



As it can be seen in Fig. 2 in simple random sampling
plan, a low-low cluster was observed for DTC and two
low outliers located to the north part of the study field.
High-low clusters and a high outlier for DTC for grid
sampling plan were detected in the middle and upper left
of the study area. A low-low cluster was also found for
DOC in grid sampling scheme.

Geostatistical analysis of soil quality parameters

Tables 4 and 5 exhibit the semivariogram model param-
eters for the grid and random sampling scheme for soil
variables. Semivariogram models were used so as to fit
experimental datasets to the semivariogram function
which helps in the estimation of unsampled locations
(Fanchi 2010). The Gaussian model was the best fit for
the semivariogram modeling for pH. The Stable model

was selected for the rest of the soil variables. For ran-
domly sampled values, the Gaussian model was the best
fitting model for DTC (Table 5).

The range values show the border of the autocorrela-
tion. There will not be any spatial correlation for distances
greater than the range value (Pouladi et al. 2019). The
maximum range value was 218.2 m for DOC (Table 4)
for grid sampling, and DTN had the highest range among
others for random sampling (Table 5).

Nugget/sill ratio (Bhunia et al. 2018) is also
known as nugget semivariance, and with this ratio,
the degree of spatial correlation can be tested. A
nugget/sill ratio lower than 0.25 represents strong
spatial correlation. An average spatial dependency
could be seen with a nugget/sill ratio between 0.25
and 0.75. The weakest spatial dependency is found
when the nugget/sill ratio is higher than 0.75

Table 4 Semivariogram model parameters for grid sampling scheme (N = 18) for OK

Soil parameter Nugget Range [m] Partial sill Sill Lag size Nugget/sill Model

pH 0.0014 203.5 0.0014 0.0028 25.5 0.5 Gaussian

DOC 0.1712 218.2 0.0841 0.2553 27.27 0.67 Stable

DTN 0 203.5 0.0226 0.0226 27.27 0.00 Stable

DTC 0.1661 218.2 0.083 0.2491 27.27 0.67 Stable

Water content 0 211.7 0.0001 0.0001 25.85 0.00 Stable

OM 0 203.5 0.000006 0.000006 25.67 0.00 Stable

Fig. 2 Spatial outliers and spatial clusters map
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(Cambardella et al. 1994). The strongest depen-
dents among grid sampling variables were DTN,
water content, and OM (Table 4). All other param-
eters dependency levels were moderate, and for
randomly collected samples, the weakest spatial
dependency could be seen in DOC.

The values of pH, OM, and EC in simple random
sampling were not consistent with the locations of
sample points. The semivariograms of these parame-
ters were irrelevant with spatial correlation (pure

nugget effect) (Monterı et al. 2015) (Table 5) so no
geostatistical interpolation was used for them.

Figures 3 and 4 present the OK results for the
grid sampling and simple random sampling plan
respectively. In Fig. 3, the lowest percent of water
content can be found in the eastern side of the
grassland. The distribution of DOC and DTC
could be seen clearly in Fig. 3. The majority of
the DOC values ranged between 1.73 and
2.12 mg/L. In Fig. 4, the spatial distribution of

Table 5 Semivariogram model parameters for simple random simple sampling scheme (N = 12) for OK

Soil parameter Nugget Range [m] Partial sill Sill Lag Size Nugget/sill Model

DOC 0.1289 251.7 0.0048 0.1337 31.47 0.96 Stable

DTC 0.101 369.8 0.133 0.234 46.22 0.43 Gaussian

DTN 0.0248 710.5 0.0455 0.0703 62.93 0.35 Stable

pH 0.0145 755.3 0 0.0145 62.94 1 Stable

EC 243.07 755.3 0 243.07 62.94 1 Stable

OM 0.00019 755.3 0 0.00019 62.94 1 Stable

Fig. 3 OK interpolation of soil parameters based on grid sampling (N = 18)
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DTN and DTC were similar based on the contour
colors. According to simple random sampling, the
DOC values ranged between 1.99 and 2.25 mg/L
in the central part of the field of study.

Accuracy of OK models

According to Table 6, the coefficient of determina-
tion (R2) was the highest for DTN in the simple

Fig. 4 OK interpolation of soil
parameters based on simple
random sampling (N = 12)

Table 6 Cross-validation results of 30 sampling points

Sampling type Parameters Efficiency Prediction errors

R2 ASE RMSE RMSSE

Random DTC 0.182 0.408 0.416 0.984

DOC 0.0133 0.429 0.426 0.971

DTN 0.001 0.186 0.224 1.174

Grid DTC 0.01 0.496 0.491 0.9888

DOC 0.015 0.502 0.497 0.986

DTN 0.405 0.108 0.13 1.162

pH 0.02 0.064 0.066 1.018

Water content 0.09 0.007 0.009 1.249

OM 0.00036 0.007 0.008 1.122
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random sampling scheme. The ASE values were
higher than RMSE or RMSSE values which were
lower than 1; there was an overestimation among
modeled values (Houlong et al. 2016). In the grid
sampling scheme, the predicted values of DTN
were similar with the modeled values (Table 6).
The distribution of DTN in the grid sampling plan
was better predicted than in the simple random
sampling plan. The prediction errors were also low-
er for water content and OM. The highest predic-
tion errors could be seen in DOC values for both
sampling plans. The lowest R2 value was estimated
from the grid sampling scheme for OM; however,

its values were lowest in ASE and RMSE among
other parameters.

OCK with auxiliary parameter for grid sampling
and simple random sampling schemes

To increase the R2 values, the OCKmethodwas used for
OM values in grid sampling and DOC values for both
sampling plans. The auxiliary parameters were chosen
as the Person correlation values as shown in Table 3.
The best fitting models were exponential for OM in the
grid sampling plan, exponential for DOC in the grid
sampling plan, and Gaussian for DOC in the simple

Table 7 Semivariogram model parameters for OCK

Sampling plan Soil
parameter

Auxiliary
parameter

Nugget Range Partial
sill

Sill Lag
size

Nugget/
sill

Model

Grid Sampling OM Water Content 0 201.34 0.00001 0.00001 25.17 0.00 Exponential

Grid Sampling DOC DTC 0.0066 201.34 0.2623 0.2689 25.17 0.02 Exponential

Simple Random
Sampling

DOC DTN 0.1289 251.75 0.0483 0.1772 31.47 0.73 Gaussian

Fig. 5 OCK prediction results of OM and DOC for grid and simple random sampling plans
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sampling model. According to the nugget/sill ratios in
Table 7, the spatial dependency was weakest for DOC in
the simple random sampling plan. In the grid sampling
scheme, the spatial dependency of OM was stronger
than DOC.

Figure 5 shows the spatial distribution maps of OCK
methods. According to the contour maps, the distribu-
tion of DOC in two sampling schemes showed similar-
ities. The majority of DOC levels range between 1.42
and 2.48 mg/L in the east and central part of the study
area. The distribution of OM was highest in the middle
part of the study area with a ratio of 6%:6.6%.

Table 8 shows the data validation values of OCK for
OM and DOC values. According to prediction errors,
the OCK method worked best for DOC in the grid
sampling plan with DTC with auxiliary parameter. The
coefficient of determination of DOC in grid sampling
was 0.9521, and reduction in RMSSE by using OCK
was highest among other parameters.

Conclusion

The deterministic statistical results showed that the soil
quality parameters of the grassland have heterogeneous
distribution for many variables. pH, EC, DOC, DTC,
and DTN in the simple random sampling scheme were
normally distributed. In the grid plan, pH, OM, DOC,
DTC, DTN values showed normal distribution. After
modeling the semivariograms for parameters, DTC had
the highest R2 values in both sampling schemes. Ac-
cording to the cross validation results, the highest pre-
diction error reduction was obtained from DOC with
auxiliary parameter of DTC which is also with the
highest R2 value as well.

From this set of materials, we can conclude that grid
sampling plan showed better results for OK. For further
study goals, it is important to increase the number of

samples by lowering the grid spacing to avoid pure
nugget effects.
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