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Abstract: Modeling ecological land evolution and determinititge responsible
driving forces is a common research topic in lars® @and landscape ecology.
However, the interaction effect and dynamic chaoiganthropogenic-natural factors
on the ecological land evolution of urban agglortiers is still unclear. Supported by
Google Earth Engine, this study used Landsat gatéthagery and random forest
algorithm to obtain the land cover datasets of @dang-Hong Kong-Macao Greater
Bay Area from 1990-2019. Furthermore, a geograpkiector was used to identify
the driving factors’ impact on ecological land exadn by quantifying nonlinear
associations, change characteristics, and mechanisthe results show: (1)
Ecological land shifted from decline and fragmeptat(1990-2010) to growth and
integration (2010-2019). (2) Population densiqed.83) and land urbanization rate
(g=0.75) mainly controlled the ecological land evaot illustrating more
explanatory power than other factors, and accogritn higher proportion of area as
the determinant factor in the study regiokl driving factors interactions were
bivariate, and the interaction between populatiensity and elevation had the largest
influence (=0.92). (3)Anthropogenic factors had a generally greater arfiee on
ecological land than natural factors, and the imhgdgopulation density and GDP
per capita exhibited a continuous increase, whihel lurbanization rate first decreased
(1990-2000) and then increased (2000-2019) in respao industrial restructuring
and accelerated urbanizatiddue to the intensification of anthropogenic acisf
the effect of average annual temperature and ptatgn declined by 69% and 77%,

respectively. The conclusions indicate that theraattion and spatially heterogeneous
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distribution of anthropogenic-natural factors sliobe comprehensively considered
when designing a system based on cooperative misamaro improve ecological
protection efficiency.

Key words: ecological land; Guangdong-Hong Kong-Macao Gred&ay Area;
spatial-temporal evolution; anthropogenic-naturahctdrs; interaction effect;

geographical detector

1 Introduction

An urban agglomeration can be defined as a spatialihpact and economically
highly integrated cluster of cities (Fang and Y012). Mega-urban agglomeration (or
urban megaregion) physically cover not only thetigg proximal urban areas with
different scales but also the intervening suburbad exurban regions, which are
linked by social processes, including populatiorgnation, policy initiatives and
lifestyle changes (Seto et al., 2012). Ecologieadl is an important requirement for
the sustainable development of urban agglomerafideyfroidt et al., 2018; Peng et
al., 2017)through maintaining ecological security, beautifyithe environment and
contributing to society’s physical and mental hea{Markevych et al., 2017).
However, the problem of ecological land destructisnincreasingly prominent in
response to the amplified effects of environmenthbhnge and anthropogenic
disturbance (Deng et al., 2015). Over the pastyfodd years, mega-urban
agglomeration in China has exhibited extensive mnpapulation growth and urban

sprawl, which brought significant negative impastsecosystem services (Costanza
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et al., 2014; Qiu et al., 2019). As one of the mmsen and economically vibrant
mega-urban agglomerations in Chiaad even the world, the Guangdong-Hong
Kong-Macao Greater Bay Area (GBA§ playing an increasingly important role in
economic globalization and national developmenti(étual., 2018). However, the
sprawl of urbanisation in the GBA has led to praidesuch as vegetation degradation,
landscape pattern fragmentation, ecological functecline, which aggravate the
conflict between human and environment (Yang et 2019), andmay have a
profound impact on the future development of GBAuUS, there is a great need to
optimize the spatial allocation of ecological landurban agglomerations (Luo et al.,
2020).

Previous scholars have extensively explored eccébgiand, with particular
emphasis on the following research areas: (1) ap@tinporal evolution and
optimization of ecological land spatial patternsl &) analysis of ecological land
influencing factors and mechanisms based on laeftoger. In the first case, some
researchers have used ecological network theornan@let al., 2020), landscape
connectivity (Guo et al., 2020) and landscape ieslidi et al., 2020; Qiu et al., 2019)
to evaluate ecological spatial patterRsr example, Serret et al. (201eX¥plored the
distribution of Green Spaces at Business Sites &3SB Paris and evaluated its
contribution to the regional ecological network.sBks showed that the entire Green
Space network connectivity increased because 23¥he0ilGSBS patches acted as
stepping stones for mobile species. Soltanifard dathri (2019) assessed the

ecological quality of Mashhad, Iran, and found thetlogical patches that did not
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possess adequate extent and continuity do nottieH#gc support some of the key
ecosystem services. Other studies pointed to elalognd fragmentation (Atasoy,
2018; Peng et al., 2017) as a factor that faagad reduction in the value of
ecosystem services (Chen et al., 2020; Long e2@1.4), which subsequently triggers
the urban heat island effect (Scolozzi and Genglfiii2) and other ecological safety
hazards.

With respect to the second research focus, ecalblgiod is collectively affected
by natural and anthropogenic factors (Xie et a017). Elevation and slope are
considered to be the general limiting natural fexcfor ecological lands, with flatter,
lower elevation ecological areas being more sugdeptto development as
agricultural and urban land (LOpez-Barrera et 2014; Peng et al., 2017). Climatic
and hydrological conditions (Smith et al., 201%)weell as soil organic matter content
(Xie et al., 2017), are also associated with changecological landAnthropogenic
factors have contrasting impacts on ecological .|&kecifically, urban expansion
(Peng et al., 2017), population growth, economigettgpment (Li et al., 2020), and
agricultural production (Tilman et al., 2002) hawegative effects on ecological land,
such as encroaching out ecological space and giegirecosystem diversity (Deng et
al., 2015). Additionally, as the standard of livimgproves, managers and citizens are
increasingly concerned about the recreational lisneff green space and are
demanding more ecological land in the city (Xieakt 2014; Yang et al., 2020).
Methodologically, previous studies used graph theoodel (Serret et al., 2014),

regression analyses (LOpez-Barrera et al., 201dg lee¢ al., 2017; Xie et al., 2014)
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and spatial econometrics models (Xie et al., 20Bnfg et al., 2020) to analyze the

linear relationship of driving factors on ecoloditand, and explored the mechanism

in combination with the research area. The geogtapletector has been proposed
by Wang et al. (2010) to quantify the contributioinfactors to dependent variables

based on spatial stratified heterogenéityis method has shown good performance
and is widely used to quantify the influence of thetors that determine the spatial

patterns of ecological land (Chen et al., 2020etal., 2020).

While certainly insightful, existing studies hawaléd to address three primary
issuesFirst, current research on ecological land focughenurban scale, while the
regional integration analysis of the ecologicaldlanspatial-temporal changes in
urban agglomeration is still lacking. Second, thare significant spatial-temporal
heterogeneous in the effect of driving factors ocolagical land (Zhang et al., 2018),
but few studies have explored the variation andhaeisms of driving factors’ impact
over time. Further, most of the research usualljuses on the unilateral role of
driving factors, and rarely explores the interatcteffects between factors. Third,
many land cover datasets are publicly availabld wgatial resolution ranging from
30 m to 1 km, but the production of these datasetstill relying on manual
intervention, making it difficult to update land edsover database over long time
series (Hu and Hu, 2019; Midekisa et al., 20THe way of processing long-term
land use/cover remote sensing data needs to beowenbrby using some effective
methods (Zhang et al., 2017).

To solve the issues mentioned above, here we igatsd the spatial-temporal
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patterns of ecological land in the GBA, as well the effect of driving factors
combining natural and anthropogenic data basedOom [&nd use/cover data from
1990-2019. Specifically, this paper focused onghssues: (1) What are the changing
characteristics and trends of ecological land ithistion in the GBA over the past 30
years?(2) What are the natural and anthropogenic forhast affect ecological land,
and how do their interactive effects and influenoechanisms behave? (3) What are

the characteristics of the temporal changes okthesing factors’ effect?

2 Material and methods
2.1 Study area

According to the Outline Development Plan for the Guangdong-Hong
Kong-Macao Greater Bay Area published by the Chinese government in 2019, the
GBA should not only become a world-class mega-udiggiomeration but also create
a good-quality region suitable for working, livirgnd traveling (Wang et al., 2020).
The GBA consists of the Hong Kong Special Admimiste Region (HK), the Macao
Special Administrative Region (MC) as well as 9fecture-level cities, namely
Guangzhou (GZ), Shenzhen (SZ), Zhuhai (ZH), Fosk@8), Huizhou (HZ),
Dongguan (DG), Zhongshan (ZS), Jiangmen (JM) anagodimg (ZQ) in the Pearl
River Delta (PRD), with a total area of 56,904%fig. 1). There are different levels
of economic and social development and politicatesys within the GBA. In 2019,
the total GBA resident population was 72.7 millitime urbanization rate was 86.1%,

the GDP was $11,591 billion, and the tertiary indusiccounted for 66.4% of the
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GDP. The GBA is an urbanized area with a high legtlintegration. Rapid
urbanization and high intensity land developmerthm GBA generated considerable
pressure on regional ecological land protectiono(Zrand Mu, 2019), making
ecological conservation a policy concern (Table .AThus, identifying and
understanding the evolution and formation mechamtthe GBA'’s spatial pattern of
ecological land has become a valuable fundamems¢arch work for regional

ecosystem governance.
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Fig. 1 Topography map of the Guangdong-Hong Kong:&waGreater Bay Area (GBA). The GBA
includes 11 cities: Guangzhou (GZ), Zhaoging (Z&shan (FS), Dongguan (DG), Huizhou (HZ),
Jiangmen (JM), Zhongshan (ZS), Shenzhen (SZ), 4t{dkg, Hong Kong (HK), and Macao
(MC).

2.2 Data sources

According to the definition of ecological land imetOpinions on the Delineation
and Strict Observance of the Red Line of Ecological Protection (Hu et al., 2020), land
use types in the study area were classified asregitological (forest, grassland, and

water) or non-ecological (construction and othed)aagricultural land is excluded

7139
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from the ecological land. The Google Earth EngiG&E) has supplied a platform
that provides basic calculation functions for rasited vector data and can be used by
developers (Gorelick et al., 2017; Hu and Hu, 20IR)erefore, the data used
included available standard Level 1 Terrain-coedc{L1T) orthorectified surface
reflectance images of the 1990-2019 plant growirgpsens from Landsat
TM/ETM+/OLI archived in the GEE. We also use thedause dataset interpreted by
Resource and Environment Data Cloud Platform (RESD®p://www.resdc.cn),
which is characterized as highly accurate by feldvey and random sampling check
which were conducted by Chinese Academy of ScierfCd®n et al., 2020). In
addition, based on a literature review in sectioantl data accessibility, elevation
(DEM), slope (Sp), average annual precipitation(Jleaverage annual temperature
(Pre), population density (POP), GDP per capitaPB0) and land urbanization rate
(LUB) were selected as driving factors (Table A2).

2.3 Research procedure

The research framework was divided into six st&pg. @):

(1) With the support of the GEE, the multiyear imagetkgsis and cloud mask
methods (Zhu et al., 2015) were applied to obtha TOA composite data without
cloud or shadow coverage, for each year from 19B(B2These images were
subsequently cropped according to the study areadzoy;

(2) Using the Land cover dataset, training and fieation samples were
carefully deployed according to the “complete cetgsicy” and “temporal stability”

principles. Then, the land cover dataset was rsified into the same land types.
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Pixels with completely consistent, unchanged laodec types were selected, while
3206 training pixels and 1,202 validation pixelgre/randomly selected to ensure a
minimum of 200 validation pixels per land use type;

(3) There are many automatic land classificatiggpalhms, such as minimum
distance classification (MDC), random forest (RBaximum likelihood classification
(MLC), classification and regression trees (CAR)pport vector machine (SVM),
and object-oriented classification methods (Gomeézale 2016). Among these
algorithms, the RF method, formed by a combinatibmany decision tree models, is
widely used (Breiman, 2001; Hu and Hu, 2019). Indigoin, compared with
traditional land classification algorithms, the Rfethod has obvious advantages in
multidimensional feature data processing. Prevgiudies also have verified that RF
model training is an effective classification maeth®u et al., 2019). Therefore, we
chose the RF as a classifier with ensembles of tB&s to obtain the land cover
classification maps for each chosen year based amddat satellite images and

auxiliary data. For more details about the auxlidata processing, see Appendix A;
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Fig. 2 Flowchart of land cover mapping and mecharasalysis. Note that MNDWI, SAVI,
NDBI and LULC represent Modified Normalized Diffexee Water Index (MNDWI), Soil
Adjusted Vegetation Index (SAVI), Normalized Difégrce Built-Up Index (NDBI) and land
use/cover.

182 (4) The overall accuracy and kappa coefficient waakeulated from the error
183 matrix (Hu and Hu, 2019; Sun et al., 2018) to eatduthe classification results
184 accuracy by using the RESDC land cover datasethasstandard.The overall
185  accuracy and the Kappa coefficient of the studg’adand cover classification (Fig. 3)
186  from 1990-2019 was 0.93+0.05 and 0.89+0.04 (Tapleekpectively, which met the
187  research requirementBhe output images were further converted into egio& land
188  and non-ecological land;

189 (5) Land use change matrix and four indicators veetected to analyze changes
190 in the GBA's landscape pattern of ecological laihdb{e A3). The indicators include
191  Edge Density (ED), Patch Density (PD), Contagiaelh(CONTAG), and Shannon’s
192  Diversity Index (SHDI), all of which were calculatdy Fragstats 4.1 (Thapa and
193  Murayama, 2009)ED indicates the smoothness of patch edges andeRé&xts the

194  fragmentation and anthropogenic disturbances onatidscape. CONTAG refers to
10/39
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the agglomeration of different patch types, whishan index used to describe the
spatial information of a certain landscape pattdime SHDI reflects the landscape
heterogeneity, where higher values correspond t@ ipatch types;

(6) Elevation and construction land data were usedatoutate slope and land
urbanization rates, respectively. A geographic aetewas used to investigate the
forces, interactions, spatial-temporal charactegstand influence mechanism of

natural and anthropogenic factors on the evolutifoecological land.
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Fig. 3 Land cover maps in the Guangdong-Hong Korag&b Greater Bay Area during
1990-2019

Tab. 1 Overall accuracy assessment of land ussifitasion from 1990-2019

_ Construction
Forestland Grassland Water bodies land Other land Overall
an

Kappa coefficient 0.87+0.03 0.86-0.02 0.92£0.03 0.90t0.05 0.88£0.09 0.89-0.04
Accuracy 0.96-0.03 0.910.02 0.96£0.02 0.94£0.06 0.90:0.08 0.93:0.05
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2.4 Geographical detector

The geographical detector can capture the spagilationship between the
driving factors and the distribution of ecologidahd, as well as the interactions
between the driving factors. When there is a nemalinrelationship between an
explained variable and explanatory variables, thethod is more applicable than a
linear model (Wang et al. 2016). We assumed thatettological land has a spatial
distribution similar to that of a driving factortiie impact factor leads to the observed
distribution of ecological land (Wang et al., 201@%jang et al.,, 2016). The
geographical detector comprises four modules: fagiteraction, risk, and ecological
detectors. Factor detector, interaction detectdrragk detector are mainly used in the
current study. The factor detector useg\alue to quantify the influences of variable

XonY; gis determined by the following formula:

L

N,o}
,,Zl T ssw

9=l T

L
SSW = ZNho,f , SST= No* (1)
h=1

whereq is the power of the determinaM;andN;, are the number of sample units in
the entire region and sub-regidm1,2...,L is the number of secondary regions,
and ¢? are the variance of the samples in subregi@md the global variance df
over the entire study regioBSW andSST are the within sum of squares and the total
sum of squares, respectively. The value rangg isf[0,1], this means the selected
driving factor explaing| x 100% of the explained variable. The largerghalue, the
stronger the influence of variab¥eon.

The ecological detector is used to compare whethdras a significantly greater
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223 influence or contribution thaK2. It is measured using the statistics

L1

Ny (N, —1)SSW, S
_ Na(Ne—1) X SSW,, = ZNho,? , SSWy, = ZNhG/12 (2)
h=1 h=1

B N)(z (NXI - I)SSsz

224 F

225  where Nx;and Nx. represent the number of factaxd and X2 samples;SS\Wx;,and
226  SSWk, are the within sum of squares in the subregioreggad by factor layerxl

227 andX2. L1 andL2 represent the number ¥l andX2 subregions. The null hypothesis
228 is defined afHy: SSWxa= SSWx,. The rejecteHy at the significance level indicates
229 that it is statistically significant.

230 The interaction detector examines the interactiodifterent factors and reveals
231  whether the interaction of facto¥d and X2 weaken, enhance, or are independent of
232 influencing Y. The interactive relationship can be divided ifitce categories by
233  comparing the interactivg value of the two factors and thyesalue of each of the two

234  factors (Table 2).

Tab. 2 The interactive categories of two factord #he interactive relationship

Description Interaction
q(X1 n X2) < Min(q(X1),q(X2)) Weaken; univariate
Min(q(X1),q(X2)) < (X1 n X2) < Max(q(X1),q(X2)) Weaken; univariate
q(X1 nX2) > Max(q(X1),q(X2)) Enhanced, bivariate
q(X1nX2) =q(X1) + q(X2) Independent
q(X1nX2) > q(X1) + q(X2) Nonlinearly enhance

235 3 Resultsand discussions
236 3.1 Temporal evolution characteristics of ecologiaad in the GBA
237 In 1990, ecological land in the GBA accounted 6y746.14 krf, 47.19% of the

238 total area. Forestland, water body and grasslantbdsed 22208.58 k 3,094.11
14/39
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km? and 1,413.45 kfmrespectively. From 1990-2000, the total ecologleatl area
decreased by 485.1 Kmand grassland decreased by 397.3%, kawcounting for
81.91% of the total reduction (Fig. 4a). From 2@00-0,ecological land area rapidly
diminished by 899.46 kfnmainly in grassland (543.6 Kjrand water bodies (156.33
km?). The period of 2010-2019 demonstrated slow grawttihe ecological land area
with an increase of 15.21 Kmof which forest land increased the most (223.4)k
while water body and grassland decreased by 21#8rid 186.84 ki respectively.
In summary, from 1990-2019, the ecological lanthima GBA decreased from 47.19%
to 44.77% (1,369.35 kfp Specifically, the forestland area increased by %86
(0.03%):; while grassland and water bodies decrebygetil27.79 krh (79.79%) and
247.41 ki (8%), respectivelyThe GBA exhibits the typical conflict between urban
sprawl and ecological land conservation (Wang.et2020).

From 1990-2019, the ecological land in the GBA unamt severe destruction
and gradual recovery, with a landscape patternachkenized by fragmentation
followed by integration (Fig. 4b). Specificallypoin 1990-2010, ED and PD increased
by 9.72% and 12.02%, respectively, indicating miaregular ecological land patch
edges and more intense landscape fragmentation;TBGNind SHDI decreased by
16.04% and 17.06%, respectively, demonstratingtti@fragmentation of ecological
land has caused a rapid decline in landscape diatowever, from 2010-2019, ED
and PD decreased by 2.21% and 1.27%, signifying tti& ecological land patch
edges had become regular and continuous; CONTAGS&ial increased by 2.61%

and 0.63%, suggesting that there was a tendengyadial agglomeration with respect
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to ecological land distribution that improved |lacaige diversity.

(a) 28000 (b)

= Forestland Grassland = Water bodies el PD el ED il CONTAG SHDI

Other land = Construction land

26000

24000

Rate of change = 0

22000

Area (km?)

20000

Rate of change (%)

22000

24000

26000

28000

30000

1990 1995 2000 2005 2010 2015 2019

Fig. 4 Land cover area change(a) and ecologicdl lmdscape metrics change (b): Patch Density
(PD), Edge Density (ED), Contagion Index (CONTAG), an@@ton’s Diversity Index (SHDI)

3.2 Spatial evolution characteristics of ecologlaad in the GBA

The evolution of ecological land distribution inettGBA generally shows a
process of decreasing in the central area (Fige&logical land was concentrated on
the periphery of GBA, with forestland and grasslandhinly distributed in
northeastern GZ, northwestern ZQ, and eastern artietn HZ. Water bodies were
scattered in FS, ZH and DG. In addition, the averagportion of MC’s ecological
land was only 29.17%nd the proportion of ecological land in HK (57.4786d ZQ
(62.95%) is much higher than the regional averafe76%) (Table A4), which is
closely related to location, urbanization developtngtage, and local policies. For
example, as a Special Administrative Region, HKighly urbanized but with a land
policy that strictly protects ecological land (Hasat al., 2019; Wong et al., 2017).
The urbanization rate of ZQ is only 48.63%, white forest coverage rate is over

70%, making it the main forest area in GBA.

16/39



275 From 1990-2000, 306.54 Kmof ecological land, which was primarily
276  concentrated on the periphery of urban built-umsyrevas converted to construction
277 land (Fig. 5 and Table A5). This was mainly du¢h® demand for urban construction,
278 andresulted in partial occupation of the forestland gnassland. In addition, 492.29
279  km? of other land was converted to ecological landstiysporadically in ZQ and HZ,
280 likely in response to the “returning slope farmlandorest, grass and water” policy
281 enacted in 1998 (Long et al., 2012). From 2000-2@L@ to rapid urbanization and
282  industrialization, 1,476.1 kfnof ecological land in industrialized cities, suaf SZ,
283 FS and DG, was converted for construction and ddret use purposes (Table A5).
284  From 2010-2019, ecological land area in the GBAeegnced numerous fluctuations,
285  but overall showed an increasing trend. 659.26 kfnnon-ecological land, mainly
286 distributed in GZ and HZ, was converted to ecolagland (Table A5), which was
287 likely in response to Guangdong’'s urban greeningiative (The People’s
288 Government of Guangdong Provence, 2013), the imgreation of “ecological red
289 line (an important tool for ensuring development esfvironmentally sustainable
290 communities)” (Hu et al., 20208s well as major natural ecosystem protection and
291 comprehensive land improvements projects (Long let 2014). These efforts
292 collectively and effectively decelerated the desecaf ecological land space.
293  However, 404.94 kimof ecological land was still converted to non-egital land
294  which is mainly composed of cash crops plantingagaed urban construction land.

295 Thus, ecological land still requires significant@sbnal protective measures.
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Fig. 5 Spatial transition pattern of ecologicaldan the Guangdong-Hong Kong-Macao Greater
Bay Area

3.3 Driving factors’ effect on the spatiotemporabkition of ecological land

The geographical detector was used to calculate feator’s force on ecological
land evolution form 1990-2019. Based on the power ofedeinant on spatial
heterogeneity, the driving factors can be ranketbbewvs: POP > LUB > GDPPC >
DEM > Sp > Tem > Pre (Fig. 6). Except for Pre aman] the other driving factors
were statistically significant at the 1% lev®oreover, anthropogenic factors had a
generally greater influence on ecological land thatural factors, which is consistent
with several published studies (Peng et al., 20lanhg et al., 2018; Xie et al., 2017).
In addition, there are statistically significantgact differences between 47.6% of the

driving factors’ interaction (Fig. 6).
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Fig. 6 The determinant and interaction power ofidg factors on ecological land. *** and * *
indicate significance at the 1%, 5% levels, redpelst the thickness of the line represents the
strength of the influence or interaction; the ablatons of factors are listed in Section 2.2

For the anthropogenic factors, POP and LUR hagdrafgiant negative effect on
ecological land in the GBA, witlj values of 0.83 and 0.75, respectively. It is samil
to the finding in previous studies which also destmated that population increase
was the key factor facilitating significant decliokecological land (Xie et al., 2017).
The GBA resident population reached 72.7 millior2@19, which was 2.46 times that
in 1990. The massive population density in theesited to an increasing demand for
construction land (e.g., housing, transport, ingdsand resulted in a large amount of
ecological land being converted and occupied; thxacerbating the conflict between
social development and ecological protection (Latgal., 2014). Meanwhile, the
GDPPC determines 64% of the ecological land distidm, and has a significant
negative effect, indicating that high economic dgnareas are mostly urban cores,
and their proportion of ecological land is also gatly low (Peng et al., 2017; Wang
et al., 2018). For natural factors, DEM and Sp wpositively correlated with

ecological land, withg values of 0.64 and 0.54, respectively. Considieatfindings
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in previous studies, topography play an importafe im ecological land (Smith et al.,
2019; Xu et al., 2019). Ecological land with fléd@es and lower elevation are more
likely to be exploited for agriculture and urbamda(Lopez-Barrera et al., 2014;
Newman et al., 2014; Xie et al., 2017), as higHetudes correspond with higher
development cost. However, cities in GBA are inficed by the typical East Asian
Monsoon (EAM), with irregular fluctuations in anhyaecipitation and temperature
(Hallegatte et al., 2013; Luo et al., 2019; Piaalet 2003). It is observed that the
causal relationship between the change trend opdesture, rainfall and ecological
land is not obvious, which weakens the explanammower of Pre (0.36) and Tem
(0.47) on ecological land evolution.

The interactive relationship between each pairactdrs was bivariate, and thus
enhanced each other in influencing ecological Iéfid. 6). Among the interactions
between anthropogenic and natural factqtBOPYDEM) was the maximum (0.92),
indicating that the coupling between POP and DEMths key to influencing
ecological land evolution. As the POP and DEM hgneat effects on the distribution
of ecological land, their interactive effect is algery prominent.With respect to
interactions among anthropogenic factg@ORLUR) andq(PORMGDPPC) were
the strongest (0.85)n regions with high populations and economic depeient,
ecological land is more easily converted into cardion land (e.g., residential
buildings and commercial industry), which can getergreater profits and better
stimulate the local economy. Among the natural dacdhteractions,q(DEMNSp)

exhibited the maximum value (0.85)ow, flat areas make it easier to convert
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ecological land into construction land. Mountain@rsas, with their high elevation
and undulating terrain, have hydrothermal and ottmnditions that make them
unsuitable for most anthropogeractivities, but conducive to vegetation growth and
ecological land protection.

Figure 7(a) shows the distribution of the driviragtbrs on the ecological land
evolution during 1990-2019. Apparently, the spatietribution of dominant factors
was heterogeneous in the GBA, presenting a patteminated by anthropogenic
factors in the central part (e.g., ZS, FS, ZH, 8d BG) and transitioning to a pattern
dominated by intersection of anthropogenic-nattaetors in the periphery (e.g., GZ,
ZQ, JM, and HZ). In addition, the regions of Prel @em determinant were relatively
small, scattered in northern GZ, eastern HZ andemesIM. After sequencing the
cities according to population density from highlda (Fig. 7b), it can be seen that
the higher population density of a city, the moensstive the ecological land
evolution is to anthropogenic factors. POP and Ldé¢fermined 28.6% and 26.5% of
the ecological land evolution, respectivelile GDP and DEM accounted for 16.3%
and 10.2%, respectively, much more than Sp (8.2%) (6.1%) and Pre (4.1%) (Fig.
7¢). Therefore, anthropogenic activities dominate thelwion of ecological land in

the GBA, which is consistent with previous studwiiy et al., 2019).
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Fig. 7 (a) Spatial pattern of determinant driviagtbrs on the ecological land evolution, (b) Area
percentage of determinant driving factor of aliest and (c) the number proportion of driving
factors on the whole study region. Abbreviatiors @efined in Fig. 1 and Section 2.2

3.4 Dynamic changes of driving factors’ effect @olegical land

The driving factors’ influenceq( values) on ecological land evolution from
1990-2019 were calculated using the factor detesntdrare presented in TableRr
anthropogenic factors, GDPPC and PD were moreesthah LUR (Fig. 7a). The
values of POP and GDPPC increased by 36.8% anda23ebpectively, indicating
that the two factors had an increasing marginaoefbn the ecological land. The
correlation between GDPPC and ecological land @sed from -0.88 to -0.78,
demonstrating that the negative effect between@oandevelopment and ecological
land gradually weakened. Essentially, with the nrlaadscape planning optimization,
regions with a high GDPPC and urbanization ratenamee likely to pursue a higher
guality living environment; thus, green space caygeris relatively high. For example,
HK effectively protected ecological land and thdéueaof ecological services through

policies such as th@own Planning Ordinance, which was designed to promote
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conservation and protection of country parks, @gsbtection areas, and green belts
(Wong et al., 2017). SZ and GZ also used greeneslaaciscape planning (e.g., green
space connectivity design) to achieve the growtboological land within the built-up
areas (Peng et al., 2017). However, the effect ORLon ecological land is
characterized by a gentle decrease followed bynarease, possibly due to the fact
that the GBA's industrial structure shifted fromsacondary industry to a tertiary
industry from 1990-2005. The tertiary industry ieased from 41.6% to 56.6% (Fig.
7b), which reduced the destruction of ecologicaldldy industrialization-led urban
sprawl. In contrast, from 2005-2019, the large mmginflux in the GBA (the resident
population grew by 1996.64 million) led to a sharprease in demand for housing,
education, medical services, and other facilit&rig et al., 2020), which directly
promoted urban sprawl and the occupation of sudimgnecological land (Fig. 4).

LUR gradually became the main driving factor onlegical land evolution.

Tab. 3 Determinant Poweq yalue) of driving factor on ecological land frora9D-2019

DEM Sp Pre Tem POP GDPPC LUR

Year
q P q P q p q p q p q p q p

19900.63” 0.64" 0.52” 0.56° 0.57 0.11 0.59" -0.47" 0.57" -0.78" 0.64™ -0.88" 0.84" -0.85"
19950.63" 0.64" 0.53” 0.56° 0.67" -0.33" 0.59" -0.52" 0.72" -0.77" 0.61" -0.87" 0.60" -0.85"
20000.63™ 0.65° 0.54" 0.58" 0.37" -0.24 0.67" -0.62" 0.62" -0.79" 0.67" -0.87" 0.51" -0.84"
20050.64" 0.66* 0.55~ 0.59° 0.19° 0.07 0.73" -0.63" 0.61" -0.80" 0.71" -0.87" 0.65~ -0.85
20100.64" 0.68* 0.55~ 0.61° 0.18 0.01 0.5§ -0.62" 0.74™ -0.87" 0.76" -0.73" 0.76" -0.87"
20150.64" 0.69* 0.54" 0.62" 0.20 0.23 0.19 -0.16 0.71-0.84" 0.73" -0.75" 0.76" -0.87"
20190.65" 0.70* 0.56" 0.63" 0.13 0.17 0.18 -0.15 0.72-0.80" 0.79" -0.78" 0.77" -0.87"

*** and * * indicate significance at the 1%, 5% lgis.
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Fig. 8 (a) The box-whisker plot gfvalues for driving factors and (b) the changemadiistrial
structure over 1990 to 2019

386 For natural factors, the values of Tem and Preere relatively high at the very
387  beginning, then decreased from 0.59 to 0.18 and 10.9.13, respectively, implying a
388 gradual weakening of the impact these two factaesteon ecological land. It may
389 because the disturbance of anthropogenic actiyiéisgecially the regional planning
390 and policies, on the distribution of ecologicaldas gradually increasing (Xie et al.,
391 2017). For example, from 2010-2019, the GBA issfieel ecological conservation
392 policies (Table Al), leading to the constructionasfje areas of green space. Park
393 green space with a 500 m radius covered every cofnthe city. At the same time,
394 this stage is still a period of rapid urban expangiFig. 4), made LUR’s impact on
395 ecological land continuously increase (Yang et2019).Based on the abovi,can
396 be observed that the effects of these human fab@re been increasing, while the
397 influence of Tem and Pre on the ecological landlien has been weakening.
398 However, from the scale of the entire urban agglaten, the macro pattern of DEM

399 and Sp has a fundamental role in the formatiorhefeicological landscape pattern in
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GBA, and their effects on ecological land were e8ally stable over time (Fig. 7a).

4 Conclusions and implications
4.1 Conclusions

(1) Ecological land evolution in the GBA exhibitpdominent spatial-temporal
heterogeneity, and its distribution experiencediiet §fom decline and fragmentation
(1990-2010) to growth and integration (2010-20Fhm 1990-2010, the proportion
of ecological land in the whole region decreasethfd7.19% to 44.75%, a decrease
in area equivalent to 1384.56 krand the landscape of ecological land was more
fragmented and irregular. From 2010-2019, the epcéd land area with an increase
of 15.21 kni, and there was a tendency of spatial agglomeratiitn respect to
ecological land distribution. Moreover, ecologialolution pattern of the GBA
underwent a process of decreasing in the centea, avith 82.4% of the ecological
land converted to construction lamtiring the study period, which was mainly
distributed in and around the built-up areas obR8 ZQ.

(2) Anthropogenic-natural factors and their intéiats had significant influence
on the ecological land. From a long-term perspectiie impact of anthropogenic
factors (with POP being the major factgs0.75) on ecological land was generally
greater than that of natural factors. Moreover,itiberaction effects among the factors
were bivariate, and the interaction between elewaénd population density was the
largest ¢ =0.92). Importantly, the spatial distribution of rimant factors was

heterogeneous, presenting a pattern dominatedthyo@ogenic factors in the central
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part and transitioning to a pattern dominated hgrgection of anthropogenic-natural
factors in the periphery.

(3) The effect of anthropogenic-natural factorsemological land evolution is
dynamically changing. The impact of POP and GDPR&wed a significant upward
trend during the study period (thg values increased by 36.8% and 23.4%,
respectively). However, the impact of LUR was chteazed by gradual decrease and
then increase, which paralleled industrial restriog and accelerated urbanizatidn.
is noteworthy that under the combined influenceanthropogenic activities (e.g.,
policy planning, urban expansion, and public congéhe influence of natural factors
on ecological land gradually weakened (thealues of Tem and Pre declined by 69%
and 77%, respectively).

4.2 Policy implications

(1) In the GBA, where the impact of anthropogenitivities on the surface
environment is more intense, the ecological landirly force is more complex. The
coupling relationship between anthropogenic anduraatfactors requires special
consideration when addressing ecological laratection; and slow but steady change
for ecological land’s spatial pattern should benpotedthrough adjustment of these
combined of factors. Our findings indicated thapplation migration in high-altitude
areas and rational population distribution and raftation in low-altitude areas are
important initiatives for ecological land protectio The development and
implementation of ecological land policies (Table ih some cities in the GBA

accelerated urban greening, major natural ecosygtetection and comprehensive
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land improvements projects.

(2) The impact of driving factors on ecological daevolution in the GBA have
significant differences over time. Therefore, pptiakers need to formulate diverse
policies at different periods and in various citieser example, population growth and
economic development have gradually increased rigacdt of ecological land, so
special attention should be paid to population eation and rational industrial layout
of core cities (e.g. SZ, HZ and ZS). In additioor, €ities adjacent to the GBA core
area (e.g. ZH), we should also be alert to thetilelanpact of urbanization on the
ecological land degradation and landscape fragrtientaand restrict the disorderly
expansion of construction land. Furthermore, duthéostability of the topography’s
impact, elevation and slope also should be corsitievhen designing ecological
conservation and planning. Of course, climate doml were also the main factors
affecting ecological land in GBA's peripheral cgtiée.g., HZ and JM), but the forces
were constantly decreasing. Therefore, for thesescit is necessary to minimize the
intervention of human activities and explore thiwidg mechanism of climate change
on ecological land.

(3) The spatial distribution of dominant drivingctars of the ecological land
evolution in the GBA presents obvious regional amircity relevance. With the
growing close spatial connection within the GBAg fbint governance of ecological
spaces across cities should been greatly enhaoltedately realized regional-scale
ecological land restoration. In addition, the GH#sld establish a new mechanism

for more effective regional ecological land protectand coordinated development,
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implement multi-city planning integration to reducthe fragmentation and
degradation of ecological lanlloreover, the focus of land policy formulation sttbu
be shifted from simply improving the land’s produetfunction and economic value
to improving its ecological function.
4.3 Innovations and limitations

This work takes the lead in examining the evoluign characteristics of
long-term ecological land series in the GBand considers the interaction and
dynamic change of driving factors’ effect on ecatady land evolution. The data
derived from this investigation are valuable refee for enriching the existing
analytical framework and establishing ecologicaitgction policy. In addition, with
respect to methodology, this study used a geographietector to eliminate the
problem of multicollinearity among drivers, and qtigy the forces of ecological land
evolution. Furthermore, the nominal overall accyrad publicly available land
use/cover products ranges from 60-80%, which canmeet the needs of
environmental monitoring and ecological governaand reduces the accuracy and
credibility of small and medium-scale studies (Zlea@l., 2014). The remote sensing
processing method based on long-term Landsat isatielagery and other auxiliary
data supported by the GEE platform is used focieffit and accurate mapping of land
use/cover, which provides an effective alternatordand mapping.

This study also has some limitations. First, ecalggland is influenced by a
variety of factors, and more driving factors shoudd selected to explore the

mechanisms of ecological land evolution further amaite thoroughlySecondly, there
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are differences in the driving factors and influemoechanisms on ecological land
evolution in various cities within the GBA. Altholnghey have been mentioned in the
current study, there is a lack of systematic andepth analysis. Future research
should focus on conducting a deeper, more granol@parative study of the
differences in the spatial-temporal patterns andeds of ecological land evolution

between cities.
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Appendix A

In this work, we employed the Modified Normalizedfference Water Index
(MNDWI) for enhancing the contrast between wated athers (McFeeters, 1996),
Soil Adjusted Vegetation Index (SAVI) for eliminayj soil background noise from
vegetation (Huete, 1988), Normalized Difference |BUp Index (NDBI) for
extracting built-up areas (Zha et al.,, 2003)and Mhized Difference Vegetation
Index (NDVI) for enhancing the vegetation and ngefation (Kindu et al., 2013).
These variables can be calculated using Eqs. (Alf/Am the Landsat image bands.

MNDWI, SAVI, NDBI and NDVI can be expressed as tolis:

MNDWI = (Bgreon — Bswir) ! (Béreen + Bswiz) (A1)
SAVI = (Byig — Brea) 1+ L)/ (Bynig — Brea + L) (A2)
NDBI = (Bswix — Buir)/ (Bswix + Bwie) (A3)
NDVI = (Brxiz — Brea)! (Brir — Brea) (A4)

where Green, SWIR, NIR and Red represent refleetaid™ Bands 2, 5, 4 and 3,
respectively, L is a soil adjustment factor, anbl Was usually chosen to remove soil

background (Huete, 1988).
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Tab. Al Policies of ecological land in the Guanggiétong Kong-Macao Greater Bay Area

Year Policy Main content

2001 Ecological Environment Implementing projects to build protective foresstgyns and urban forestry;
Construction Planning in Building ecotourism sites that combine natural l@ages with excellent
Guangdong Province ecological environments.

2009 Outline Development PlarPromoting the construction of urban landscape fsresban public green
for the Pearl River Delta spaces and green belts around cities;

(2008-2020) Accelerating the completion of green belts alorghhiays and railways to form
networked regional ecological corridors.

2013 A New Round of Greeningnvesting in key forestry ecological projects, srming the mode of
Guangdong ecological forestry development and improving thie$t ecological

compensation mechanism

2014 Integrated Plan for Strengthening the sealing of mountains and foriestastrictly control the size
Ecological Security Systerof the population and development activities;
in the Pearl River Delta Controlling the total amount of construction landdatrictly limiting the
(2014-2020) conversion of ecological land into constructiondan

2014 Guangdong Province Increasing investment in ecological protectionvtimg appropriate
Ecological Protection compensation to cities in key ecological functiemes through transfer
Compensation Measures payments to enhance basic public service sand itaieh between economic

development and the ecological environment.

2017 Pearl River Delta Nationallmplementing ten key ecological projects, includthg construction of national

Forest Urban forest cities, forest towns, green ecological watkvorks, regional ecological
Agglomeration corridors, forests into urban enclosures, forester@ion bases, coastal
Construction Plan protection forests, nature education bases and $onest cities, and the precise
(2016-2025) improvement of forest quality.

2019 Outline Development Planimplementing major projects for the protection aestoration of important
for the Guangdong-Hong ecosystems, building an ecological corridor andiiviersity protetion network,
Kong-Macao Greater Bayand improving the quality and stability of ecosysse
Area Defining and strictly observing the ecological gaiton red line, strengthening
the control of natural ecological space.
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Tab. A2 Datasets used in this research

Data Data Sources Spatial Time series
Resolution
Datasets Landsat http://landsat.usgs.gov 30m 1990-2019
Land use remote sensing http://www.resdc.cn 1 km 2000-2015
monitoring dataset
Driving Elevation http://www.resdc.cn/data.aspx?DATAID=217 30m -
factors Slope Calculated according to elevation 30m -
Average annual precipitation https://data.nodc.rgmaécgi-bin/ 0.25 arc 1990-2019
degrees

Average annual temperature http://www.climatologytag/terraclimate.html 2.5 arc  1990-2019

minutes
Resident population density http://www.stats.govjsyh/ - 1990-2019
Land urbanization rate Calculated according to éinel lcover data in - 1990-2019
this article
Population and GDP per capita http://www.stats.gov.cn/tjsj/ - 1990-2019
Tab. A3 Landscape metrics used in this study
Metric AbbreviatiorDescription Equation
Patch density PD Number of greenspace patchesedivigl the total landscape area rfkm
Edge density ED Total length of all edge segmenthé greenspace per hectare m/ha
Contagion index CONTAG The extent of the dispersibdifferent land cover types in the %
landscape.
Shannon’s diversity SHDI A measure of the diversity of patch types larsdscape thatis Information
index determined by both the number of different patgresyand the

proportional distribution of area among patch types
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Tab. A4 The areas and proportions of ecological iareach region of Guangdong-Hong
Kong-Macao Greater Bay Area in 1990, 2000, 2003026hd 2019

1990 2000 2010 2019

Area Proportion(%) Area Proportion(%) Area Proportion(%) Area Proportion(%)

(km?) (km?) (km?) (km?)
Overall 26716.14 47.19 26231.04 46.34 25331.58 44.75 25346.79  44.77
ZQ 9838.44 64.04 9835.38 64.02 9511.83 61.91 9512.5 61.92
HZ 5722.74 49.20 5637.33 48.47 5608.44 48.22 5@87.2 48.90
JM 3298.59 34.81 3214.44 33.92 3186.18 33.63 3B38.5 34.18
Gz 2952.18 39.96 2880.99 38.99 2854.26 38.63 2928.8 39.64
FS 1367.1 35.05 1291.32 33.10 1143.36 29.31 1049.0426.89
DG 828.18 32.94 737.37 29.33 578.16 23.00 548.28 .8121
ZH 711.9 47.05 689.13 45.54 659.25 43.57 641.97 4342.
Sz 709.47 36.66 653.85 33.79 548.37 28.34 542.88 .0528
zS 682.47 38.77 639.18 36.31 583.65 33.15 531.09 .1730
HK 593.55 53.77 644.4 58.38 652.14 59.08 661.14 8%9.
MC 11.52 44.44 7.65 29.51 5.94 22.92 5.13 19.79
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Tab. A5 Transfer matrix between ecological land mo-ecological in Guangdong-Hong
Kong-Macao Greater Bay Area (Rm

Ecological land Non-Ecological land
Constructior Total
Forestland Grassland Water bodlesI g Other land
an
1990-2000
Forestland 21640.77 0.18 4.13 20.52 542.98 22208.58
Ecological
land Grassland 37.26 1010.25 4.68 272.52 88.74 1413.45
an
Water bodies 19.89 5.58 3000.42 13.50 54.72 3094.11
Construction
Non-Ecologica 0 0 0 2104.11 0 2104.11
land
land
Other land 492.29 0.08 15.48 537.31 26745.93 27991.
2000-2010
Forestland 21540.6 0.82 2.88 62.82 583.11 22190.23
Ecological
and Grassland 2.88 388.71 1.08 616.41 7.02 1016.1
an
Water bodies 68.49 26.46 2825.64 82.08 22.05 3224.7
Construction
Non-Ecologica 0 0 0 2947.95 0 2947.95
land
land
Other land 313.91 0.36 3.24 2803.86 24310.97 2B432.
2010-2019
Forestland 21796.58 0 0.55 39.34 154.24 21990.71
Ecological
and Grassland 0.36 286.39 0 185.74 0 472.5
an
Water bodies 9.00 0.56 2833.22 25.33 0.28 2868.39
Construction
Non-Ecologica land 43.67 35.60 153.06 5909.63 27.24 6016.14
an
land
Other land 425.94 0 0.99 1150.66 23686.04 25263.63
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Highlights

Quantifying the interaction and evolution of driving factors on
ecological land

Population density determines the majority area of the ecological land
evolution

Socioeconomic factors were more influential than natural factors on
ecological land

The interaction between population density and elevation had the
largest influence

The impact of temperature and precipitation declined by 69% and

77%, respectively



Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

[(IThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:




