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Abstract: Modeling ecological land evolution and determining the responsible 1 

driving forces is a common research topic in land use and landscape ecology. 2 

However, the interaction effect and dynamic change of anthropogenic-natural factors 3 

on the ecological land evolution of urban agglomerations is still unclear. Supported by 4 

Google Earth Engine, this study used Landsat satellite imagery and random forest 5 

algorithm to obtain the land cover datasets of Guangdong-Hong Kong-Macao Greater 6 

Bay Area from 1990-2019. Furthermore, a geographic detector was used to identify 7 

the driving factors’ impact on ecological land evolution by quantifying nonlinear 8 

associations, change characteristics, and mechanisms. The results show: (1) 9 

Ecological land shifted from decline and fragmentation (1990-2010) to growth and 10 

integration (2010-2019). (2) Population density (q=0.83) and land urbanization rate 11 

(q=0.75) mainly controlled the ecological land evolution, illustrating more 12 

explanatory power than other factors, and accounting for higher proportion of area as 13 

the determinant factor in the study region. All driving factors interactions were 14 

bivariate, and the interaction between population density and elevation had the largest 15 

influence (q=0.92). (3) Anthropogenic factors had a generally greater influence on 16 

ecological land than natural factors, and the impact of population density and GDP 17 

per capita exhibited a continuous increase, while land urbanization rate first decreased 18 

(1990-2000) and then increased (2000-2019) in response to industrial restructuring 19 

and accelerated urbanization. Due to the intensification of anthropogenic activities, 20 

the effect of average annual temperature and precipitation declined by 69% and 77%, 21 

respectively. The conclusions indicate that the interaction and spatially heterogeneous 22 
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distribution of anthropogenic-natural factors should be comprehensively considered 23 

when designing a system based on cooperative mechanisms to improve ecological 24 

protection efficiency. 25 

Key words: ecological land; Guangdong-Hong Kong-Macao Greater Bay Area; 26 

spatial-temporal evolution; anthropogenic-natural factors; interaction effect; 27 

geographical detector 28 

 29 

1 Introduction 30 

An urban agglomeration can be defined as a spatially compact and economically 31 

highly integrated cluster of cities (Fang and Yu, 2017). Mega-urban agglomeration (or 32 

urban megaregion) physically cover not only the spatially proximal urban areas with 33 

different scales but also the intervening suburban and exurban regions, which are 34 

linked by social processes, including population migration, policy initiatives and 35 

lifestyle changes (Seto et al., 2012). Ecological land is an important requirement for 36 

the sustainable development of urban agglomerations (Meyfroidt et al., 2018; Peng et 37 

al., 2017) through maintaining ecological security, beautifying the environment and 38 

contributing to society’s physical and mental health (Markevych et al., 2017). 39 

However, the problem of ecological land destruction is increasingly prominent in 40 

response to the amplified effects of environmental change and anthropogenic 41 

disturbance (Deng et al., 2015). Over the past forty-odd years, mega-urban 42 

agglomeration in China has exhibited extensive urban population growth and urban 43 

sprawl, which brought significant negative impacts on ecosystem services (Costanza 44 
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et al., 2014; Qiu et al., 2019). As one of the most open and economically vibrant 45 

mega-urban agglomerations in China and even the world, the Guangdong-Hong 46 

Kong-Macao Greater Bay Area (GBA) is playing an increasingly important role in 47 

economic globalization and national development (Hui et al., 2018). However, the 48 

sprawl of urbanisation in the GBA has led to problems such as vegetation degradation, 49 

landscape pattern fragmentation, ecological function decline, which aggravate the 50 

conflict between human and environment (Yang et al., 2019), and may have a 51 

profound impact on the future development of GBA. Thus, there is a great need to 52 

optimize the spatial allocation of ecological land in urban agglomerations (Luo et al., 53 

2020). 54 

Previous scholars have extensively explored ecological land, with particular 55 

emphasis on the following research areas: (1) spatial-temporal evolution and 56 

optimization of ecological land spatial patterns and (2) analysis of ecological land 57 

influencing factors and mechanisms based on land use/cover. In the first case, some 58 

researchers have used ecological network theory (Zhang et al., 2020), landscape 59 

connectivity (Guo et al., 2020) and landscape indices (Li et al., 2020; Qiu et al., 2019) 60 

to evaluate ecological spatial patterns. For example, Serret et al. (2014) explored the 61 

distribution of Green Spaces at Business Sites (GSBS) in Paris and evaluated its 62 

contribution to the regional ecological network. Results showed that the entire Green 63 

Space network connectivity increased because 23% of the GSBS patches acted as 64 

stepping stones for mobile species. Soltanifard and Jafari (2019) assessed the 65 

ecological quality of Mashhad, Iran, and found that ecological patches that did not 66 
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possess adequate extent and continuity do not effectively support some of the key 67 

ecosystem services. Other studies pointed to ecological land fragmentation (Atasoy, 68 

2018; Peng et al., 2017) as a factor that facilitates a reduction in the value of 69 

ecosystem services (Chen et al., 2020; Long et al., 2014), which subsequently triggers 70 

the urban heat island effect (Scolozzi and Geneletti, 2012) and other ecological safety 71 

hazards.  72 

With respect to the second research focus, ecological land is collectively affected 73 

by natural and anthropogenic factors (Xie et al., 2017). Elevation and slope are 74 

considered to be the general limiting natural factors for ecological lands, with flatter, 75 

lower elevation ecological areas being more susceptible to development as 76 

agricultural and urban land (López-Barrera et al., 2014; Peng et al., 2017). Climatic 77 

and hydrological conditions (Smith et al., 2019), as well as soil organic matter content 78 

(Xie et al., 2017), are also associated with changes in ecological land. Anthropogenic 79 

factors have contrasting impacts on ecological land. Specifically, urban expansion 80 

(Peng et al., 2017), population growth, economic development (Li et al., 2020), and 81 

agricultural production (Tilman et al., 2002) have negative effects on ecological land, 82 

such as encroaching out ecological space and destroying ecosystem diversity (Deng et 83 

al., 2015). Additionally, as the standard of living improves, managers and citizens are 84 

increasingly concerned about the recreational benefits of green space and are 85 

demanding more ecological land in the city (Xie et al., 2014; Yang et al., 2020). 86 

Methodologically, previous studies used graph theory model (Serret et al., 2014), 87 

regression analyses (López-Barrera et al., 2014; Peng et al., 2017; Xie et al., 2014) 88 
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and spatial econometrics models (Xie et al., 2017; Yang et al., 2020) to analyze the 89 

linear relationship of driving factors on ecological land, and explored the mechanism 90 

in combination with the research area. The geographical detector has been proposed 91 

by Wang et al. (2010) to quantify the contribution of factors to dependent variables 92 

based on spatial stratified heterogeneity. This method has shown good performance 93 

and is widely used to quantify the influence of the factors that determine the spatial 94 

patterns of ecological land (Chen et al., 2020; Hu et al., 2020). 95 

While certainly insightful, existing studies have failed to address three primary 96 

issues. First, current research on ecological land focus on the urban scale, while the 97 

regional integration analysis of the ecological land’s spatial-temporal changes in 98 

urban agglomeration is still lacking. Second, there are significant spatial-temporal 99 

heterogeneous in the effect of driving factors on ecological land (Zhang et al., 2018), 100 

but few studies have explored the variation and mechanisms of driving factors’ impact 101 

over time. Further, most of the research usually focuses on the unilateral role of 102 

driving factors, and rarely explores the interaction effects between factors. Third, 103 

many land cover datasets are publicly available with spatial resolution ranging from 104 

30 m to 1 km, but the production of these datasets is still relying on manual 105 

intervention, making it difficult to update land use/cover database over long time 106 

series (Hu and Hu, 2019; Midekisa et al., 2017). The way of processing long-term 107 

land use/cover remote sensing data needs to be improved by using some effective 108 

methods (Zhang et al., 2017).  109 

To solve the issues mentioned above, here we investigated the spatial-temporal 110 

Jo
urn

al 
Pre-

pro
of

User
高亮

User
高亮

User
高亮



 6 / 39 
 

patterns of ecological land in the GBA, as well as the effect of driving factors 111 

combining natural and anthropogenic data based on 30m land use/cover data from 112 

1990-2019. Specifically, this paper focused on three issues: (1) What are the changing 113 

characteristics and trends of ecological land distribution in the GBA over the past 30 114 

years? (2) What are the natural and anthropogenic forces that affect ecological land, 115 

and how do their interactive effects and influence mechanisms behave? (3) What are 116 

the characteristics of the temporal changes of these driving factors’ effect? 117 

 118 

2 Material and methods 119 

2.1 Study area 120 

According to the Outline Development Plan for the Guangdong-Hong 121 

Kong-Macao Greater Bay Area published by the Chinese government in 2019, the 122 

GBA should not only become a world-class mega-urban agglomeration but also create 123 

a good-quality region suitable for working, living and traveling (Wang et al., 2020). 124 

The GBA consists of the Hong Kong Special Administrative Region (HK), the Macao 125 

Special Administrative Region (MC) as well as 9 prefecture-level cities, namely 126 

Guangzhou (GZ), Shenzhen (SZ), Zhuhai (ZH), Foshan (FS), Huizhou (HZ), 127 

Dongguan (DG), Zhongshan (ZS), Jiangmen (JM) and Zhaoqing (ZQ) in the Pearl 128 

River Delta (PRD), with a total area of 56,904 km2 (Fig. 1). There are different levels 129 

of economic and social development and political systems within the GBA. In 2019, 130 

the total GBA resident population was 72.7 million, the urbanization rate was 86.1%, 131 

the GDP was $11,591 billion, and the tertiary industry accounted for 66.4% of the 132 
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GDP. The GBA is an urbanized area with a high level of integration. Rapid 133 

urbanization and high intensity land development in the GBA generated considerable 134 

pressure on regional ecological land protection (Zhou and Mu, 2019), making 135 

ecological conservation a policy concern (Table A1). Thus, identifying and 136 

understanding the evolution and formation mechanism of the GBA’s spatial pattern of 137 

ecological land has become a valuable fundamental research work for regional 138 

ecosystem governance. 139 

 
Fig. 1 Topography map of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). The GBA 

includes 11 cities: Guangzhou (GZ), Zhaoqing (ZQ), Foshan (FS), Dongguan (DG), Huizhou (HZ), 

Jiangmen (JM), Zhongshan (ZS), Shenzhen (SZ), Zhuhai (ZH), Hong Kong (HK), and Macao 

(MC). 

 

2.2 Data sources 140 

According to the definition of ecological land in the Opinions on the Delineation 141 

and Strict Observance of the Red Line of Ecological Protection (Hu et al., 2020), land 142 

use types in the study area were classified as either ecological (forest, grassland, and 143 

water) or non-ecological (construction and other land), agricultural land is excluded 144 
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from the ecological land. The Google Earth Engine (GEE) has supplied a platform 145 

that provides basic calculation functions for raster and vector data and can be used by 146 

developers (Gorelick et al., 2017; Hu and Hu, 2019). Therefore, the data used 147 

included available standard Level 1 Terrain-corrected (L1T) orthorectified surface 148 

reflectance images of the 1990-2019 plant growing seasons from Landsat 149 

TM/ETM+/OLI archived in the GEE. We also use the land-use dataset interpreted by 150 

Resource and Environment Data Cloud Platform (RESDC) (http://www.resdc.cn), 151 

which is characterized as highly accurate by field survey and random sampling check 152 

which were conducted by Chinese Academy of Sciences (Chen et al., 2020). In 153 

addition, based on a literature review in section 1 and data accessibility, elevation 154 

(DEM), slope (Sp), average annual precipitation (Tem), average annual temperature 155 

(Pre), population density (POP), GDP per capita (GDPPC) and land urbanization rate 156 

(LUB) were selected as driving factors (Table A2). 157 

2.3 Research procedure 158 

The research framework was divided into six steps (Fig. 2):  159 

(1) With the support of the GEE, the multiyear image synthesis and cloud mask 160 

methods (Zhu et al., 2015) were applied to obtain the TOA composite data without 161 

cloud or shadow coverage, for each year from 1990-2019. These images were 162 

subsequently cropped according to the study area boundary; 163 

(2) Using the Land cover dataset, training and verification samples were 164 

carefully deployed according to the “complete consistency” and “temporal stability” 165 

principles. Then, the land cover dataset was reclassified into the same land types. 166 
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Pixels with completely consistent, unchanged land cover types were selected, while 167 

3206 training pixels and 1,202 validation pixels, were randomly selected to ensure a 168 

minimum of 200 validation pixels per land use type; 169 

(3) There are many automatic land classification algorithms, such as minimum 170 

distance classification (MDC), random forest (RF), maximum likelihood classification 171 

(MLC), classification and regression trees (CART), support vector machine (SVM), 172 

and object-oriented classification methods (Gómez et al., 2016). Among these 173 

algorithms, the RF method, formed by a combination of many decision tree models, is 174 

widely used (Breiman, 2001; Hu and Hu, 2019). In addition, compared with 175 

traditional land classification algorithms, the RF method has obvious advantages in 176 

multidimensional feature data processing. Previous studies also have verified that RF 177 

model training is an effective classification method (Ou et al., 2019). Therefore, we 178 

chose the RF as a classifier with ensembles of 500 trees to obtain the land cover 179 

classification maps for each chosen year based on Landsat satellite images and 180 

auxiliary data. For more details about the auxiliary data processing, see Appendix A; 181 
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Fig. 2 Flowchart of land cover mapping and mechanism analysis. Note that MNDWI, SAVI, 

NDBI and LULC represent Modified Normalized Difference Water Index (MNDWI), Soil 

Adjusted Vegetation Index (SAVI), Normalized Difference Built-Up Index (NDBI) and land 

use/cover.  

 

(4) The overall accuracy and kappa coefficient were calculated from the error 182 

matrix (Hu and Hu, 2019; Sun et al., 2018) to evaluate the classification results 183 

accuracy by using the RESDC land cover dataset as the standard. The overall 184 

accuracy and the Kappa coefficient of the study area’s land cover classification (Fig. 3) 185 

from 1990-2019 was 0.93±0.05 and 0.89±0.04 (Table 1), respectively, which met the 186 

research requirements. The output images were further converted into ecological land 187 

and non-ecological land; 188 

(5) Land use change matrix and four indicators were selected to analyze changes 189 

in the GBA’s landscape pattern of ecological land (Table A3). The indicators include 190 

Edge Density (ED), Patch Density (PD), Contagion Index (CONTAG), and Shannon’s 191 

Diversity Index (SHDI), all of which were calculated by Fragstats 4.1 (Thapa and 192 

Murayama, 2009). ED indicates the smoothness of patch edges and PD reflects the 193 

fragmentation and anthropogenic disturbances on the landscape. CONTAG refers to 194 

Jo
urn

al 
Pre-

pro
of



 11 / 39 
 

the agglomeration of different patch types, which is an index used to describe the 195 

spatial information of a certain landscape pattern. The SHDI reflects the landscape 196 

heterogeneity, where higher values correspond to more patch types; 197 

(6) Elevation and construction land data were used to calculate slope and land 198 

urbanization rates, respectively. A geographic detector was used to investigate the 199 

forces, interactions, spatial-temporal characteristics, and influence mechanism of 200 

natural and anthropogenic factors on the evolution of ecological land. 201 
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Fig. 3 Land cover maps in the Guangdong-Hong Kong-Macao Greater Bay Area during 

1990-2019 

 

Tab. 1 Overall accuracy assessment of land use classification from 1990-2019  

 Forestland Grassland Water bodies 
Construction 

land 
Other land Overall 

Kappa coefficient 0.87±0.03 0.86±0.02 0.92±0.03 0.90±0.05 0.88±0.09 0.89±0.04 

Accuracy 0.90±0.03 0.91±0.02 0.96±0.02 0.94±0.06 0.90±0.08 0.93±0.05 
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2.4 Geographical detector 202 

The geographical detector can capture the spatial relationship between the 203 

driving factors and the distribution of ecological land, as well as the interactions 204 

between the driving factors. When there is a nonlinear relationship between an 205 

explained variable and explanatory variables, this method is more applicable than a 206 

linear model (Wang et al. 2016). We assumed that the ecological land has a spatial 207 

distribution similar to that of a driving factor if the impact factor leads to the observed 208 

distribution of ecological land (Wang et al., 2010; Wang et al., 2016). The 209 

geographical detector comprises four modules: factor, interaction, risk, and ecological 210 

detectors. Factor detector, interaction detector and risk detector are mainly used in the 211 

current study. The factor detector uses a q value to quantify the influences of variable 212 

X on Y; q is determined by the following formula: 213 

  (1) 214 

where q is the power of the determinant; N and Nh are the number of sample units in 215 

the entire region and sub-region; h=1,2…, L is the number of secondary regions; �� 216 

and �� are the variance of the samples in subregion h and the global variance of Y 217 

over the entire study region. SSW and SST are the within sum of squares and the total 218 

sum of squares, respectively. The value range of q is [0,1], this means the selected 219 

driving factor explains q × 100% of the explained variable. The larger the q value, the 220 

stronger the influence of variable X on Y. 221 

The ecological detector is used to compare whether X1 has a significantly greater 222 
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influence or contribution than X2. It is measured using the statistics F: 223 

  (2) 224 

where NX1and NX2 represent the number of factors X1 and X2 samples; SSWX1and 225 

SSWX2 are the within sum of squares in the subregion generated by factor layers X1 226 

and X2. L1 and L2 represent the number of X1 and X2 subregions. The null hypothesis 227 

is defined as H0: SSWX1= SSWX2. The rejected H0 at the significance level indicates 228 

that it is statistically significant. 229 

The interaction detector examines the interaction of different factors and reveals 230 

whether the interaction of factors X1 and X2 weaken, enhance, or are independent of 231 

influencing Y. The interactive relationship can be divided into five categories by 232 

comparing the interactive q value of the two factors and the q value of each of the two 233 

factors (Table 2). 234 

 

Tab. 2 The interactive categories of two factors and the interactive relationship 

Description Interaction 

���1 ∩ �2
 < �
�����1
, ���2

 Weaken; univariate 

�
�����1
, ���2
� < ���1 ∩ �2
 < �������1
, ���2
� Weaken; univariate 

���1 ∩ �2
 > �������1
, ���2
� Enhanced, bivariate 

���1 ∩ �2
 = ���1
 + ���2
 Independent 

���1 ∩ �2
 > ���1
 + ���2
 Nonlinearly enhance 

 

3 Results and discussions 235 

3.1 Temporal evolution characteristics of ecological land in the GBA 236 

In 1990, ecological land in the GBA accounted for 26,716.14 km2, 47.19% of the 237 

total area. Forestland, water body and grassland comprised 22208.58 km2, 3,094.11 238 
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km2, and 1,413.45 km2 respectively. From 1990-2000, the total ecological land area 239 

decreased by 485.1 km2, and grassland decreased by 397.35 km2, accounting for 240 

81.91% of the total reduction (Fig. 4a). From 2000-2010, ecological land area rapidly 241 

diminished by 899.46 km2, mainly in grassland (543.6 km2) and water bodies (156.33 242 

km2). The period of 2010-2019 demonstrated slow growth in the ecological land area 243 

with an increase of 15.21 km2, of which forest land increased the most (223.74 km2), 244 

while water body and grassland decreased by 21.69 km2and 186.84 km2, respectively. 245 

In summary, from 1990-2019, the ecological land in the GBA decreased from 47.19% 246 

to 44.77% (1,369.35 km2). Specifically, the forestland area increased by 5.85 km2 247 

(0.03%); while grassland and water bodies decreased by 1127.79 km2 (79.79%) and 248 

247.41 km2 (8%), respectively. The GBA exhibits the typical conflict between urban 249 

sprawl and ecological land conservation (Wang et al., ,2020). 250 

From 1990-2019, the ecological land in the GBA underwent severe destruction 251 

and gradual recovery, with a landscape pattern characterized by fragmentation 252 

followed by integration (Fig. 4b). Specifically, from 1990-2010, ED and PD increased 253 

by 9.72% and 12.02%, respectively, indicating more irregular ecological land patch 254 

edges and more intense landscape fragmentation; CONTAG and SHDI decreased by 255 

16.04% and 17.06%, respectively, demonstrating that the fragmentation of ecological 256 

land has caused a rapid decline in landscape diversity. However, from 2010-2019, ED 257 

and PD decreased by 2.21% and 1.27%, signifying that the ecological land patch 258 

edges had become regular and continuous; CONTAG and SHDI increased by 2.61% 259 

and 0.63%, suggesting that there was a tendency of spatial agglomeration with respect 260 
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to ecological land distribution that improved landscape diversity. 261 

 

Fig. 4 Land cover area change(a) and ecological land landscape metrics change (b): Patch Density 

(PD),    Edge Density (ED), Contagion Index (CONTAG), and Shannon’s Diversity Index (SHDI) 

 

3.2 Spatial evolution characteristics of ecological land in the GBA 262 

The evolution of ecological land distribution in the GBA generally shows a 263 

process of decreasing in the central area (Fig. 3). Ecological land was concentrated on 264 

the periphery of GBA, with forestland and grassland mainly distributed in 265 

northeastern GZ, northwestern ZQ, and eastern and northern HZ. Water bodies were 266 

scattered in FS, ZH and DG. In addition, the average proportion of MC’s ecological 267 

land was only 29.17% and the proportion of ecological land in HK (57.47%) and ZQ 268 

(62.95%) is much higher than the regional average (45.76%) (Table A4), which is 269 

closely related to location, urbanization development stage, and local policies. For 270 

example, as a Special Administrative Region, HK is highly urbanized but with a land 271 

policy that strictly protects ecological land (Hasan et al., 2019; Wong et al., 2017). 272 

The urbanization rate of ZQ is only 48.63%, while the forest coverage rate is over 273 

70%, making it the main forest area in GBA. 274 
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From 1990-2000, 306.54 km2 of ecological land, which was primarily 275 

concentrated on the periphery of urban built-up areas, was converted to construction 276 

land (Fig. 5 and Table A5). This was mainly due to the demand for urban construction, 277 

and resulted in partial occupation of the forestland and grassland. In addition, 492.29 278 

km2 of other land was converted to ecological land, mostly sporadically in ZQ and HZ, 279 

likely in response to the “returning slope farmland to forest, grass and water” policy 280 

enacted in 1998 (Long et al., 2012). From 2000-2010, due to rapid urbanization and 281 

industrialization, 1,476.1 km2 of ecological land in industrialized cities, such as SZ, 282 

FS and DG, was converted for construction and other land use purposes (Table A5). 283 

From 2010-2019, ecological land area in the GBA experienced numerous fluctuations, 284 

but overall showed an increasing trend. 659.26 km2 of non-ecological land, mainly 285 

distributed in GZ and HZ, was converted to ecological land (Table A5), which was 286 

likely in response to Guangdong’s urban greening initiative (The People’s 287 

Government of Guangdong Provence, 2013), the implementation of “ecological red 288 

line (an important tool for ensuring development of environmentally sustainable 289 

communities)” (Hu et al., 2020), as well as major natural ecosystem protection and 290 

comprehensive land improvements projects (Long et al., 2014). These efforts 291 

collectively and effectively decelerated the decrease of ecological land space. 292 

However, 404.94 km2 of ecological land was still converted to non-ecological land 293 

which is mainly composed of cash crops planting areas and urban construction land. 294 

Thus, ecological land still requires significant additional protective measures. 295 
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Fig. 5 Spatial transition pattern of ecological land in the Guangdong-Hong Kong-Macao Greater 

Bay Area  

 

3.3 Driving factors’ effect on the spatiotemporal evolution of ecological land 296 

The geographical detector was used to calculate each factor’s force on ecological 297 

land evolution form 1990-2019. Based on the power of determinant on spatial 298 

heterogeneity, the driving factors can be ranked as follows: POP > LUB > GDPPC > 299 

DEM > Sp > Tem > Pre (Fig. 6). Except for Pre and Tem, the other driving factors 300 

were statistically significant at the 1% level. Moreover, anthropogenic factors had a 301 

generally greater influence on ecological land than natural factors, which is consistent 302 

with several published studies (Peng et al., 2017; Wang et al., 2018; Xie et al., 2017). 303 

In addition, there are statistically significant impact differences between 47.6% of the 304 

driving factors’ interaction (Fig. 6). 305 
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Fig. 6 The determinant and interaction power of driving factors on ecological land. *** and * * 

indicate significance at the 1%, 5% levels, respectively; the thickness of the line represents the 

strength of the influence or interaction; the abbreviations of factors are listed in Section 2.2 

 

For the anthropogenic factors, POP and LUR had a significant negative effect on 306 

ecological land in the GBA, with q values of 0.83 and 0.75, respectively. It is similar 307 

to the finding in previous studies which also demonstrated that population increase 308 

was the key factor facilitating significant decline of ecological land (Xie et al., 2017). 309 

The GBA resident population reached 72.7 million in 2019, which was 2.46 times that 310 

in 1990. The massive population density in the cities led to an increasing demand for 311 

construction land (e.g., housing, transport, industry), and resulted in a large amount of 312 

ecological land being converted and occupied; thus, exacerbating the conflict between 313 

social development and ecological protection (Long et al., 2014). Meanwhile, the 314 

GDPPC determines 64% of the ecological land distribution, and has a significant 315 

negative effect, indicating that high economic density areas are mostly urban cores, 316 

and their proportion of ecological land is also generally low (Peng et al., 2017; Wang 317 

et al., 2018). For natural factors, DEM and Sp were positively correlated with 318 

ecological land, with q values of 0.64 and 0.54, respectively. Consistent the findings 319 
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in previous studies, topography play an important role in ecological land (Smith et al., 320 

2019; Xu et al., 2019). Ecological land with flat slopes and lower elevation are more 321 

likely to be exploited for agriculture and urban land (López-Barrera et al., 2014; 322 

Newman et al., 2014; Xie et al., 2017), as higher altitudes correspond with higher 323 

development cost. However, cities in GBA are influenced by the typical East Asian 324 

Monsoon (EAM), with irregular fluctuations in annual precipitation and temperature 325 

(Hallegatte et al., 2013; Luo et al., 2019; Piao et al., 2003). It is observed that the 326 

causal relationship between the change trend of temperature, rainfall and ecological 327 

land is not obvious, which weakens the explanatory power of Pre (0.36) and Tem 328 

(0.47) on ecological land evolution. 329 

The interactive relationship between each pair of factors was bivariate, and thus 330 

enhanced each other in influencing ecological land (Fig. 6). Among the interactions 331 

between anthropogenic and natural factors, q(POP∩DEM) was the maximum (0.92), 332 

indicating that the coupling between POP and DEM is the key to influencing 333 

ecological land evolution. As the POP and DEM have great effects on the distribution 334 

of ecological land, their interactive effect is also very prominent.With respect to 335 

interactions among anthropogenic factors, q(POP∩LUR) and q(POP∩GDPPC) were 336 

the strongest (0.85). In regions with high populations and economic development, 337 

ecological land is more easily converted into construction land (e.g., residential 338 

buildings and commercial industry), which can generate greater profits and better 339 

stimulate the local economy. Among the natural factor interactions, q(DEM∩Sp) 340 

exhibited the maximum value (0.85). Low, flat areas make it easier to convert 341 
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ecological land into construction land. Mountainous areas, with their high elevation 342 

and undulating terrain, have hydrothermal and other conditions that make them 343 

unsuitable for most anthropogenic activities, but conducive to vegetation growth and 344 

ecological land protection. 345 

Figure 7(a) shows the distribution of the driving factors on the ecological land 346 

evolution during 1990-2019. Apparently, the spatial distribution of dominant factors 347 

was heterogeneous in the GBA, presenting a pattern dominated by anthropogenic 348 

factors in the central part (e.g., ZS, FS, ZH, SZ and DG) and transitioning to a pattern 349 

dominated by intersection of anthropogenic-natural factors in the periphery (e.g., GZ, 350 

ZQ, JM, and HZ). In addition, the regions of Pre and Tem determinant were relatively 351 

small, scattered in northern GZ, eastern HZ and western JM. After sequencing the 352 

cities according to population density from high to low (Fig. 7b), it can be seen that 353 

the higher population density of a city, the more sensitive the ecological land 354 

evolution is to anthropogenic factors. POP and LUR determined 28.6% and 26.5% of 355 

the ecological land evolution, respectively, while GDP and DEM accounted for 16.3% 356 

and 10.2%, respectively, much more than Sp (8.2%), Tem (6.1%) and Pre (4.1%) (Fig. 357 

7c). Therefore, anthropogenic activities dominate the evolution of ecological land in 358 

the GBA, which is consistent with previous study (Yang et al., 2019).  359 
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Fig. 7 (a) Spatial pattern of determinant driving factors on the ecological land evolution, (b) Area 

percentage of determinant driving factor of all cities, and (c) the number proportion of driving 

factors on the whole study region. Abbreviations are defined in Fig. 1 and Section 2.2 

 

3.4 Dynamic changes of driving factors’ effect on ecological land 360 

The driving factors’ influence (q values) on ecological land evolution from 361 

1990-2019 were calculated using the factor detector and are presented in Table 3. For 362 

anthropogenic factors, GDPPC and PD were more stable than LUR (Fig. 7a). The q 363 

values of POP and GDPPC increased by 36.8% and 23.4%, respectively, indicating 364 

that the two factors had an increasing marginal effect on the ecological land. The 365 

correlation between GDPPC and ecological land decreased from -0.88 to -0.78, 366 

demonstrating that the negative effect between economic development and ecological 367 

land gradually weakened. Essentially, with the urban landscape planning optimization, 368 

regions with a high GDPPC and urbanization rate are more likely to pursue a higher 369 

quality living environment; thus, green space coverage is relatively high. For example, 370 

HK effectively protected ecological land and the value of ecological services through 371 

policies such as the Town Planning Ordinance, which was designed to promote 372 

Jo
urn

al 
Pre-

pro
of

User
高亮



 23 / 39 
 

conservation and protection of country parks, coastal protection areas, and green belts 373 

(Wong et al., 2017). SZ and GZ also used green space landscape planning (e.g., green 374 

space connectivity design) to achieve the growth of ecological land within the built-up 375 

areas (Peng et al., 2017). However, the effect of LUR on ecological land is 376 

characterized by a gentle decrease followed by an increase, possibly due to the fact 377 

that the GBA’s industrial structure shifted from a secondary industry to a tertiary 378 

industry from 1990-2005. The tertiary industry increased from 41.6% to 56.6% (Fig. 379 

7b), which reduced the destruction of ecological land by industrialization-led urban 380 

sprawl. In contrast, from 2005-2019, the large migrant influx in the GBA (the resident 381 

population grew by 1996.64 million) led to a sharp increase in demand for housing, 382 

education, medical services, and other facilities (Wang et al., 2020), which directly 383 

promoted urban sprawl and the occupation of surrounding ecological land (Fig. 4). 384 

LUR gradually became the main driving factor on ecological land evolution. 385 

 

Tab. 3 Determinant Power (q value) of driving factor on ecological land from 1990-2019 

Year 
DEM Sp Pre Tem POP GDPPC LUR 

� � � � � � � � � � � � � � 

1990 0.63***  0.64**  0.52***  0.56**  0.57***  0.11 0.59***  -0.47**  0.57***  -0.78**  0.64***  -0.88**  0.84***  -0.85**  

1995 0.63***  0.64**  0.53***  0.56**  0.67**   -0.33**  0.59***  -0.52**  0.72***  -0.77**  0.61***  -0.87**  0.60***  -0.85**  

2000 0.63***  0.65**  0.54***  0.58**  0.37***  -0.24 0.67***  -0.62**  0.62***  -0.79**  0.67***  -0.87**  0.51***  -0.84**  

2005 0.64***  0.66** 0.55***  0.59**  0.19**   0.07 0.73***  -0.63**  0.61***  -0.80**  0.71***  -0.87**  0.65***  -0.85**  

2010 0.64***  0.68** 0.55***  0.61**  0.18  0.01 0.58***  -0.62**  0.74***  -0.87**  0.76***  -0.73**  0.76***  -0.87**  

2015 0.64***  0.69** 0.54***  0.62**  0.20  0.23 0.19  -0.16 0.71***  -0.84**  0.73***  -0.75**  0.76***  -0.87**  

2019 0.65***  0.70** 0.56***  0.63**  0.13  0.17 0.18  -0.15 0.72***  -0.80**  0.79***  -0.78**  0.77***  -0.87**  

*** and * * indicate significance at the 1%, 5% levels. 
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Fig. 8 (a) The box-whisker plot of q values for driving factors and (b) the changes of industrial 

structure over 1990 to 2019 

 

For natural factors, the q values of Tem and Pre were relatively high at the very 386 

beginning, then decreased from 0.59 to 0.18 and 0.57 to 0.13, respectively, implying a 387 

gradual weakening of the impact these two factors exert on ecological land. It may 388 

because the disturbance of anthropogenic activities, especially the regional planning 389 

and policies, on the distribution of ecological land is gradually increasing (Xie et al., 390 

2017). For example, from 2010-2019, the GBA issued five ecological conservation 391 

policies (Table A1), leading to the construction of arge areas of green space. Park 392 

green space with a 500 m radius covered every corner of the city. At the same time, 393 

this stage is still a period of rapid urban expansion (Fig. 4), made LUR’s impact on 394 

ecological land continuously increase (Yang et al., 2019). Based on the above, it can 395 

be observed that the effects of these human factors have been increasing, while the 396 

influence of Tem and Pre on the ecological land evolution has been weakening. 397 

However, from the scale of the entire urban agglomeration, the macro pattern of DEM 398 

and Sp has a fundamental role in the formation of the ecological landscape pattern in 399 
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GBA, and their effects on ecological land were essentially stable over time (Fig. 7a). 400 

 401 

4 Conclusions and implications 402 

4.1 Conclusions  403 

(1) Ecological land evolution in the GBA exhibited prominent spatial-temporal 404 

heterogeneity, and its distribution experienced a shift from decline and fragmentation 405 

(1990-2010) to growth and integration (2010-2019). From 1990-2010, the proportion 406 

of ecological land in the whole region decreased from 47.19% to 44.75%, a decrease 407 

in area equivalent to 1384.56 km2 and the landscape of ecological land was more 408 

fragmented and irregular. From 2010-2019, the ecological land area with an increase 409 

of 15.21 km2, and there was a tendency of spatial agglomeration with respect to 410 

ecological land distribution. Moreover, ecological evolution pattern of the GBA 411 

underwent a process of decreasing in the central area, with 82.4% of the ecological 412 

land converted to construction land during the study period, which was mainly 413 

distributed in and around the built-up areas of FS and ZQ. 414 

(2) Anthropogenic-natural factors and their interactions had significant influence 415 

on the ecological land. From a long-term perspective, the impact of anthropogenic 416 

factors (with POP being the major factor; q=0.75) on ecological land was generally 417 

greater than that of natural factors. Moreover, the interaction effects among the factors 418 

were bivariate, and the interaction between elevation and population density was the 419 

largest (q =0.92). Importantly, the spatial distribution of dominant factors was 420 

heterogeneous, presenting a pattern dominated by anthropogenic factors in the central 421 
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part and transitioning to a pattern dominated by intersection of anthropogenic-natural 422 

factors in the periphery.  423 

(3) The effect of anthropogenic-natural factors on ecological land evolution is 424 

dynamically changing. The impact of POP and GDPPC showed a significant upward 425 

trend during the study period (the q values increased by 36.8% and 23.4%, 426 

respectively). However, the impact of LUR was characterized by gradual decrease and 427 

then increase, which paralleled industrial restructuring and accelerated urbanization. It 428 

is noteworthy that under the combined influence of anthropogenic activities (e.g., 429 

policy planning, urban expansion, and public concern), the influence of natural factors 430 

on ecological land gradually weakened (the q values of Tem and Pre declined by 69% 431 

and 77%, respectively). 432 

4.2 Policy implications 433 

(1) In the GBA, where the impact of anthropogenic activities on the surface 434 

environment is more intense, the ecological land driving force is more complex. The 435 

coupling relationship between anthropogenic and natural factors requires special 436 

consideration when addressing ecological land protection; and slow but steady change 437 

for ecological land’s spatial pattern should be promoted through adjustment of these 438 

combined of factors. Our findings indicated that population migration in high-altitude 439 

areas and rational population distribution and afforestation in low-altitude areas are 440 

important initiatives for ecological land protection. The development and 441 

implementation of ecological land policies (Table 1) in some cities in the GBA 442 

accelerated urban greening, major natural ecosystem protection and comprehensive 443 
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land improvements projects.  444 

(2) The impact of driving factors on ecological land evolution in the GBA have 445 

significant differences over time. Therefore, policymakers need to formulate diverse 446 

policies at different periods and in various cities. For example, population growth and 447 

economic development have gradually increased the impact of ecological land, so 448 

special attention should be paid to population evacuation and rational industrial layout 449 

of core cities (e.g. SZ, HZ and ZS). In addition, for cities adjacent to the GBA core 450 

area (e.g. ZH), we should also be alert to the volatile impact of urbanization on the 451 

ecological land degradation and landscape fragmentation, and restrict the disorderly 452 

expansion of construction land. Furthermore, due to the stability of the topography’s 453 

impact, elevation and slope also should be considered when designing ecological 454 

conservation and planning. Of course, climate conditions were also the main factors 455 

affecting ecological land in GBA’s peripheral cities (e.g., HZ and JM), but the forces 456 

were constantly decreasing. Therefore, for these cities, it is necessary to minimize the 457 

intervention of human activities and explore the driving mechanism of climate change 458 

on ecological land. 459 

(3) The spatial distribution of dominant driving factors of the ecological land 460 

evolution in the GBA presents obvious regional and intercity relevance. With the 461 

growing close spatial connection within the GBA, the joint governance of ecological 462 

spaces across cities should been greatly enhanced, ultimately realized regional-scale 463 

ecological land restoration. In addition, the GBA should establish a new mechanism 464 

for more effective regional ecological land protection and coordinated development, 465 
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implement multi-city planning integration to reduce the fragmentation and 466 

degradation of ecological land. Moreover, the focus of land policy formulation should 467 

be shifted from simply improving the land’s productive function and economic value 468 

to improving its ecological function. 469 

4.3 Innovations and limitations 470 

This work takes the lead in examining the evolutionary characteristics of 471 

long-term ecological land series in the GBA, and considers the interaction and 472 

dynamic change of driving factors’ effect on ecological land evolution. The data 473 

derived from this investigation are valuable reference for enriching the existing 474 

analytical framework and establishing ecological protection policy. In addition, with 475 

respect to methodology, this study used a geographical detector to eliminate the 476 

problem of multicollinearity among drivers, and quantify the forces of ecological land 477 

evolution. Furthermore, the nominal overall accuracy of publicly available land 478 

use/cover products ranges from 60–80%, which cannot meet the needs of 479 

environmental monitoring and ecological governance and reduces the accuracy and 480 

credibility of small and medium-scale studies (Zhao et al., 2014). The remote sensing 481 

processing method based on long-term Landsat satellite imagery and other auxiliary 482 

data supported by the GEE platform is used for efficient and accurate mapping of land 483 

use/cover, which provides an effective alternative for land mapping. 484 

This study also has some limitations. First, ecological land is influenced by a 485 

variety of factors, and more driving factors should be selected to explore the 486 

mechanisms of ecological land evolution further and more thoroughly. Secondly, there 487 
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are differences in the driving factors and influence mechanisms on ecological land 488 

evolution in various cities within the GBA. Although they have been mentioned in the 489 

current study, there is a lack of systematic and in-depth analysis. Future research 490 

should focus on conducting a deeper, more granule comparative study of the 491 

differences in the spatial-temporal patterns and drivers of ecological land evolution 492 

between cities. 493 

 

Acknowledgments 

This study was supported by the National Natural Science Foundation of China 

(41901181, 41871151). We especially expressed the thanks to everyone around the 

world for their hard work and dedication on COVID-19. In addition, Rundong Feng 

wishes to thank his spiritual mentor, Kobe Bryant, whose Mamba Spirit have given 

his great support for the last twelve years. 

 

References 

Atasoy, M., 2018. Monitoring the urban green spaces and landscape fragmentation using remote 

sensing: a case study in Osmaniye, Turkey. Environ. Monit. Assess. 190, 713. 

https://doi.org/10.1007/s10661-018-7109-1 

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5-32. 

https://doi.org/10.1023/A:1010933404324 

Chen, T., Feng, Z., Zhao H., Wu, K., 2020. Identification of ecosystem service bundles and driving 

factors in Beijing and its surrounding areas. Sci. Total Environ. 711, 134687. 

https://doi.org/10.1016/j.scitotenv.2019.134687 

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S.J., Kubiszewski, I., et al., 

2014. Changes in the global value of ecosystem services. Glob. Environ. Change-Human 

Policy Dimens. 26, 152-158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 

Deng, X., Yuan, Y., Wang, Z., Li, Z., 2015. Impacts of land-use change on valued ecosystem 

service in rapidly urbanized North China Plain. Ecol. Model. 318, 245-253. 

https://doi.org/10.1016/j.ecolmodel.2015.01.029 

Fang, C., Yu, D., 2017. Urban agglomeration: An evolving concept of an emerging phenomenon. 

Jo
urn

al 
Pre-

pro
of



 30 / 39 
 

Landsc. Urban Plan. 162, 126-136. https://doi.org/10.1016/j.landurbplan.2017.02.014 

Gómez, C., White, J.C., Wulder, M.A., 2016. Optical remotely sensed time series data for land 

cover classification: A review. ISPRS-J. Photogramm. Remote Sens. 116, 55-72. 

https://doi.org/10.1016/j.isprsjprs.2016.03.008 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth 

Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 

18-27. https://doi.org/10.1016/j.rse.2017.06.031 

Guo, X., Zhang, X., Du, S., Li, C., Siu, YL., Rong, Y., et al., 2020. The impact of onshore wind 

power projects on ecological corridors and landscape connectivity in Shanxi, China. J. 

Clean Prod. 254, 120075. https://doi.org/10.1016/j.jclepro.2020.120075 

Hallegatte, S., Green, C., Nicholls, RJ., Corfee-Morlot, J., 2013. Future flood losses in major 

coastal cities. Nat. Clim. Chang. 3, 802-806. https://doi.org/10.1038/nclimate1979 

Hasan, S., Shi, W., Zhu, X., Abbas, S., 2019. Monitoring of Land Use/Land Cover and 

Socioeconomic Changes in South China over the Last Three Decades Using Landsat and 

Nighttime Light Data. Remote Sens. 11, 1658. https://doi.org/10.3390/rs11141658 

Hu, T., Peng, J., Liu, Y., Wu, J., L,i W., Zhou, B., 2020. Evidence of green space sparing to 

ecosystem service improvement in urban regions: A case study of China’s Ecological Red 

Line policy. J. Clean Prod. 251, 119678. https://doi.org/10.1016/j.jclepro.2019.119678 

Hu, Y., Hu, Y., 2019. Land Cover Changes and Their Driving Mechanisms in Central Asia from 

2001 to 2017 Supported by Google Earth Engine. Remote Sens. 11, 554. 

https://doi.org/10.3390/rs11050554 

Hui, ECM., Li, X., Chen, T., Lang, W., 2018. Deciphering the spatial structure of China's megacity 

region: A new bay area—The Guangdong-Hong Kong-Macao Greater Bay Area in the 

making. Cities. 105, 102168. https://doi.org/10.1016/j.cities.2018.10.011 

Li, G., Jiang, C., Du, J., Jia, Y., Bai, J., 2020. Spatial differentiation characteristics of internal 

ecological land structure in rural settlements and its response to natural and 

socio-economic conditions in the Central Plains, China. Sci. Total Environ. 709, 135932. 

https://doi.org/10.1016/j.scitotenv.2019.135932 

Long, H., Li, Y., Liu, Y., Woods, M., Zou J., 2012. Accelerated restructuring in rural China fueled 

by ‘increasing vs. decreasing balance’ land-use policy for dealing with hollowed villages. 

Land Use Policy. 29, 11-22. https://doi.org/10.1016/j.landusepol.2011.04.003 

Long, H., Liu, Y., Hou, X., Li, T., Li, Y., 2014. Effects of land use transitions due to rapid 

urbanization on ecosystem services: Implications for urban planning in the new 

developing area of China. Habitat Int. 44, 536-544. 

https://doi.org/10.1016/j.habitatint.2014.10.011 

López-Barrera, F., Manson, RH., Landgrave, R., 2014. Identifying deforestation attractors and 

patterns of fragmentation for seasonally dry tropical forest in central Veracruz, Mexico. 

Land Use Policy. 41, 274-283. https://doi.org/10.1016/j.landusepol.2014.06.004 

Luo, M., Liu, T., Meng, F., Duan, Y., Bao A., Frankl A., et al., 2019. Spatiotemporal characteristics 

of future changes in precipitation and temperature in Central Asia. Int. J. Climatol. 39, 

1571-1588. https://doi.org/10.1002/joc.5901 

Luo, Q., Zhou, J., Li, Z., Yu, B., 2020. Spatial differences of ecosystem services and their driving 

factors: A comparation analysis among three urban agglomerations in China's Yangtze 

River Economic Belt. Sci. Total Environ. 725, 138452. 

Jo
urn

al 
Pre-

pro
of



 31 / 39 
 

https://doi.org/10.1016/j.scitotenv.2020.138452 

Markevych, I., Schoierer, J., Hartig, T., Chudnovsky, A., Hystad, P., Dzhambov, AM., et al., 2017. 

Exploring pathways linking greenspace to health: Theoretical and methodological 

guidance. Environ. Res. 158, 301-317. https://doi.org/10.1016/j.envres.2017.06.028 

Meyfroidt, P., Roy, Chowdhury R., de Bremond, A., Ellis, EC., Erb, KH., Filatova, T., et al., 2018. 

Middle-range theories of land system change. Glob. Environ. Change-Human Policy 

Dimens. 53, 52-67. https://doi.org/10.1016/j.gloenvcha.2018.08.006 

Midekisa, A., Holl, F., Savory, D.J., Andrade-Pacheco, R., Gething, P.W., Bennett, A., et al., 2017. 

Mapping land cover change over continental Africa using Landsat and Google Earth 

Engine cloud computing. PLOS ONE 12(9), e0184926. https://doi.org/ 

10.1371/journal.pone.0184926 

Newman, ME., McLaren, KP., Wilson, BS., 2014. Long-term socio-economic and spatial pattern 

drivers of land cover change in a Caribbean tropical moist forest, the Cockpit Country, 

Jamaica. Agric Ecosyst Environ. 186, 185-200. 

https://doi.org/10.1016/j.agee.2014.01.030 

Ou, C., Yang, J., Du, Z., Liu, Y., Feng, Q., Zhu, D., 2019. Long-Term Mapping of a Greenhouse in 

a Typical Protected Agricultural Region Using Landsat Imagery and the Google Earth 

Engine. Remote Sens. 12, 55. https://doi.org/10.3390/rs12010055 

Peng, J., Zhao, M., Guo, X., Pan, Y., Liu, Y., 2017. Spatial-temporal dynamics and associated 

driving forces of urban ecological land: A case study in Shenzhen City, China. Habitat Int. 

60, 81-90. https://doi.org/10.1016/j.habitatint.2016.12.005 

Piao, S., Fang, J., Zhou, L., Guo, Q., Henderson, M., Ji, W., et al., 2003. Interannual variations of 

monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 

to 1999. J. Geophys. Res.-Atmos. 108. https://doi.org/108. 10.1029/2002JD002848 

Qiu, L., Pan Y., Zhu, J., Amable, GS., Xu, B., 2019. Integrated analysis of urbanization-triggered 

land use change trajectory and implications for ecological land management: A case study 

in Fuyang, China. Sci. Total Environ. 660, 209-217. 

https://doi.org/10.1016/j.scitotenv.2018.12.320 

Scolozzi, R., Geneletti, D., 2012. A multi-scale qualitative approach to assess the impact of 

urbanization on natural habitats and their connectivity. Environ. Impact Assess. Rev. 36, 

9-22. https://doi.org/10.1016/j.eiar.2012.03.001 

Serret, H., Raymond, R., Foltête, J-C., Clergeau, P., Simon, L., Machon, N., 2014. Potential 

contributions of green spaces at business sites to the ecological network in an urban 

agglomeration: The case of the Ile-de-France region, France. Landsc. Urban Plan. 131, 

27-35. https://doi.org/10.1016/j.landurbplan.2014.07.003 

Seto, KC., Reenberg, A., Boone, CG., Fragkias, M., Haase, D., Langanke, T., et al., 2012. Urban 

land teleconnections and sustainability. Proc. Natl. Acad. Sci. U. S. A. 109, 7687. 

https://doi.org/10.1073/pnas.1117622109 

Smith, P., Adams, J., Beerling, DJ., Beringer, T., Calvin, KV., Fuss, S., et al., 2019. 

Land-Management Options for Greenhouse Gas Removal and Their Impacts on 

Ecosystem Services and the Sustainable Development Goals. Annu. Rev. Environ. Resour. 

44, 255-286. https://doi.org/10.1146/annurev-environ-101718-033129 

Soltanifard, H., Jafari, E., 2019. A conceptual framework to assess ecological quality of urban 

green space: a case study in Mashhad city, Iran. Environ. Dev. Sustain. 21, 1781-1808. 

Jo
urn

al 
Pre-

pro
of



 32 / 39 
 

https://doi.org/10.1007/s10668-018-0103-5 

Sun, X., Lu, Z., Li, F., Crittenden, J.C., 2018. Analyzing spatio-temporal changes and trade-offs to 

support the supply of multiple ecosystem services in Beijing, China. Ecol. Indic. 94, 

117-129. https://doi.org/10.1016/j.ecolind.2018.06.049 

Thapa, BR., Murayama, Y., 2009. Examining Spatiotemporal Urbanization Patterns in Kathmandu 

Valley, Nepal: Remote Sensing and Spatial Metrics Approaches. Remote Sens. 1. 

https://doi.org/10.3390/rs1030534 

The People’s Government of Guangdong Provence., 2013. Decision on Comprehensively 

Promoting a New Round of Action to Green Guangdong. 

http://www.zhfjyl.com/ZtuDetail.aspx?MsgId=29 (accessed 28 July 2020). 

Tilman, D., Cassman, KG., Matson, PA., Naylo,r R., Polasky, S., 2002. Agricultural sustainability 

and intensive production practices. Nature. 418, 671-677. 

https://doi.org/10.1038/nature01014 

Wang, F., Wang, K., Liu, H., 2020. Evaluation and influence factors of spatial accessibility of 

ecological space recreation service in the Pearl River Delta Urban Agglomeration: a 

modified Two-step Floating Catchment Area method. Acta Ecologica Sinica. 40, 

3622-3633 (in Chinese). https://doi.org/10.5846/stxb201901060046 

Wang, J-F., Li, X-H., Christakos, G., Liao, Y-L., Zhang, T., Gu, X., et al., 2010. Geographical 

Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects 

Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 24, 107-127. 

http://dx.doi.org/10.1080/13658810802443457 

Wang, J-F., Zhang, T-L., Fu, B-J., 2016. A measure of spatial stratified heterogeneity. Ecol. Indic. 

67, 250-256. https://doi.org/10.1016/j.ecolind.2016.02.052 

Wang, J., He, T., Lin, Y., 2018. Changes in ecological, agricultural, and urban land space in 1984–

2012 in China: Land policies and regional social-economical drivers. Habitat Int. 71, 1-13. 

https://doi.org/10.1016/j.habitatint.2017.10.010 

Wang, Y., Wu, T., Li, H., Skitmore, M., Su, B., 2020. A statistics-based method to quantify 

residential energy consumption and stock at the city level in China: The case of the 

Guangdong-Hong Kong-Macao Greater Bay Area cities. J. Clean Prod. 251, 119637. 

https://doi.org/10.1016/j.jclepro.2019.119637 

Wong, K., Zhang, Y., Tsou, YJ., Li, Y., 2017. Assessing Impervious Surface Changes in 

Sustainable Coastal Land Use: A Case Study in Hong Kong. Sustainability. 9, 1029. 

https://doi.org/10.3390/su9061029 

Xie, H., He, Y., Xie, X., 2017. Exploring the factors influencing ecological land change for 

China's Beijing–Tianjin–Hebei Region using big data. J. Clean Prod. 142, 677-687. 

https://doi.org/10.1016/j.jclepro.2016.03.064 

Xie, H., Liu, Z., Wang, P., Liu, G., Lu, F., 2014. Exploring the Mechanisms of Ecological Land 

Change Based on the Spatial Autoregressive Model: A Case Study of the Poyang Lake 

Eco-Economic Zone, China. INT J ENV RES PUB HE. 11, 583-599. 

https://doi.org/10.3390/ijerph110100583 

Xu, Z., Zhang, Z., Li, C., 2019. Exploring urban green spaces in China: Spatial patterns, driving 

factors and policy implications. Land Use Policy. 89, 104249. 

https://doi.org/10.1016/j.landusepol.2019.104249 

Yang, C., Li, Q., Zhao, T., Liu, H., Gao, W., Shi, T., ea al., 2019. Detecting Spatiotemporal 

Jo
urn

al 
Pre-

pro
of

User
高亮



 33 / 39 
 

Features and Rationalities of Urban Expansions within the Guangdong–Hong Kong–

Macau Greater Bay Area of China from 1987 to 2017 Using Time-Series Landsat Images 

and Socioeconomic Data. Remote Sens. 11, 19. https://doi.org/10.3390/rs11192215 

Yang, J., Zeng, C., Cheng, Y., 2020. Spatial influence of ecological networks on land use intensity. 

Sci. Total Environ. 717, 137151. https://doi.org/10.1016/j.scitotenv.2020.137151 

Zhang, G., Biradar, C., Xiao, X., Dong, J., Zhou, Y., Qin, Y., et al., 2017. Exacerbated grassland 

degradation and desertification in Central Asia during 2000‐2014. Ecol. Appl. 28, 

442-456. https://doi.org/10.1002/eap.1660 

Zhang, L., Jin, G., Wan, Q., Liu, Y., Wei, X., 2018. Measurement of Ecological Land Use/Cover 

Change and Its Varying Spatiotemporal Driving Forces by Statistical and Survival 

Analysis: A Case Study of Yingkou City, China. Sustainability. 10, 4567. 

https://doi.org/10.3390/su10124567 

Zhang, Y., Hu, Y., Zhuang, D., 2020. A highly integrated, expansible, and comprehensive 

analytical framework for urban ecological land: A case study in Guangzhou, China. J. 

Clean Prod. 268, 122360. https://doi.org/10.1016/j.jclepro.2020.122360 

Zhao, Y., Gong, P., Yu, L., Hu, L., Li, X., Li, C., et al., 2014., Towards a common validation 

sample set for global land-cover mapping. Int. J. Remote Sens. 35, 4795-4814. 

https://doi.org/10.1080/01431161.2014.930202 

Zhou, W., Mu, R., 2019. Exploring Coordinative Mechanisms for Environmental Governance in 

Guangdong-Hong Kong-Macao Greater Bay Area: An Ecology of Games Framework. 

Sustainability. 11, 3119. https://doi.org/10.3390/su11113119 

Zhu, Z., Wang, S., Woodcock, C., 2015. Improvement and expansion of the Fmask algorithm: 

Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. 

Remote Sens. Environ. 159, 269-277. https://doi.org/10.1016/j.rse.2014.12.014 

Jo
urn

al 
Pre-

pro
of



 34 / 39 
 

Appendix A 

 

In this work, we employed the Modified Normalized Difference Water Index 494 

(MNDWI) for enhancing the contrast between water and others (McFeeters, 1996), 495 

Soil Adjusted Vegetation Index (SAVI) for eliminating soil background noise from 496 

vegetation (Huete, 1988), Normalized Difference Built-Up Index (NDBI) for 497 

extracting built-up areas (Zha et al., 2003)and Normalized Difference Vegetation 498 

Index (NDVI) for enhancing the vegetation and no-vegetation (Kindu et al., 2013). 499 

These variables can be calculated using Eqs. (A1-A4) from the Landsat image bands. 500 

MNDWI, SAVI, NDBI and NDVI can be expressed as follows: 501 

  (A1) 502 

  (A2) 503 

  (A3) 504 

   (A4) 505 

where Green, SWIR, NIR and Red represent reflectance of TM Bands 2, 5, 4 and 3, 506 

respectively, L is a soil adjustment factor, and 0.5 was usually chosen to remove soil 507 

background (Huete, 1988).  508 
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Tab. A1 Policies of ecological land in the Guangdong-Hong Kong-Macao Greater Bay Area 

Year Policy Main content 

2001 Ecological Environment 

Construction Planning in 

Guangdong Province 

Implementing projects to build protective forest systems and urban forestry;  

Building ecotourism sites that combine natural landscapes with excellent 

ecological environments. 

2009 Outline Development Plan 

for the Pearl River Delta 

(2008-2020) 

Promoting the construction of urban landscape forests, urban public green 

spaces and green belts around cities;  

Accelerating the completion of green belts along highways and railways to form 

networked regional ecological corridors. 

2013 A New Round of Greening 

Guangdong 

Investing in key forestry ecological projects, transforming the mode of 

ecological forestry development and improving the forest ecological 

compensation mechanism 

2014 Integrated Plan for 

Ecological Security System 

in the Pearl River Delta 

(2014-2020) 

Strengthening the sealing of mountains and forestation, strictly control the size 

of the population and development activities;  

Controlling the total amount of construction land, and strictly limiting the 

conversion of ecological land into construction land. 

2014 Guangdong Province 

Ecological Protection 

Compensation Measures 

Increasing investment in ecological protection, providing appropriate 

compensation to cities in key ecological function zones through transfer 

payments to enhance basic public service sand coordination between economic 

development and the ecological environment. 

2017 Pearl River Delta National 

Forest Urban 

Agglomeration 

Construction Plan 

(2016-2025) 

Implementing ten key ecological projects, including the construction of national 

forest cities, forest towns, green ecological water networks, regional ecological 

corridors, forests into urban enclosures, forest recreation bases, coastal 

protection forests, nature education bases and smart forest cities, and the precise 

improvement of forest quality. 

2019 Outline Development Plan 

for the Guangdong-Hong 

Kong-Macao Greater Bay 

Area 

Implementing major projects for the protection and restoration of important 

ecosystems, building an ecological corridor and biodiversity protection network, 

and improving the quality and stability of ecosystems; 

Defining and strictly observing the ecological protection red line, strengthening 

the control of natural ecological space. 
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Tab. A2 Datasets used in this research 

 
Data 

Data Sources Spatial 

Resolution 

Time series 

Datasets Landsat  http://landsat.usgs.gov 30m 1990-2019 

Land use remote sensing 

monitoring dataset 

http://www.resdc.cn 1 km 2000-2015 

Driving 

factors 

Elevation http://www.resdc.cn/data.aspx?DATAID=217 30m - 

Slope Calculated according to elevation 30m - 

Average annual precipitation https://data.nodc.noaa.gov/cgi-bin/ 0.25 arc 

degrees 

1990-2019 

Average annual temperature http://www.climatologylab.org/terraclimate.html 2.5 arc 

minutes 

1990-2019 

Resident population density http://www.stats.gov.cn/tjsj/ - 1990-2019 

Land urbanization rate Calculated according to the land cover data in 

this article 

- 1990-2019 

Population and GDP per capita http://www.stats.gov.cn/tjsj/ - 1990-2019 

 

Tab. A3 Landscape metrics used in this study 

Metric Abbreviation Description Equation 

Patch density PD Number of greenspace patches divided by the total landscape area n/km2 

Edge density ED Total length of all edge segments in the greenspace per hectare m/ha 

Contagion index CONTAG The extent of the dispersion of different land cover types in the 

landscape. 

% 

Shannon’s diversity 

index 

SHDI A measure of the diversity of patch types in a landscape that is 

determined by both the number of different patch types and the 

proportional distribution of area among patch types. 

Information 
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Tab. A4 The areas and proportions of ecological land in each region of Guangdong-Hong 

Kong-Macao Greater Bay Area in 1990, 2000, 2005, 2010 and 2019  

 1990 2000 2010 2019 

Area 

(km2) 

Proportion(%) Area 

(km2) 

Proportion(%) Area 

(km2) 

Proportion(%) Area 

(km2) 

Proportion(%) 

Overall 26716.14 47.19 26231.04 46.34 25331.58 44.75 25346.79 44.77 

ZQ 9838.44 64.04 9835.38 64.02 9511.83 61.91 9512.55 61.92 

HZ 5722.74 49.20 5637.33 48.47 5608.44 48.22 5687.28 48.90 

JM 3298.59 34.81 3214.44 33.92 3186.18 33.63 3238.56 34.18 

GZ 2952.18 39.96 2880.99 38.99 2854.26 38.63 2928.87 39.64 

FS 1367.1 35.05 1291.32 33.10 1143.36 29.31 1049.04 26.89 

DG 828.18 32.94 737.37 29.33 578.16 23.00 548.28 21.81 

ZH 711.9 47.05 689.13 45.54 659.25 43.57 641.97 42.43 

SZ 709.47 36.66 653.85 33.79 548.37 28.34 542.88 28.05 

ZS 682.47 38.77 639.18 36.31 583.65 33.15 531.09 30.17 

HK 593.55 53.77 644.4 58.38 652.14 59.08 661.14 59.89 

MC 11.52 44.44 7.65 29.51 5.94 22.92 5.13 19.79 
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Tab. A5 Transfer matrix between ecological land and non-ecological in Guangdong-Hong 

Kong-Macao Greater Bay Area (km2) 

 

Ecological land Non-Ecological land 

Total 
Forestland Grassland Water bodies 

Construction 

land 
Other land 

1990-2000       

Ecological  

land 

Forestland 21640.77 0.18 4.13 20.52 542.98 22208.58 

Grassland 37.26 1010.25 4.68 272.52 88.74 1413.45 

Water bodies 19.89 5.58 3000.42 13.50 54.72 3094.11 

Non-Ecological 

land 

Construction 

land 
0 0 0 2104.11 0 2104.11 

Other land 492.29 0.08 15.48 537.31 26745.93 27791.09 

2000-2010       

Ecological  

land 

Forestland 21540.6 0.82 2.88 62.82 583.11 22190.23 

Grassland 2.88 388.71 1.08 616.41 7.02 1016.1 

Water bodies 68.49 26.46 2825.64 82.08 22.05 3024.72 

Non-Ecological 

land 

Construction 

land 
0 0 0 2947.95 0 2947.95 

Other land 313.91 0.36 3.24 2803.86 24310.97 27432.34 

2010-2019       

Ecological  

land 

Forestland 21796.58 0 0.55 39.34 154.24 21990.71 

Grassland 0.36 286.39 0 185.74 0 472.5 

Water bodies 9.00 0.56 2833.22 25.33 0.28 2868.39 

Non-Ecological 

land 

Construction 

land 
43.67 35.60 153.06 5909.63 27.24 6016.14 

Other land 425.94 0 0.99 1150.66 23686.04 25263.63 
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Highlights 
� Quantifying the interaction and evolution of driving factors on 

ecological land 

� Population density determines the majority area of the ecological land 

evolution 

� Socioeconomic factors were more influential than natural factors on 

ecological land 

� The interaction between population density and elevation had the 

largest influence 

� The impact of temperature and precipitation declined by 69% and 

77%, respectively 
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