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Applications of Spatial Statistics )
in Poverty Alleviation in China e

Yong Ge, Shan Hu, and Mengxiao Liu

Abstract China is the most populous country in the world, especially a large
number of impoverished people concentrated in rural area. The uneven distribution
of impoverished people in China has made it necessary to investigate its spatial
patterns and driving forces. In this chapter, several methods of spatial statistics that
have been employed to poverty issues analysis were reviewed. These methods were
mainly used to investigate the driving forces, spatial patterns, and spatial temporal
changes of poverty. Three case studies of China were then conducted to provide the
detail illustrations of the application of the methods.

1 Background

Poverty is a common challenge that accompanies the progress of human society.
The first goal of the sustainable development goals (SDGs) proposed by the United
Nations is to end poverty in all its forms everywhere by 2030 (United Nations
2015a). China, a developing country with a large rural poor population, has made
great efforts to improve development in poor areas over the past decades and has
seen tremendous improvements (Information Office of the State Council 2011).
Despite this great achievement, there are some issues such as poverty-returning
phenomenon, developmental contradiction between economy and ecology, and
regional development disparities that also need to be addressed (Wang et al. 2014).
In addition, the distribution of the impoverished people in China is uneven, which
makes it necessary to investigate spatial patterns and driving forces to better support
effective poverty reduction measures.
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1.1 Poverty in China: Responses, Achievements, and Problems

China has made great efforts to reduce the rural poor population over the past
decades. Various policies and measures have been implemented with positive
results. Despite this, China still faces several challenges in poverty alleviation.

Since the reform and opening up in 1978, China has entered a critical period
of urbanization and industrialization, leading to fast economic development, a
considerable increase in living standards, and an unprecedented decline in poverty
(Wang et al. 2014). China has made numerous efforts to accelerate development
in poverty-stricken areas. Specifically, it has implemented the Seven-Year Priority
Poverty Reduction Program (1994-2000), Outline for Poverty Reduction and Devel-
opment of China’s Rural Areas (2001-2010), Outline for Development-Oriented
Poverty Reduction for China’s Rural Areas (2011-2020), and Targeted Poverty
Reduction Strategy (2013) (Zuo 2016; The State Council 2011). These policies and
programs have significantly promoted development in poverty-stricken areas and
helped thousands of people out of poverty.

Benefitting from various measures, China became the first developing country
in the world to achieve the poverty reduction target set by the Millennium
Development Goals of halving the proportion of people whose income is less than
$1.25 per day. Owing to China’s progress, the extreme poverty rate in eastern
Asia has dropped from 61% in 1990 to only 4% in 2015 (United Nations 2015b).
Based on the current national poverty line, CNY 2300 per capita annual net
income, the poverty headcount ratio in China has fallen from 97.5% in 1978 to
1.7% in 2018 (Department of Household Surveys, National Bureau of Statistics
of China 2018; National Bureau of Statistics 2019). On top of that, housing,
education, transportation, and medical care have all seen significant improvements.
In particular, the implementation of the Entire-Village Advancement, which covers
basic farmland, drinking water, roads, social undertakings, and other aspects that
affect impoverished villages, has significantly improved the living standard in rural
areas (Li et al. 2016; Zhou et al. 2018; Liu et al. 2018).

Owing to a poor economic foundation and restriction of natural environment
conditions, central and western China are still developing slowly, and regional
disparities, especially rural-urban disparities, are increasing (Dollar 2007). At the
end of 2018, there were 16.60 million people living below the national poverty line
(Li et al. 2016). Moreover, a number of people who returned to poverty started
to appear, owing to such factors as disasters, illness, disability, and school costs
(Zhou et al. 2018). Meanwhile, a strong connection between poverty-stricken areas
and ecologically protected areas has led to a contradiction between a balanced
development of socioeconomic and ecological conditions (Ouyang et al. 2016; Xu
et al. 2017). Regional development disparities and inequality has also put pressure
on China’s poverty reduction efforts.
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1.2 Spatial Characteristics of Poverty in China

China’s poverty-stricken areas are mainly concentrated in central and western
China, most of which are hilly and mountain areas.

The distribution of poverty-stricken areas in China has an obvious spatial
agglomeration feature. Liu et al. (2017) found that impoverished people mainly
concentrate in the remote deep mountain areas, border areas, and minority areas
of central and western China, and they gradually gather towards the southwestern
region. After the promulgation of the Outline for Development-Oriented Poverty
Reduction for China’s Rural Area (2011-2020) in 2011, the Chinese government
identified 14 poverty-stricken areas as the main battleground for the new round of
poverty reduction and development efforts. Figure 1 shows that poverty-stricken
areas are mainly located in Western and Central China. The 14 poverty-stricken
areas contain 680 counties and cover approximately one third of China, with
mountainous and hilly areas accounting for 86.8% of the land (Zuo 2016).

'ﬁ._G'rg'al Khingan

v =
ey L5

X sha_n—Téihana

MRt
area.el' fo\u_nf;prgv!ncgs
s VNS J?:}}
1 ."'ru!‘}

e

I_:I.'uo:_(_l_:i‘(.}
n of three provinces | '
7 Lol
b

Poverty headcount ratio '] Sagan
L % v

[ e— )] kg

Bz [ Jorr 500 1000 : TP

-

Fig. 1 Fourteen continuously poverty-stricken areas and their poverty headcount ratio in 2013 and
2017, respectively
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The uneven distribution of China’s rural poor population has made it necessary
to explore the spatial pattern and their main causes. The geography of poverty
has been developing rapidly in China since the vigorous carrying out of poverty
reduction actions. A large number of spatial statistical methods were employed to
explore geographical distribution patterns (Liu et al. 2017; Chen and Ge 2015),
causes of poverty (Ren et al. 2017), geographical identification of poverty (Liu and
Xu 2016), spatial-temporal changes of poverty (Li et al. 2015), poverty alleviation
effectiveness assessment (Ge et al. 2017), and relationships between poverty and
geographical elements (Okwia et al. 2007). The spatial temporal patterns and driving
forces of poverty are revealed by spatial analysis and poverty mapping, which can
support effective policies for poverty reduction and sustainable development in
poverty-stricken areas.

2 Applications of Spatial Statistical Methods on Poverty

Evidences from various theoreticasl analysis of poverty have shown that poverty has
spatial attributes (Bird 2019; Jalan and Ravallion 1997). Spatial statistical methods
provide diverse tools for geographical poverty identification, spatial disparities
analysis, and spatial-temporal analysis.

2.1 Datasets

Poverty headcount ratio is the percentage of people living below the poverty line.
The poverty headcount ratio is usually used as a response variable in poverty
related spatial statistical analysis. The potential explanatory variables were selected
from the aspects of income, education, healthcare, housing, and infrastructure for
a region. Meanwhile, the spatially referenced environmental indicators such as
topography, land cover and land use, access to public services were also selected
as potential explanatory variables.

Poverty was initially treated as an economic phenomenon and was usually
measured by the amount of money a person had to meet certain basic needs (Sen
1976; Atkinson 1987). Amartya Sen put forward the concept of capability poverty
in his book Development as Freedom (Sen 2001). This revolutionary leap helped
many researchers understand poverty from different perspectives. Now, poverty is
identified as a multidimensional phenomenon that includes various elements, such
as economic shortage, social exclusion, and vulnerability (Alkire and Foster 2011;
Satya and Chakravarty 2006). Based on these varying perspectives of understanding
poverty, there are also multiple ways to measure poverty. From measuring just
income to including other factors such as health, education, and social services,
the measurement of poverty has gradually extended to appraise the sustainable
livelihoods of the poor population (Alkire and Fang 2018). Income poverty, the
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Table 1 Part of the county level socioeconomic data this chapter used

Teachers per Number of beds utilized in Disposable
Poverty 10,000 persons | health care institutions per income of rural

County headcount (per- 10,000 persons household
name ratio (%) sons/10,000) (persons/10,000) (CNY)
Kangding | 12.10 111.27 91.88 6554.17
Luding 16.30 107.21 30.76 5772.54
Danba 15.44 114.32 36.79 6356.66
Jiulong 14.84 93.56 29.84 7004.28
Yajiang 18.65 86.96 27.00 5374.37
Daofu 19.89 76.59 30.35 5047.35
Luhuo 19.86 97.92 41.36 4989.93
Ganzi 20.85 86.60 41.50 5161.84
Xinlong 19.70 88.28 23.05 5022.94
Dege 23.52 72.57 15.00 4884.12

human development index (HDI), and the multidimensional poverty index (MPI)
are all widely used to measure global poverty (Wang 2012).

Income poverty is the most widely used tool to measure poverty. The World
Bank built bridges to global poverty measurement. The $1.90 per day is the new
international poverty line determined by the World Bank in 2015 (The World Bank
2018). The current national poverty line in China is CNY 2300 per capita annual net
income (Department of Household Surveys, National Bureau of Statistics of China
2018). The population living below the poverty line are identified as impoverished
people. The poverty headcount ratio is the proportion of the impoverished people to
the total population. In this chapter, the poverty headcount ratio is used as a response
variable. Table 1 provides part of the poverty headcount ratio at the county level of
China in 2013.

The HDI and MPI are looks beyond the income to measure poverty. HDI
is a summary measure of average achievement in three dimensions of human
development for a country: a long and healthy life, being knowledgeable, and
have a decent standard of living (UNDP 2010). While MPI emphasizes multiple
deprivations at the household and individual level in health, education and standard
of living. The specific indicators of MPI include nutrition, child mortality, years of
schooling, school attendance, cooking fuel, sanitation, drinking water, electricity,
housing, and assets (Alkire and Foster 2011). These widely recognized literatures
provide the basis for indicators selection. In this chapter, we selected county-
level indicators from the aspects of regional economic, infrastructure, housing,
healthcare, education, and medical care, as shown in Table 2.

Evidences from poverty mapping of China shows that the distribution of poverty
is not homogenous (Zhang et al. 2014). From the perspective of geography, the
heterogeneities are largely caused by the disparities in geographical conditions
such as resource endowment, ecological environment, access to public services, and
regional culture and polices (Zhou and Liu 2019). Existing researches have shown
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Table 2 Lists of the socioeconomic indicators

Contents Indicators
Education Teachers per 10,000 persons (persons/10,000)
Ratio of expenditure on science and education to GDP (%)

Health care Medical technical personnel in health care institutions per 10,000 persons
(persons/10,000)

Number of beds utilized in health care institutions per 10,000 persons
(persons/10,000)

Living standard | Engel’s coefficient (%)
Infrastructure Popularization rate of tap water (%)
Ratio of administrative villages that can be reached by road (%)

Housing Per-capita living space (m? per capita)

Medical care New Rural Co-operative Medical System participants as a proportion of total
population (%)

Income Disposable income of rural household (CNY)

Table 3 Lists of the
environmental indicators

contents Indicators

Environmental | Mean elevation
Standard deviation of elevation
Mean slope
Standard deviation of slope
Proportion of cropland
Proportion of forest
Proportion of grassland
Proportion of built-up land
Road density (km/km?)

that topography, elevation, slope, land use types are all closely related to poverty
(Zhou and Liu 2019; Cheng et al. 2018; Watmough et al. 2019). This chapter has
also selected few Geographical Information System-based indicators as explanatory
variables to investigate the relationship between environmental factors and poverty,
as shown in Table 3.

The sources of socioeconomic data mainly included: (1) the socioeconomic data
from 2010 to 2016 in Ganzi collected from the statistical yearbook of Ganzi Tibetan
Autonomous Prefecture (2011-2017) and the statistical bulletins of the national
economic and social development from 2010 to 2016 in Ganzi Tibetan Autonomous
Prefecture; (2) The impoverished population data in 2013 were provided by the State
Council Leading Group Office of Poverty Alleviation and Development.

The sources of Geographical Information System-based data mainly included:
(1) Elevation data was obtained from ASTER GDEM (Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global Digital Elevation Model) with
resolution of 30 x 30 m., which was downloaded from Geospatial Data Cloud Web
(http://www.gscloud.cn/). (2) Slope data were extracted from the DEM. (3) The land
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cover and land use was collected from China’s Land-Use/cover Datasets (CLUDs),
which are provided by Resources and Environmental Data CloudPlatform(resdc.cn)
with the spatial resolution of 1 x 1 km. (4) Road data was obtained from National
Catalogue Service For Geographic Information with the scale of 1:250000.

2.2 Causes of Poverty

Identifying the determinants of poverty is crucial for making effective poverty
reduction policies in a region. This part introduces three widely employed spatial
statistic methods for causes of poverty analysis: Geographical detector, Spatial
regression, and Geographically Weighted Regression.

The geographical detector was developed by Wang et al. (2010), and was first
applied in public health risk assessment. The core concept of the geographic detector
is based on the assumption that if an explanatory variable has an important effect on
the response variable, then the spatial distribution of the explanatory variable and
response variable will be similar (Wang et al. 2010, 2016). All the results are based
on the geographical detector g-statistic, which is defined as:

SSW
q=1-"— @-1)
SST
L
SSW = Zh,lNh"f SST = No2 (2-2)

h(1,2...L) is the strata of the explanatory variable (X) or response variable (Y). N
and o2 are the number of units and the variance of Y in the study area, respectively.
Ny, and a}% are the number of units and the variance of Y in stratum £, respectively.
SSW and SST are the within sum of squares and total sum of squares, respectively.
The value of the g-statistic is within [0,1]. When response variable Y is stratified
by Y itself, then the larger the q value, the more obvious the spatial stratified
heterogeneity of Y. When Y is stratified by X, a larger ¢ value indicates that X
could explain more of Y, especially when q = 1 indicates that Y is completely
determined by X (Wang et al. 2016). Based on the geographical detector, Liu and
Li (2017) investigated the spatial heterogeneity mechanism of poverty in Fuping
County, China. They denoted the poverty headcount ratio at village level as the
response variable, and chose slope, elevation, per capita cropland, and distance to
the town as the explanatory variables.

Classic ordinary least squares (OLS) regression assumes that the observations
of explanatory variables are independent from each other and always in a normal
distribution, as well as the error term (Anselin 2002; Anselin and Rey 1991).
Therefore, if there is spatial autocorrelation in the data, the assumptions are violated.
The regression models that take spatial autocorrelation into consideration are called
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spatial regression models. Spatial autocorrelation can be detected by the global and
local autocorrelation model, including Geary’s C, G statistic, Moran’s I index, and
the local indicator of spatial association (LISA) (Anselin 1995; Getis 1994). The
spatial regression model includes two main variations: the spatial lag model and the
spatial error model. Spatial-lag model applies to a situation in which the response
variable in one region is affected by the response variable in nearby regions; Spatial
error model applies to a situation in which the error for the model in one region
is correlated with the error terms in its neighboring regions (Anselin 2001; Paul
Elhorst 2014). Paul O. Okwia et al. (2007) employed the spatial regression model
to investigate how and which spatial factors are related to poverty and how much
of the variation in poverty incidence can be explained by environmental factors in
rural Kenya.

Spatial lag model : y; = A Z wijy; +BXj+¢j (2-3)
J#i
Spatial error model : y; = BX; +AZwijyjsj +¢j (2-4)
J#

y; is the response variable for region i; A is the spatial autoregressive coeffi-
cient; wy; is the spatial weight reflecting the proximity of i and j; y; is the response
variable for region j; B is a vector of coefficients; X; is a matrix of explanatory
variables; ¢; is the error term (Paul Elhorst 2014).

Geographically weighted regression (GWR) was proposed by Fotheringham et
al., which allowed the relationships to vary over space (Fotheringham et al. 2002).
GWR is a local version of spatial regression that runs a regression for each location
instead of a single regression model for the whole study area (Zhang et al. 2011; Tu
and Xia 2008). GWR is also popular in the spatial modeling of poverty for providing
a method to assess the degree to which the relationship between the potential
determinants and the poverty rate varies across space. Steven Deller employed GWR
to analyze the spatial variation in the role of tourism and recreation in changing
poverty rates (Deller 2010).

yi = Bo Wi, v;) + B1 (ui, vi) x1; -~ + B (Ui, v;) Xpi + & (2-5)

y; is the response variable for location i; 8; are to be estimated at location i whose
coordinates are given by the vector (u;, v;). The regression model is calibrated for
a location by combing all other available data points to which weights are applied
according to a continuous distance—decay function. The decay function could be
fixed (commonly the Gaussian function is adopted) or adaptive. The shape of the
function, defined by the adaptive bandwidth, may vary depending on the density of
data points in the immediate neighborhood of the regression point (Fotheringham et
al. 2015).
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2.3 Spatial Pattern of Poverty

The spatial patterns can be recognized as cluster, randomness, dispersed, and uni-
formity. Understanding the spatial patterns of poverty areas and poverty populations
can help uncover the causes of poverty and effectively implement poverty reduction
measurements.

The multi-distance spatial cluster based on Ripley’s K is a method that can
analyze spatial patterns of point data (Ripley 1977). It summarizes the objects
clustering or objects dispersion over a range of distances, which can be used to
investigate how the clustering or dispersion of objects changes from distances.
Therefore, the starting distance and distance increment are needed for a multi-
distance spatial cluster analysis. It calculates the average number of neighboring
objects associated with each object in a given distance.

A A n n
K(d) = ’?Zizlz#iwi,»l (dij < d). (2-6)

Ld)=VKd)/m —d (2-7)

A is the area of observed points; 7 is the number of points; w;; is an edge-correction
term to remove the bias; /(d;; < d) is an indicator function that takes the value 1 when
distance dj;; between point i and j is less than d. Lo(d) is compared with expected
value L,(d) for a random sample of points from a complete spatial randomness
pattern. If fo ) — I:e (d) > 0, the pattern of observed points at a distance scale d
is cluster. Ifl:o(d) — fe (d) < 0, the pattern is dispersed. If l:o(d) — I:e (d) =0, the
pattern is randomness.

The average nearest neighbor (ANN) ratio measures the distance between each
object’s centroid and its nearest neighbor’s centroid location first, and then it
averages all the nearest neighbor distances (Ebdon 1985). If the average nearest
neighbor distance is less than the average for a hypothetical random distribution,
the distribution of the objects is recognized as clustering. Conversely, if the average
nearest distance is greater than the average for a hypothetical random distribution,
the distribution of the objects is recognized as dispersed. Then, the average nearest
neighbor ratio is calculated by the observed average distance and divided by the
expected average distance. If the value of the average nearest neighbor ratio is
less than 1, then it indicates a clustering pattern, while greater than 1 indicates a
dispersed pattern.

Do
ANN = =2 (2-8)
D,

Do=n""Y"q (2-9)
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D, =0.5(n/A)7%? (2-10)

Dy is the mean distance between each observed point and its nearest neighbor; D,
is the expected mean distance from the points given in complete spatial randomness
pattern; d; is the distance between point i and its nearest neighbor; A is the area of
observed points; » is the number of points.

Chen and Ge (2015) employed the multi-distance spatial cluster method to ana-
lyze the spatial pattern variation characteristics of 191,537 administrative villages in
the 14 poverty-stricken areas of China. Meanwhile, they estimated the spatial pattern
of villages in each county by using the average nearest neighbor ratio. The spatial
pattern of the villages within each county is shown in Fig. 2. They found that village-
clustered counties are the Tibet area and Tibetan ethnic areas in Sichuan, Yunnan,
Gansu, and Qinghai provinces. Meanwhile, with the increase of distance, different
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Fig. 2 Point pattern of villages within each county in the 14 poverty-stricken areas of China
(Source: Yuehong Chen, Yong Ge. Spatial point pattern analysis on the villages in China’s poverty-
stricken areas. Procedia Environment Sciences 27(2015) 98-105)
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poverty-stricken areas presented different distribution characteristics. Some areas
showed spatial aggregation with distance, while others showed a pattern from
aggregation to dispersion.

LISA is also used to investigate the spatial pattern of poverty areas or poor
populations. The local Moran’s I was used to obtain cluster maps of local indicators
of spatial association that included statistically significant clusters of high values
(high-high), clusters of low values (low-low), outliers in which a high value is
surrounded primarily by low values (high—low), and outliers in which a low value is
surrounded by high values (low—high) (Anselin 1995). Various researches use LISA
to obtain the spatial pattern of the poverty rate, MPI index, and other comprehensive
assessment indices at a county or village level.

Dzt 2= Wi x (xi —X) (xj — %)

I, = —
i —3)?

(2-11)

I; is the local Moran’s I for region i, x; is the attribute of region 7,x is the mean of
the corresponding attribute, w;; is the spatial weight between counties i and j, and n
is the total number of regions.

2.4 Spatial-Temporal Analysis of Poverty

Poverty is changing in number and region. The proportion of people living on
less than $1.25 per day globally fell from 36% in 1990 to 12% in 2015. While
this achievement has been experienced in south Asia and Latin America, the
sub-Saharan Africa region still lags behind (United Nations 2015b). Under the
background of an unprecedented execution of poverty reduction policies, China’s
poverty-stricken areas are experiencing great changes. It is necessary to analyze the
spatial-temporal change of the distribution of poor populations, causes of poverty,
and economic-social-ecological conditions in China’s poverty-stricken areas.

The most widely used and easiest way to explore the spatial-temporal change
of poverty is to map the evaluation value of different times and compare them.
However, if the observed time period is long and we want to investigate the
continuous time series change pattern, then it will be time consuming and missing
some information. Therefore, methods that can capture the change trajectories and
spatial pattern is needed. The Bayesian hierarchical model (BHM) is used in the
space-time analysis of burglary risk and incidence of poverty (Li et al. 2014; Sparks
and Campbell 2013). Bayesian inferences combine the data with additional prior
information to obtain more stable results. BHM considers the spatial and temporal
correlation through prior information. BHM can quantitatively estimate the overall
spatial distribution pattern, overall change trend, and local change trend in the
spatial-temporal process (Haining 1990). It can also be employed to analyze the
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Fig. 3 (a) Estimates from model: common spatial component (posterior medians of exp(S;); (b)
Estimate from model: local trends’ departure from overall trend (Source: Yong Ge, Yue Yuan, Shan
Hu, Zhoupeng Ren, Yijin Wu. Space—time variability analysis of poverty alleviation performance
in China’s poverty-stricken areas. Spatial Statistic 21(2017) 460-474)

spatial-temporal change of poverty. Corey Sparks and Joey (2014) employed BHM
to model and estimate the poverty rate in the United States at the county level. Ge
et al. (2017) used BHM to assess the poverty reduction performance of China’s
poverty-stricken areas; they found a stable spatial pattern of higher effectiveness of
poverty reduction in eastern China and lower in the western region, as shown in
Fig. 3a. Meanwhile, for capturing spatial-temporal changes, the increasing trend of
poverty reduction effectiveness presents a pattern of “high in the center, low in the
east-west,” Fig. 3b, and the most poverty-stricken counties’ development of poverty
reduction effectiveness are consistent with the overall trend.

3 Case Studies for China

Based on the spatial statistical methods described in Sect.2, this part conducted
three case studies in China. In the first case, we analysis the spatial pattern of
poverty headcount ratio of China’s poverty-stricken areas by using LISA. The
second case employed the GWR to explore the spatial nonstationary of the effect
of geographic factors over the space in Hubei province of China. The third case
first evaluate the living standard in Ganzi Tibetan Autonomous Prefecture from the
aspects of housing, infrastructure, medical care, social security, and education based
on the entropy weighting method and gray rational analysis. Then, the Bayesian
hierarchical model wad used to investigate the spatial-temporal changes of evaluated
living standard index of each county in Ganzi from 2010 to 2016.
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Fig. 4 The poverty headcount ratio of poverty-stricken counties in 2013

3.1 Spatial Pattern of Poverty Headcount Ratio

As it shows that in Fig. 1, China has identified 14 poverty-stricken areas as the
new battleground of poverty reduction and development. Here we chose 13 of them,
except Tibet area as it lacks county-level data, 601 counties in total to investigate
the spatial pattern of poverty headcount ration in 2013. Figure 4 mapped the poverty
headcount ration of poverty-stricken counties in 2013.

Local indicators of spatial association (LISA) was calculated by using the GeoDa
software. Figure 5 shows the cluster maps of poverty headcount ratio for poverty-
stricken areas. The counties that have high poverty rate mainly concentrated in South
area of Xinjiang, most area of which is desert and Gobi. While the counties that have
low poverty rate mainly located in Dabie area and South area of Great Khingan
Great, both of which are national major grain producing areas.
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Fig. 5 Cluster maps for poverty headcount ratio in poverty-stricken areas

3.2 Spatial Correlation Analysis: Case Study of Hubei
Province in China

Hubei province located in central China. The central and southern Hubei mainly
belongs to Jianghan Plain while the western and the peripheries are mountain areas.
G7 was adopted to investigate the local spatial autocorrelation in Hubei province.
The results shown in Fig. 6 suggested that a high-high cluster of Hubei province
appeared in the west of Hubei province while a low-low cluster appeared in the
surrounding areas of the capital city Wuhan. Poverty headcount ratio in Hubei
province showed an obvious spatial pattern.

Some potential geographic factors contributing to poverty having available data
and a narrow relevance were proposed as explanatory variables in this case. A total
of 11 indicators were selected as the explanatory variables for the spatial regression
analysis. The detailed description of the explanatory variables is presented in
Table 3. The environment dimension includes topography and land resources. The
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Fig. 6 Cluster map of poverty headcount ratio of Hubei province in 2013

elevation and slope are the most commonly used factors to describe the local terrain.
The mean value and standard deviation of elevation and slope were adopted to
describe the average level and dispersion degree of altitude and slope. Road density
was chosen to indicate the overall transportation convenience and capacity in the
region. Cropland is vital to the rural households for agriculture is the main mode
of production in rural China. Furthermore, GDP per capita was selected to reflect
the economic development and economic activity from statistic year book of Hubei
province.

The correlation matrix of the correlation analysis suggests multicollinearity
between variables with larger correlation coefficients. The step regression model
was further employed to wipe out the collinearity problem between variables. Based
on the results of step regression model, the variables mean elevation, GDP per capita
and proportion of cropland were recognized for they made the most significant
contribution to the regression model and are independent of each other. These three
variables were entered into GWR model. The estimated results in the GWR models
showed that the adjusted R? of the model with the three variables is 0.71, which
is higher than the value of 0.68 determined by the OLS model. The local R? and
explanatory variable coefficient of the variables in the GWR model were shown in
Fig. 7.

The distribution of local R? values presented great spatial variation, which
implies the explanatory ability of the GWR model varies with county. Meanwhile,
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Fig. 7 Local R? and the three explanatory variable coefficients in GWR (CP means proportion of
cropland in the total area of a region; ME means mean elevation)

the spatial distribution of each explanatory variable coefficients is similar but present
different influence over space. Specifically, the mean elevation has a positive impact
on the regional poverty, while GDP per capita and crop proportion have a negative
impact, although the extent of this positive effect varies spatially. In addition, the
spatial distribution of local R? values and the coefficients of explanatory variables
followed a similar characteristic of stratification that generally increased from east
to west, implying the strength of the explanatory ability of the GWR model increases
gradually from east to west.

3.3 Spatial-Temporal Analysis: Case Study of an Alpine Area
in China

Ganzi Tibetan Autonomous Prefecture is a high poverty, alpine, ethnic, and ecolog-
ically protected area. This area plays an important role both in national ecological
security and national harmony. Here we want to evaluate the living standard in
Ganzi from the aspects of housing, infrastructure, medical care, social security,
and education. Ten indicators were chosen to measure the living standard of Ganzi.
Based on the collected socioeconomic data from Ganzi during the period of 2010-
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2016, combined with the entropy weighting method and gray rational analysis, we
evaluated the living standard in Ganzi from 2010 to 2016. Then, the spatial-temporal
changes of evaluated living standard index of each county in Ganzi were investigated
by using the Bayesian hierarchical model.

3.3.1 Study Area

Ganzi Tibetan Autonomous Prefecture, located in the plateau region of western
Sichuan Province, which belongs to the Tibetan ethnic areas of Sichuan, Yunnan,
Gansu, and Qinghai (Fig. 1). Ganzi, with 18 counties, is the largest Tibetan area in
Sichuan Province and covers approximately 153 thousand km?. The highest altitude
is 7556 m and the lowest is 1000 m. According to its geographical location, Ganzi
was officially divided into three regions, northern, southern, and eastern Ganzi.
Northern Ganzi has a higher altitude and harsher natural environment than the other
two regions. Consequently, the socioeconomic conditions in northern Ganzi is quite
lower than in eastern and southern Ganzi.

The high altitude leads to backward transportation and communication condi-
tions in Ganzi. Furthermore, Ganzi is an ethnic minority area where Tibetan is
dominant, accounting for 78.46% of the total population. Factors such as ideology,
language barrier, and education level restrict poverty reduction and development.
Moreover, Ganzi is located near the upper Yangtze river, which is also a water
conservation area and plateau ecological barrier. Ganzi plays an important role both
in national ecological security and national harmony. As an alpine area, ethnic area,
and ecologically protected area, Ganzi faces serious challenges in poverty reduction
and development. At the end of 2017, the poverty rate of Ganzi was 8.65%, the
location of Ganzi is shown in Fig. 8.

3.3.2 Evaluation of Living Standard in Ganzi

The living standard evaluation includes ten indicators, as shown in Table 2. The
chosen indicator categories were housing situation, infrastructure of rural village,
medical care, social security, and education. Per capita living space was selected
to reflect the housing situation. The population rate of tap water usage and the
number of administrative villages that could be reached by road were used to
measure the infrastructure. Medical technical personnel in health care institutions
per 10,000 persons and the number of beds utilized in health care institutions per
10,000 persons were chosen to illustrate the medical care. New Rural Co-operative
Medical System participants as a proportion of the total population was selected to
represent the level of social security. The number of teachers per 10,000 persons and
the ratio of expenditure on science and education to GDP indicated the education
situation. The disposable income of rural households was chosen to reflect the
income standard. Engel’s coefficient was used to reflect the overall living condition
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Fig. 8 Location of Ganzi Tibetan autonomous prefecture

in poor areas. Moreover, Engel’s coefficient is a negative indicator in our evaluation
index system, because the greater the value of Engel’s coefficient means the poorer
the living standard of people.

The entropy weighting method was employed to define the weights for each
evaluation indicator. After that, the Grey relational analysis was used to integrate
various indicators into a comprehensive evaluation value to better assess the living
standard in Ganzi from 2010 to 2016. Shannon’s entropy is widely used to determine
weights, which is an objective method and determines weights only by data
(Shannon 1984; Lotfi and Fallahnejad 2010). Here we used the entropy weighting
method to determine the weights of each index. Gray system theory is proposed by
Deng (1989). Grey relational analysis uses the order of Grey relational degrees to
judge the strength or order of correlation between indicators and is widely applied
for various evaluations (Tan and Deng 1995).

Supposing that there are m(m = 18) counties with n(n = 10) evaluated indicators,
then the index system can be defined as:
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A standardization method was adopted to transform different value scales of
indicator j into common measurable units by using:

X j —min (x.j)

= 3-2
Y~ nax (x.j) — min (x ;) G2
The information entropy of indicator j can be obtained by:
n
Ej=—Inm)~" ) pijlnp; (3-3)
i=1
n
pij = yij/ Zyij (3-4)
i=1
Let lim p;; In p;; = 0, the weight of j can be obtained by:
Pij—0
1-E; .
wJ:—(]ZI,z,,n) (3'5)

n—> Ej

Then, gray rational analysis was employed to obtain the evaluation index of living
standard. First, we needed to normalize each indicator. For positive indicator j:

. l,xij > Sj (3 6)
=1 -
Y 30 %ij =S
For positive indicator j:
l,x,‘j < Sj
Cii = Xii (3_7)
ij { S_;’xij > §;

where S; is the reference value for indicator j,as shown in Table 4. The normalized
indicator matrixC = [¢;1,¢j2- - - ¢in]. Based on gray system theory, a standardization
process is implemented on the normalized matrix to get the referential vector of
indicators asc* = [CT e c,ﬂ Then, the relational coefficient of indicator j for
county i can be calculated by:
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Table 4 Evaluation index framework of living standard in Ganzi

Project Indicators Reference value

Assessment of living | Teachers per 10,000 persons® 100
standard in Ganzi
Tibetan autonomous

prefecture
Medical technical personnel in health care 60
institutions per 10,000 persons?
Number of beds utilized in health care institutions 50
per 10,000 persons®
Engel’s coefficient (%)* 40
Popularization rate of tap water (%)* 100

Ratio of administrative villages that can be reached | 100
by road (%)*

Per-capita living space (m? per capita)? 30
New Rural Co-operative Medical System 100
participants as a proportion of total population (%)

Ratio of expenditure on science and education to 6
GDP (%)*

Disposable income of rural household (yuan)® 8000

4National standard
[ ocal standard

minmax )c}" - c,-j‘ + dmaxmin ‘c}" —cjj
i J l J

§ij = (3-8)

)cjf — c,-j‘ + dmaxmax |c — cjj
i

where 0¢€(0, 00) is a predefined coefficient, set to 0.5. Finally, the evaluated living
standard values can be calculated by:

Rizzwj*éij (3‘9)
=1

Then the evaluation values were divided into five levels and labeled I to V to
indicate the living standard in Ganzi from low to high, for each year.

The living standard in Ganzi improved remarkably, with an average growth rate
of 24.72% from 2010 to 2016. As seen in Fig. 9, all the living standard evaluation
indicators increased from 2010 to 2016. The disposable income of rural households
was the major contributor to social condition growth, which was about 2.5 times
higher in 2016 than it was in 2010. The housing, medical care, and educational
conditions in Ganzi all saw significant improvement. The continuous improvement
of social conditions from 2010 to 2016 in Ganzi can also be observed in Fig. 10.



Applications of Spatial Statistics in Poverty Alleviation in China 387

Income of rural household Y P 245.27
Expenditure on education I 61.53
Teachers I 4447
Tap water (NN 3458
Medical beds NN 247
Medical technical p | I 27 24
Road access to vilage [N 17.7
Engel's coefficient [N 14.27
Medical System participants [N 1284
Living space [N 12.81

-40 -20 0 20 40 60 80 300
Growth rate(%)

Fig. 9 Growth rate of evaluation indicators from 2010 to 2016 in Ganzi
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Fig. 10 Living standard evaluation index, categorized in five levels from 2010 to 2016 for Ganzi

The living standard also presented a regional difference, with higher living standard
in eastern and southern Ganzi, and lower living standard in the northern region.
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3.3.3 Spatial-Temporal Changes of Living Standard in Ganzi

The Bayesian hierarchical model was employed to explore the spatial-temporal
pattern of the living standard in Ganzi from 2010 to 2016.The Bayesian hierarchical
model was implemented using a statistical software named Open BUGS (Bayesian
Inference Using Gibbs Sampling).

Based on the obtained living standard evaluation values, we investigated the
spatial-temporal change pattern of the living standard in Ganzi. We denoted
that y; represents the evaluation value of ith (i = 1,2...18) county at
tth(t= —3,-2,-1,0,1,2,3) year.

yir ~ Normal (Mi,, 02> (3-10)
Thus, the u;; can be modeled as:
log (i) = o+ S; + bot + vy + byt + & (3-11)

where o is the intercept term and assigned to follow a prior distribution of uniform
distribution. S; is the spatial term that describes the stable spatial pattern across
the whole study area during the study period. bot + v; describe the overall time
trend pattern of the whole study area. by;t allows each county to have its own
change trend. ¢;; captures the additional variability in the data not explained by
other model components. Prior distributions are needed to assigned for model
parameters. The prior distributions of S; and by;t are determined by the Besag York
Mollie (BYM) model (Besag et al. 1991). In order to enhance the random effect of
spatial structure in BYM, the conditional autoregressive (CAR) prior with a spatial
adjacency matrix were employed at the same time (Li et al. 2014). The uniform
distribution is assigned to by and a. In addition, v; is modeled as v,"N (0, 03),
and ¢g;; is modeled as ¢;"N (082). Both models were implemented using statistical
software named OpenBUGS, which is specially designed for Bayesian analysis.
Through Gibbs sampling and Metropolis algorithm, it could sample from complete
conditional probability distribution and form MCMC chains, and finally estimating
the parameters of the model through iteration (Lunn et al. 2000).

The obtained posterior median exp(S;) indicates the stable spatial component of
the living standard from 2010 to 2016. The posterior of exp(S;) measured the living
standard in ith county relative to the overall mean condition of the whole study
area over the study period. The posterior median of exp(S;) more than 1 indicated a
higher level than the overall condition, while less than 1 indicated a lower level than
the overall condition. Figure 11a maps the posterior median of exp(S;). There were
10 counties that had a higher level of living standard than the overall living standard
in Ganzi, while 8 counties had a lower level of living standard. Luding County
obtained the highest value of the posterior median of exp(S;j) and Shiqu County
obtained the lowest value. Furthermore, the distribution of the posterior median of
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Fig. 11 (a) The obtained posterior medians of (exp(S;)) for living standard in each county of Ganzi
(b) The deviations of the local trend to the overall trend (by;) of living standard in each county of
Ganzi

exp(Sj) presents an obvious regional disparity, with a high value concentrated in the
eastern and southern regions and a low value concentrated in the northern region.

The obtained posterior median of by; measures the deviations of the local trend
to the overall trend. A negative value of the posterior median of by; indicates that
the speed of change of the evaluation index of ith county is slower than the overall
change in Ganzi from 2010 to 2016. Conversely, a positive value of the posterior
median of by; indicates that the speed of change of the evaluation index of ith county
is more rapid than the overall change. Figure 11b maps the values of the posterior
median of by;. Although the evaluation value of the living standard is quite low in
northern Ganzi, such as Dege County and Ganzi County, they had more rapidly
increased speed than the overall increase. Likewise, Luding County and Kangding
County, located in eastern Ganzi, had the highest levels of living standard, but had
a slower increase speed than the overall increase.

The obtained posterior median of exp(byg + v;) measures the overall temporal
change trend of living standard in Ganzi from 2010 to 2016. Figure 12 plots the
posterior median of exp(bg + v;) from 2010 to 2016. In Fig. 12, the living standard
was continuously increasing from 2010 to 2016.
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Fig. 12 The temporal overall changing trend (exp(bot + v)) of living standard in Ganzi from 2010
to 2016
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