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Abstract

Severe rocky desertification and considerable terrain relief in karst areas increase the

difficulty of identifying determinants of ecosystem services (ESs), leading to relatively

insufficient research on the quantitative attribution of karst ESs. This study investi-

gates environmental determinants and their interactions affecting karst ESs in South-

west China and spatially variable correlations between environmental determinants

and karst ESs in geomorphological regions using the geographical detector and geo-

graphical weighted regression methodologies. Results show that land use and vegeta-

tion coverage are the determinants of water yield and soil loss at the basin scale,

with explanatory power of 67.2% and 32.3%, respectively; and the combination of

elevation and vegetation coverage determines the spatial distribution of carbon

sequestration. The determinants of ESs differed substantially among diverse geomor-

phological types due to differences in the inner characteristics of each. In addition to

the dominant role of land use in each geomorphological type, the effects of vegeta-

tion coverage and precipitation on the water yield are significant in mountainous

regions. The explanatory power of land use for soil loss decreases with increased ter-

rain relief, while that of the vegetation coverage shows the opposite trend. For car-

bon sequestration, terrain factors play a more important role than land use at the

basin scale, while land use is more influential in each geomorphological type. Further-

more, precipitation and vegetation coverage have the largest impact area on water

yield and soil loss in each geomorphological type, respectively, and the impact area of

each determinant of carbon sequestration shows obvious regional differences.
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1 | INTRODUCTION

Ecosystem services (ESs) may be defined as 'the natural conditions

and utilities provided and maintained by ecosystems that sustain

human life' (Daily, 1997). As bridges connecting the natural environ-

ment with human well-being, ESs have become a focus of current

research in geography and ecology and attracted the attention of

many researchers and research organizations (Benson, Jessica, &

Darius, 2011; Sutherland et al., 2006; Costanza et al., 2017). In 2001,

the United Nations launched the Millennium Ecosystem Assessment

(MA), which was a multi-level integrated assessment of the global eco-

system, and the assessment of ESs was its core content (Millennium

Ecosystem Assessment, 2005). The MA divided the Earth's land and

oceans into 10 systems to analyze ESs, and one of these systems wasLiyuan Zuo is the first co-author contributed equally to this work.
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mountains (Zhao & Zhang, 2006). The Intergovernmental Science-

Policy Platform on Biodiversity and Ecosystem Services (IPBES), which

followed the MA, has attracted increasing attention to ESs around the

world (Fu & Zhang, 2014). The IPBES provides a conceptual frame-

work regarding the importance, status, and trends of biodiversity and

nature's contributions to people (Intergovernmental Science-Policy

Platform on Biodiversity and Ecosystem Services, 2018). As one of

the most essential providers of nature's contributions to people,

mountains are affected by multiple drivers of change (Martín-López

et al., 2019), especially in karst mountain regions, where the ecosys-

tem is fragile and the spatial heterogeneity of ESs is high.

Karst mountain regions, which are characterized by fragile eco-

system, serious rocky desertification and intense human activities,

represent one of the most vulnerable ecosystems in the world

(Xiong & Chi, 2015). The decline of ESs caused by karst rocky deserti-

fication is a major resource and environmental issue that restricts the

development of the social economy in karst mountainous areas, which

has become a source of great concern to the Chinese Government

and scientists (Wang & Li, 2007; Wang, Liu, & Zhang, 2004). Cur-

rently, research on karst ESs includes comparative analyses of sample

plots using various methods, such as runoff field monitoring, runoff

plot experiments, 137Cs analyses and photosynthesis instrumental

analyses (Feng et al., 2016). Due to the strong heterogeneity of karst

regions, ESs and their determinants present complex features, and it is

difficult to extrapolate the results of plot-scale studies to the basin

and regional scales (Cai, 2009). At the regional scale, where studying

ESs is more meaningful, researchers usually use remote sensing-based

empirical formulas or modeling methods, such as the Revised Univer-

sal Soil Equation (RUSLE) and Integrated Valuation of Ecosystem Ser-

vices and Tradeoffs (InVEST) model to study the spatial patterns of

ESs and analyze their relationships with environmental factors (Lang,

Song, & Deng, 2017; Zeng et al., 2017). However, the current

research on the quantitative attribution of ESs is insufficient (Wang &

Li, 2007), let alone reveal the spatial heterogeneity and regional differ-

entiation of environmental determinants of ESs in mountainous areas.

The response of ecosystems to direct driving forces varies along

spatial and temporal scales and affects the products and services

of ecosystems at different scales (Bennet, Peterson, & Gordon, 2009;

Duraiappah et al., 2014; Scheffer, Carpenter, Foley, Folke, & Walker,

2001). The diverse geomorphological types, considerable terrain

reliefs and strong spatial heterogeneity of mountain terrain have made

the non-constant characteristics of karst ESs particularly prominent at

different scales (Cai, 2015). In karst mountainous areas, regional con-

clusions are often difficult to apply to local scales due to significant

differences of geological backgrounds and geomorphological charac-

teristics (Cai, 2009), thus indicating regional differentiation. For exam-

ple, Ma and Zhang (2018) noted that the pattern of soil and water loss

varies greatly depending on the slope scale, watershed scale and

regional scale. Therefore, a major research challenge is understanding

the formation and change mechanisms influencing ESs at different

scales. Even within one basin or region, there may be obvious spatial

variability in ESs due to changes in the geographical location. For

instance, Hou et al. (2018) found that in the upper reaches of the

Sancha River basin, where the landform type is plateau, the total

runoff and normalized difference vegetation index (NDVI) are mainly

positively correlated, while in the downstream peak cluster depression

area, these parameters are negatively correlated.

The purpose of this study is to quantitatively identify the environ-

mental determinants of karst ESs in the basin and geomorphological

areas and their spatial variability within these regions. This study focuses

on three ES variables: water yield, soil loss and carbon sequestration.

Due to the advantages of quantitative attribution and the ability to

detect compound effects between factors, geographical detector was

used to identify the environmental determinants and their interactions

of ESs in the basin and different geomorphological areas. The geographi-

cal weighted regression (GWR) was applied in each geomorphological

type to simulate the spatial correlation between ESs and environmental

factors because a local regression method can better identify the corre-

lations between ESs and environmental changes. Quantitatively identi-

fying the correlation between environmental determinants and ESs will

provide a scientific basis for the control of rocky desertification and the

development of an ecologically sustainable civilization.

2 | MATERIALS AND METHODS

2.1 | Study area

The Sancha River basin (26�060–27�000N, 104�540–106�240E) is

located in southwestern Guizhou Province, China (Figure 1). The basin

covers a total area of 4,861 km2 and has an elevation of approxi-

mately 930–2,300 m, and it slopes from the northwest to southeast.

The Sancha River, which originates from Wumeng Mountain, is a first-

order tributary of the Wujiang River. The Sancha River basin is subject

to a subtropical monsoon climate, with rainfall occurring mainly

between May and October. The basin is characterized by a typical

karst peak-cluster depression, where the risk of rocky desertification

is serious. According to the classification of "The Geomorphological

Atlas of the People's Republic of China (1: 1 million)", the Sancha River

basin includes five geomorphological types, namely: middle elevation

plain, middle elevation terrace, middle elevation hill, small relief moun-

tain and middle relief mountain (Zhou & Cheng, 2010).

2.2 | Data used in this study

2.2.1 | Remote sensing data

The map of land use in 2015, which has a 30-m resolution, was inter-

preted from TM images (http://glovis.usgs.gov) and spot investiga-

tions. A digital elevation model (DEM) (Figure 1c) with a spatial

resolution of 9 m was downloaded using the 91 Satellite Map Assis-

tant software (Google Earth v6.0.3). The LANDSAT-8 OLI (http://ids.

ceode.ac.cn), HJ1A/B CCD and GF1 WFV (http://www.cresda.com/

CN) remote sensing images were first subjected to various processing

treatments, such as radiometric calibration, atmospheric correction

and orthorectification. Then, the NDVI was calculated by the ratio of

the difference between the reflection value in the near-infrared band
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and the reflection value in the red-band and the sum of the two.

Finally, NDVI data with a resolution of 30 m were obtained after

various postprocessing treatments, namely, outlier processing, data

mosaicking, target area cropping and projection transformation

(Figure S1). Comparisons with the MOD13Q1 vegetation index prod-

uct data showed that the two NDVI data have a good correlation on

the temporal scale (R2 = 0.6). Moreover, from the perspective of spa-

tial distribution, the NDVI values of the two NDVI data show the

same spatial distribution trend and the distinction among ground fea-

tures is more consistent. The geomorphology data is vector data, and

the vegetation type data is raster data with a resolution of 1 km. Both

of them were obtained from the Resource and Environment Data

Cloud Platform, Chinese Academy of Sciences (http://www.resdc.cn).

2.2.2 | Meteorological and hydrological data

Basic meteorological data, such as the daily average temperature and

daily total precipitation, were obtained from the China Meteorological

Data Services Center (http://data.cma.cn). We selected 29 meteoro-

logical stations in the study region and surrounding areas, and they

were interpolated into 1 km raster data using ANUSPLIN 4.4 software

(Hutchinson & Xu, 2013). Based on the spline interpolation theory of

ordinary thin plate and local thin plate, ANUSPLIN can introduce not

only independent variables, but also covariates (such as elevation).

Hydrological data were obtained from the “Hydrological Yearbook of

the People's Republic of China—Hydrological Data of the Yangtze

River Basin in Wujiang District”, and runoff data from the hydrological

stations were used to validate the InVEST model.

2.2.3 | Soil properties data

Soil mechanical composition data were provided by the Cold and Arid

Regions Sciences Data Center at Lanzhou, China (http://westdc.

westgis.ac.cn). This dataset was obtained from the Harmonized World

Soil Database version 1.1 constructed by the Food and Agriculture

Organization of the United Nations (FAO) and the International

F IGURE 1 The location of the study area (c) in Guizhou Province (b), China (a) [Colour figure can be viewed at wileyonlinelibrary.com]
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Institute for Applied Systems Analysis (IIASA), Vienna. The soil depth

data were obtained through the Soil Data Center, National Earth Sys-

tem Science Data Sharing Infrastructure, National Science & Technol-

ogy Infrastructure of China (http://soil.geodata.cn).

To solve the problem of a nonuniform spatial resolution of the

model input data, we adopted the scale fusion concept to obtain a

uniform resolution dataset (Figure S2). The spatial resolution of the

land use data and NDVI data used in this paper is 30 m. Based on this,

the spatial resolution of the LS factor calculated based on DEM was

upscaled from 9 to 30 m. Meteorological, soil and vegetation data

with a resolution of 1 km were downscaled to 30 m.

2.3 | Methods

2.3.1 | Calculation of water yield with the InVEST
model

Based on the principle of water balance, the water yield module in the

InVEST model was used to estimate the water yield. Considering

the climate, terrain, soil properties, land use types and other factors

of the study area, the model determines the amount of water yield

from each pixel as the precipitation less the fraction of water that

undergoes evapotranspiration (Sharp et al., 2020). The formula is as

follows:

Y xð Þ= 1−
AET xð Þ
P xð Þ

� �
�P xð Þ, ð1Þ

Where: x is a pixel in a raster image and Y(x), AET(x) and P(x) are the

water yield, actual evapotranspiration and precipitation on pixel x,

respectively. The ratio of AET(x) to P(x) represents part of evapotrans-

piration, and it is affected by the potential evapotranspiration and a

natural climatic-soil parameter.

2.3.2 | Modification and application of the RUSLE

The RUSLE model has been widely applied in various mountainous

landscapes (Mallick, Alashker, Mohammad, Ahmed, & Hasan, 2014).

However, in karst areas, due to the serious rocky desertification and

shallow soil layers, soil loss is usually overestimated in areas with high

bedrock bareness (Wang, Cai, Lei, & Zhang, 2010). Based on previous

artificial rainfall simulation tests (Dai, Peng, Yang, & Zhao, 2017), this

paper introduced the correctional factors of rocky desertification to

different degrees (α) to optimize the RUSLE model and make the

simulation results more accurate (Gao & Wang, 2019). In addition,

Feng et al. (2016) revealed that the root mean square error (RMSE)

increases significantly as the accumulated area threshold increases in

karst areas, which means that the simulation precision of the RUSLE

model requires a high-resolution DEM. Therefore, 9-m high-resolution

DEM data were used for calculating the L factor in this paper. The for-

mula of the RUSLE model is as follows:

A= 1−0:0762 × α
� �

R×K × LS×C× P, ð2Þ

Where: A is the annual soil loss (t hm−2 yr−1); α is the correctional

coefficient corresponding to each grade of rocky desertification

(Table 1); R is the rainfall erosivity factor (MJ mm hm−2 hr−1 yr−1), cal-

culated according to the method proposed by Renard and Freimund

(1994); K is a soil erodibility factor (t hm2 hr hm−2 MJ−1 mm−1), calcu-

lated by the erosion-productivity impact calculator model proposed

by Williams (1990); LS is the combined slope length and slope steep-

ness factor (McCool, Foster, Mutchler, & Meyer, 1987; Zhang

et al., 2013); C is the cover and agricultural factor (Cai, Ding, Shi,

Huang, & Zhang, 2000); and P is the factor of support practice, for

which we adopt previous research results (Zeng et al., 2017). The LS,

C and P factors are dimensionless.

2.3.3 | Simulation of carbon sequestration
with the CASA model

The Carnegie–Ames–Stanford Approach (CASA) is one of the most

widely used models for visually depicting the temporal and spatial var-

iation of net primary productivity (NPP) (Mohamed et al., 2004). The

NPP calculation is based on the following expression:

NPPt =APARt × εt, ð3Þ

Where: t is the period in which NPP is cumulated, such as 1 month;

and APARt (MJ m−2) is the photosynthetically active radiation

absorbed by vegetation, and it is determined by the total solar surface

radiation and the fraction of photosynthetically active radiation

(FPAR). Studies have shown that FPAR has a good linear relationship

with the NDVI and ratio vegetation index (SR) (Potter et al., 1993;

Ruimy, Saugier, & Dedieu, 1994). This paper refers to the research

method of Los (1998) and takes the average value of FPARNDVI and

FPARSR as the estimated value of FPAR. In addition, εt (gC MJ−1) is

the actual light use efficiency, which is influenced by temperature

stress, water stress and the maximum light use efficiency of vegeta-

tion (Zhu, Pan, He, Yu, & Hu, 2006). The improvement of the CASA

model is that we referred to the improved values of the maximum

TABLE 1 Correctional coefficients of
different degrees of rocky desertification

Rocky desertification None Potential Light Moderate High Severe

Bedrock bareness rate (%) <20 20–30 31–50 51–70 71–90 >90

a 10 25 40 60 80 95
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light use efficiency of vegetation proposed by Dong and Ni (2011) in

karst areas.

2.3.4 | Geographical detector

The geographical detector is a new statistical tool used to detect

and exploit spatial stratified heterogeneity and reveal the underlying

determinants (Wang et al., 2010). This method assumes that the study

area is characterized by spatially stratified heterogeneity and consis-

tency in the spatial distribution of two variables indicates a statistical

correlation between them (Wang & Xu, 2017). The geographical

detector includes four detectors: factor detector, interaction detector,

risk detector and ecological detector. The factor detector compares

the accumulated dispersion variance of each sub-region with the dis-

persion variance of the entire study region (Wang, Li, et al., 2010).

The proportion of the spatial distribution of the dependent variable

Y that can be explained by factor X is measured by the power of the

determinant (q value); furthermore, as the q value increases, the con-

tribution of X to Y becomes stronger (Luo et al., 2016). The interaction

detector can be used to determine whether covariates X1 and X2

working together will increase or decrease the explanatory power of

the dependent variable Y or whether the influence of these factors on

Y is independent (Wang & Xu, 2017). The relationship between the

two covariates can be divided into the following categories (Table 2).

The q statistic is expressed as follows:

q=1−

PL
h=1

Nhσh2

Nσ2
, ð4Þ

Where: h = 1, 2, …, L refers to the strata of variables; N and σ2 repre-

sent the total number of samples and the variance, respectively; Nh

and σh
2 represent the number of samples and the variance in stratum

h, respectively;
PL

h=1Nhσ2h is the sum of the strata variance; and Nσ2

is the total sum of the variance.

2.3.5 | Geographical weighted regression

The GWR is an extension of the ordinary least squares regression based

on the principle of using linear regression analysis to study the spatial rela-

tionship between two or more variables with geographical differences

(Fotheringham, Brunsdon, & Charlton, 2002). To compare the importance

of different factors, the values of ESs and environmental factors were

standardized in the range of 0–1, and the land use type was replaced by

the standardized land use intensity according to the characteristics of dif-

ferent land use types (Liu, Li, Yi, & Cheng, 2017; Zhuang & Liu, 1997)

because type variables cannot be standardized. In this study, the standard-

ized annual water yield, soil loss and carbon sequestration were the

dependent variables, and the standardized environmental factors were

defined as the independent variables for identifying the spatial heteroge-

neity in each geomorphological type, where different environmental fac-

tors affected karst ESs (Figure 2). Themodel is expressed as follows:

yi = β0 μi,νið Þ+
Xp
k =1

βk μi,νið Þxik + εi , ð5Þ

Where: yi, xik, and εi represent the dependent variables, independent vari-

ables and random errors, respectively; (μi, vi) refers to the location of

point i; k represents the number of independent variables; β0 (μi, vi) is the

intercept at point i; and βk (μi, vi) is the regression coefficient at point i.

3 | RESULTS

3.1 | Model verification and spatial pattern of ES
variables

The water yield simulated by the InVEST model was reliable because

the average simulated values of the whole basin were in good

TABLE 2 Types of interaction between two covariates

Description Interaction

q(X1\X2) < Min[q(X1), q(X2)] Weaken, nonlinear

Min(q(X1), q(X2)) < q(X1\X2) < Max[q

(X1), q(X2)]

Weaken, single factor

nonlinear

q(X1\X2) > Max[q(X1), q(X2)] Enhance, double factors

q(X1\X2) = q(X1) + q(X2) Independent

q(X1\X2) > q(X1) + q(X2) Enhance, nonlinear

F IGURE 2 Flowchart illustrating the process
of calculating ESs and identifying determinants
[Colour figure can be viewed at
wileyonlinelibrary.com]
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agreement with the observed runoff data of hydrological stations in

the validation period from 2013 to 2015; that is, the coefficient of

determination (R2) was 0.971 and the Nash-Sutcliffe efficiency (NSE)

was 0.845. The spatial distribution of the water yield in the Sancha

River basin was characterized by a gradual increase from the south-

east to northwest, and the water yield ranged from 206.75 to

1,072.38 mm, with an average of 833.54 mm (Figure 3a). Because of

the relatively high precipitation, low temperature and low evapotrans-

piration in the north-central part of the study area, the water yield

was highest in this region.

The average soil loss (3.19 t hm−2 yr−1) (Figure 3b) simulated by

the RUSLE model was consistent with the result (279.47 t km−2 yr−1)

for the karst area of Guizhou Province in the 'Water and Soil Conser-

vation Bulletin' in 2015, which was issued by the Water Resources

Department of Guizhou Province (http://www.gzmwr.gov.cn/slxw/

tzgg/201610/t20161021_1166150.html). According to the classifica-

tion criterion of soil loss proposed by the Ministry of Water Resources

of the People's Republic of China, the soil loss in the Sancha River

basin is classified as having a slight grade, and it accounts for 79.95%

of the basin area. Regions with soil loss grades above slight are distrib-

uted in areas with slopes greater than 35�.

The carbon sequestration calculated by the CASA model in the

study area ranged from 0 to 1,035.68 gC m−2, with a mean value of

459.13 gC m−2 (Figure 3c). This result is in good agreement with

previous studies on carbon sequestration in karst areas (Li, Pan, Wang,

Liu, & Zhao, 2014; Zhang, Wang, Liu, Wang, & Yue, 2014). The spatial

distribution of simulated carbon sequestration corresponded to the

land use type. The land use types in the northwestern part of the

study area were mostly forest and grassland, with high vegetation

coverage, high maximum light-use efficiency of vegetation and strong

photosynthesis; thus, carbon sequestration was high. Due to the lack

of vegetation coverage on the surface, the carbon sequestered by

waterbodies and construction land was low.

3.2 | Basin-scale analysis of determinants
of the karst ESs

The results of the geographical detector showed that the impacts of

all environmental determinants on the water yield had strong spatial

heterogeneity and the q value of land use was the largest at 0.672,

and it was followed by that of elevation, precipitation, vegetation cov-

erage and slope (Table 3). The interaction detector results indicated

that land use was still one of the most important factors affecting the

water yield, and the top three q values of the interaction were the

combination of land use with precipitation, elevation and vegetation

coverage, respectively (Table 4), and their explanatory power for the

spatial distribution of water yield was more than 70%.

F IGURE 3 The spatial distribution of the water yield (a), soil loss (b), and carbon sequestration (c) [Colour figure can be viewed at
wileyonlinelibrary.com]
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The power of vegetation coverage in determining the distribution

of soil loss was the largest, q value was 0.323 (Table 3), demonstrating

that the vegetation coverage was the most important environmental

factor dominating soil loss in the basin. The influences of other environ-

mental factors on soil loss are represented by the order of the q values,

which is expressed as land use > elevation > slope > precipitation. The

results of the interaction detector showed that interactions between

the environmental factors can enhance the explanatory power of the

corresponding individual factor to soil loss, and the interactions between

vegetation coverage and land use, vegetation coverage and slope, and

vegetation coverage and precipitation were the most significant interac-

tions (Table 4). The q values of these combinations were higher than the

sum of the single factors.

In addition to vegetation coverage, elevation had the greatest

impact on the spatial distribution of carbon sequestration, with a

q value of 0.201 (Table 3), which was likely because elevation gener-

ally affects regional vegetation patterns by affecting other environ-

mental variables, such as hydrothermal conditions and soil conditions.

According to Table 3, the effect of precipitation on carbon sequestra-

tion is not significant because the funnel structure formed by karst

structures causes most of the precipitation to flow into underground

rivers; thus, precipitation is less available to plants (Huang, Lin,

Wang, & Chang, 2013). With regard to the interactions between envi-

ronmental factors, the three dominant interactions were the interac-

tions of the vegetation coverage factor with the elevation, land use

and slope, respectively, and their explanatory power for the distribu-

tion of carbon sequestration was more than 70% (Table 4).

3.3 | Quantitative attribution of the karst ESs
in different geomorphological types

The results of the geographical detector indicated that land use was

still the dominant factor affecting the spatial distribution of the water

yield among the five geomorphological types (Figure 4a). The mini-

mum q value of land use appeared in the small relief mountain area,

with a value of 0.64. In mountainous areas, the q values of vegetation

coverage were greater than 10%, which were higher than the q values

found in relatively flat areas. This result indicated that high vegetation

coverage in mountainous areas had a significant impact on the spatial

distribution of the water yield. The q values of precipitation varied

among different geomorphological types and showed obvious signifi-

cance in mountainous and hilly areas. Similar to the results at the

basin scale, the interaction between land use and other factors has

the most significant effect on the spatial distribution of water yield

(Figure 5). Specifically, the interaction between land use and precipita-

tion and the interaction between land use and elevation have the larg-

est explanatory power for water yield in each geomorphological type,

accounting for more than 75%.

The explanatory power of land use and vegetation coverage for

the spatial distribution of soil loss shows a certain regularity with the

increase of terrain relief. The q values of land use decrease with

increasing terrain relief, while the q values of vegetation coverage

show the opposite trend. Because relatively flat areas are greatly

affected by human activities, the explanatory power of land use for

the spatial distribution of soil loss has become particularly significant

in the middle elevation plain and middle elevation terrace, which have

explanatory powers of 26.26 and 24.52%, respectively (Figure 4b). In

areas with large terrain relief, vegetation coverage has the greatest

explanatory power for soil loss. Regarding the interaction detector

results, the interaction between land use and vegetation coverage

was the highest among the five geomorphological types and the

explanatory power was over 69% (Figure 6). This result indicates that

soil loss is closely related to the conservation of soil and water by veg-

etation and the way humans interfere with soil.

The explanatory power of vegetation coverage for the distribu-

tion of carbon sequestration was more than 68% in each geomorpho-

logical type (Figure 4c). The effects of elevation on the spatial

TABLE 3 The q values of
environmental factors affecting spatial
distribution of ESs

Land use Precipitation Elevation Slope
Vegetation
coverage

Water yield 0.672 0.157 0.213 0.003 0.068

Soil loss 0.041 0.022 0.028 0.023 0.323

Carbon sequestration 0.171 0.057 0.201 0.107 0.731

TABLE 4 The dominant interactions between two covariates at the basin scale

ESs Dominant interaction1 Dominant interaction2 Dominant interaction3

Water yield Landuse \ precipitation Landuse \ elevation Landuse \ vegetation coverage

0.946 0.763 0.702

Soil loss Vegetation coverage \ landuse Vegetation coverage \ slope Vegetation coverage \ precipitation

0.680 0.559 0.385

Carbon sequestration Vegetation coverage \ elevation Vegetation coverage \ landuse Vegetation coverage \ slope

0.773 0.746 0.743
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F IGURE 4 q values of environmental factors affecting the karst ESs in different geomorphological areas [Colour figure can be viewed at
wileyonlinelibrary.com]

LU S VC E LU S VC E LU S VC E

S 0.961 S 0.917 S 0.803

VC 0.961 0.137 VC 0.916 0.131 VC 0.800 0.033

E 0.966 0.199 0.245 E 0.924 0.019 0.095 E 0.853 0.170 0.227

P 0.979 0.090 0.155 0.132 P 0.960 0.044 0.136 0.037 P 0.923 0.142 0.197 0.224

High Low

LU S VC E LU S VC E LU: land use

S 0.653 S 0.704 S: slope

VC 0.686 0.124 VC 0.735 0.127 VC: vegetation coverage

E 0.756 0.170 0.233 E 0.742 0.274 0.297 E: elevation

P 0.942 0.141 0.249 0.246 P 0.967 0.325 0.340 0.440 P: precipitation

Middle elevation plain Middle elevation terrace Middle elevation hill

Small relief mountain Middle relief mountain

F IGURE 5 The interaction of factors
affecting water yield in different
geomorphological types [Colour figure can

be viewed at wileyonlinelibrary.com]
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distribution of carbon sequestration showed obvious regional differ-

ences, which were manifested in mountainous areas, where the

explanatory power of elevation for carbon sequestration was higher

than 17%. In contrast, in relatively flat areas, the explanatory power

was less than 10%, indicating that elevation played a significant role in

the mountainous areas. In the middle relief mountain area, the influ-

ence of precipitation on carbon sequestration reached a maximum of

0.172, while in the other four geomorphological types, the influence

was not significant. The explanatory power of the slope for the spatial

distribution of carbon sequestration was greater than 10% at the basin

scale, but for different geomorphological types, the effect of slope was

not significant. The results of the interaction detector showed that

vegetation coverage also played a dominant role in controlling the spa-

tial distribution of carbon sequestration in different geomorphological

types. As shown in Figure 7, the interaction between vegetation cover-

age and other factors has the highest explanatory power.

3.4 | Spatial variability for impact areas of ESs
determinants

After the quantitative attribution of environmental determinants in

basin and different geomorphological types, the spatial variability of

different environmental determinants affecting the three ESs within

each geomorphological region was identified. Impact areas mean

that a certain environmental factor most affected karst ESs and its

location and spatial distribution in different geomorphological regions

were determined by comparing the normalized GWR regression coef-

ficients. The GWR model is applied because independent variables

(environmental determinants) and dependent variables (karst ESs)

have spatial differences in terms of their geospatial relationships. The

results of the spatial autocorrelation analysis show that all Moran's

I values of the regression parameters of the GWR model selected in

this paper are greater than 0 (Table 5), indicating that the selected

LU S VC E LU S VC E LU S VC E

S 0.388 S 0.298 S 0.158

VC 0.782 0.340 VC 0.764 0.267 VC 0.718 0.571

E 0.350 0.186 0.237 E 0.247 0.038 0.143 E 0.136 0.081 0.331

P 0.370 0.137 0.226 0.054 P 0.272 0.051 0.262 0.027 P 0.149 0.087 0.352 0.035

High Low

LU S VC E LU S VC E LU: land use

S 0.070 S 0.062 S: slope

VC 0.691 0.590 VC 0.693 0.687 VC: vegetation coverage

E 0.105 0.078 0.413 E 0.091 0.106 0.506 E: elevation

P 0.069 0.063 0.423 0.062 P 0.137 0.130 0.497 0.138 P: precipitation

Middle elevation hill

Small relief mountain Middle relief mountain

Middle elevation plain Middle elevation terraceF IGURE 6 The interaction between
environmental factors influencing soil loss
in different geomorphological types
[Colour figure can be viewed at
wileyonlinelibrary.com]

LU S VC E LU S VC E LU S VC E

S 0.347 S 0.298 S 0.224

VC 0.906 0.901 VC 0.916 0.915 VC 0.781 0.784

E 0.351 0.118 0.904 E 0.235 0.082 0.913 E 0.192 0.134 0.795

P 0.350 0.155 0.905 0.103 P 0.247 0.094 0.914 0.038 P 0.182 0.139 0.785 0.073

High Low

LU S VC E LU S VC E LU :land use

S 0.174 S 0.206 S: slope

VC 0.689 0.687 VC 0.797 0.783 VC: vegetation coverage

E 0.263 0.238 0.718 E 0.288 0.243 0.813 E: elevation

P 0.230 0.154 0.699 0.243 P 0.319 0.224 0.785 0.309 P: precipitation

Middle elevation plain Middle elevation terrace Middle elevation hill

Small relief mountain Middle relief mountain

F IGURE 7 The interaction of factors
affecting carbon sequestration in different
geomorphological regions [Colour figure
can be viewed at wileyonlinelibrary.com]
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parameters have positive spatial autocorrelations, that is, these

parameters are non-stationary in space. The Z scores are greater than

2.58, which indicate that they have statistical significance at the 0.01

level. Therefore, the GWR model can be used to identify the spatial

distribution of areas where different environmental determinants

affected karst ESs.

Figure 8 shows that impact areas of precipitation on water yield

accounts for the largest proportion in each geomorphological type.

The correlation coefficient between vegetation coverage and water

yield in the middle elevation plain is significantly smaller than other

factors, indicating that governance measures in this region should

focus on the impacts of the other four environmental factors on the

water yield. In the other four geomorphological types, the water yield

is affected by five environmental factors to varying degrees, and the

dominant regions of each environmental determinant factor in the

spatial distribution of water yield show obvious spatial heterogeneity.

For example, in the small relief mountain area, the impact areas of

precipitation are mainly located in the western and central parts,

which account for 53.63% of the total area. The area of the land use

intensity effect on the water yield is second to that of precipitation in

the small relief mountain area, and its impact areas are mainly concen-

trated in the northern and southwest portions.

Figure 9 revealed that vegetation coverage has the largest impact

areas on soil loss compared with other factors in each geomorphological

type, which means that improving the vegetation coverage in the study

area should be the first priority for soil loss control, thus demonstrating

the necessity for ecological engineering implementation. In addition to

focusing on the dominant role of vegetation coverage in large portions

of the study area, soil loss should also be controlled by zoning according

to the factor characteristics of other factor-dominated areas. For exam-

ple, attention should also be paid to the decisive role of slope in the soil

loss in the central part of the middle elevation plain.

The spatial correlation coefficient between vegetation coverage

and carbon sequestration is the largest in each geomorphological type.

In order to analyze the area of other factors affecting carbon sequestra-

tion, we removed the vegetation coverage in Figure 10. In the middle

elevation plain, the carbon sequestration on the left is controlled by pre-

cipitation and that on the right is controlled by elevation. This result

indicated that carbon sequestration should be managed in different

zones according to the characteristics of different determinants. Slope

has the largest impact area on carbon sequestration in the middle eleva-

tion terrace, which means that the influence of slope on vegetation

growth and carbon sequestration should be emphasized in this area. In

the middle elevation hill area, the dominant area of precipitation was

mainly in the central region. The elevation and slope impact areas were

mainly concentrated in the eastern part of this geomorphological area.

In the small relief mountain area, the precipitation impact areas were

mainly concentrated in the western part of the geomorphological area,

which accounted for 41.18% of the area. The dominant area of eleva-

tion was concentrated in the eastern part of the geomorphological area,

which accounted for 45.50% of the area. In the middle relief mountain

area, 60.47% of the region was dominated by precipitation.

TABLE 5 Moran's I and Z scores of
regression parameters for each factor in
the GWR model

Elevation
Vegetation
coverage

Land use
intensity Precipitation Slope

Moran's I 0.87 0.29 0.29 0.94 0.16

Z-score 129.97 43.61 42.92 140.98 23.79

F IGURE 8 Impact areas of environmental factors on water yield in different geomorphological types [Colour figure can be viewed at
wileyonlinelibrary.com]
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4 | DISCUSSION

4.1 | Macro-controlling effect of geomorphological
features on karst ESs

Geomorphological features play a macro-controlling role in the

supply and maintenance of ESs by influencing environmental condi-

tions and ecological processes (Zhao, Liu, Feng, Wang, & Yang,

2018). Soil loss, as a surface process, shows significant differences in

terms of erosion characteristics under different geomorphological

types. For example, the explanatory power of land use for soil loss

decreased as the terrain relief increased, while that of the vegetation

coverage showed the opposite trend (Figure 4). Furthermore, the

explanatory power of environmental determinants in each geomor-

phological type differed substantially and that of the elevation for

the spatial distribution of carbon sequestration was more pro-

nounced in mountainous areas with high terrain relief. All the

results indicate that differences in karst ESs characteristics among

diverse geomorphological types should be considered during ES

management.

F IGURE 9 Impact areas of environmental factors on soil loss in different geomorphological types [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 10 Impact areas of environmental factors on carbon sequestration in different geomorphological types [Colour figure can be viewed
at wileyonlinelibrary.com]
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4.2 | Spatial scale characteristics of the impact
of determinants on karst ESs

The relationship between ESs and driving forces is often influenced

by the temporal and spatial scale (Zhang & Zhao, 2010). Due to

the scale characteristics caused by spatial heterogeneity and the com-

plex conversion problems between different scales, the relationships

between karst ESs and environmental determinants show obvious

regional differentiation at the basin and different geomorphological

areas. For example, the impact of land use on the spatial distribution

of soil loss is not obvious at the basin scale (Table 3), but in the middle

elevation plain and middle elevation terrace, land use becomes the

dominant factor and one of the dominant factors in the interactions

that affect the spatial distribution of soil loss (Figures 4 and 6). The

reason for this pattern is that land use is more fragmented at the basin

scale than the geomorphological scale. For certain geomorphological

types, humans will intervene in land use according to the geomorpho-

logical features, which leads to less differentiation of land use types

in the same geomorphological type; thus, land use has more explana-

tory power regarding the spatial distribution of ESs in different geo-

morphological regions. This finding proves that the formation of ESs

depends on the ecosystem structure and processes on a certain spa-

tial scale and significant leading factors and effects can only be

observed at a specific spatial scale (Zhang, Ouyang, & Zheng, 2007),

resulting in different orientations and demands of human well-being

at different scales. In karst mountain areas, ESs and resource utiliza-

tion, regional sustainable development and poverty reduction are hot

topics in the study of coupling ESs and human well-being. The natural

conditions of thin soil, poor soil quality, steep slopes, and more people

and less land have caused local people to fall into a vicious cycle of

slope reclamation, habitat deterioration, and generational poverty,

which is a key area for poverty alleviation. The rational allocation of

land use patterns and degrees in different regions, and the research

on the driving mechanism of ESs at various scales are the promotion

of human well-being and the guarantee of regional ecological security.

Although the spatial heterogeneity of ESs and the regional differen-

tiation of geomorphological types exert influence on the environmental

determinants of ESs and their impact areas in space, the intrinsic mecha-

nisms of environmental determinants on ESs still show consistency

feature (Figures 8–10). For example, the impact areas of vegetation cov-

erage on soil loss and carbon sequestration accounts for the largest pro-

portion in each geomorphological type. Our result is consistent with the

research of Gao, Sun, and Yuan (2010), who found that maintaining and

restoring vegetation in karst areas and reducing farming activities were

the main ways to control soil loss and rocky desertification. And it also

indicates that the implementation of ecological projects, such as the

Grain-for-Green Program, have an obvious effect on soil loss.

4.3 | Uncertainty analysis and future perspectives

The spatial autocorrelation and spatial heterogeneity of ecological and

geographical phenomena violate the hypothesis of independent and

identical distribution in classical statistics (Wang, Li, et al., 2010).

However, based on spatial stratification heterogeneity, the geographical

detector can detect the quantitative impact of environmental determi-

nants and their interactions on ESs. The GWR model obtains local rather

than global parameter estimates (Fotheringham et al., 2002), and it

improves the reliability of relationships between ESs and environmental

determinants by minimizing the spatial autocorrelation of residuals

(Zhang, Gove, & Heath, 2005). Both the geographical detector and

GWR methods can effectively reduce information redundancy and col-

linearity to a certain extent.

The formation and maintenance of ESs depend on the processes

of ecological and geographic systems at different spatial and temporal

scales (Zhang & Zhao, 2010). An emphasis on the spatial and temporal

dimensions represents an important perspective in current ESs research.

Studies on multiple time nodes or long time-series should be fully con-

sidered in the next step to systematically study the varying relationships

between karst ESs and environmental factors under multiple scales to

obtain more objective results. Furthermore, the theme of the Interna-

tional Mountain Day, established by the United Nations, has gradually

changed from the study of the natural environment to a comprehensive

study coupled with human well-being. Therefore, future studies on ESs

in karst mountainous areas should take the coupling and the promotion

of human well-being into consideration.

5 | CONCLUSIONS

At the basin scale and different geomorphological types, the quantita-

tive attribution of environmental determinants showed that the effect

of land use on water yield was stronger than that of other environmen-

tal factors, indicating that the water yield supply services in karst areas

depend to a large extent on the rational management of land use.

Although the impact areas of precipitation on water yield accounts for

the largest proportion in each geomorphological type, the effects of ele-

vation and other factors also be given enough attention.

The regional differentiation of geomorphological types makes the

determinants of soil loss show obvious differences. Land use is the

dominant factor affecting soil loss in the middle elevation plain and

middle elevation terrace, while vegetation coverage has the strongest

explanatory power for soil loss in mountainous and hilly areas. Fur-

thermore, the explanatory power of land use for soil loss decreased

with increasing terrain relief while that of the vegetation coverage

showed the opposite trend, indicating that in karst areas with diverse

geomorphological types, soil loss and rocky desertification control

should be planned based on actual geomorphic characteristics.

Vegetation coverage has the strongest explanatory power and the

largest impact area for the spatial distribution of carbon sequestration in

the basin and each geomorphological type, which proves the necessity of

implementing ecological projects such as the Grain-for-Green Program.
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