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a b s t r a c t

Spatial populations are usually located on a continuous support.
They can be surfaces representing the values of the survey
variable at any location, finite collections of units with the
corresponding values of the survey variable, or finite collec-
tions of areal units partitioning the support, where the survey
variable is the total amount of an attribute within. We de-
rive conditions on the design sequence ensuring consistency
of the Horvitz–Thompson estimator of spatial population to-
tals, supposing minimal requirements on the survey variable.
A simulation study is performed to check theoretical results.
Consistency and its implications in real surveys are discussed
with focus on environmental surveys.
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1. Introduction

Consistency is an intuitively appealing property ensuring that the distribution of an estimator
tends to be concentrated around the parameter as the sample size n increases. Its definition cannot
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be immediately carried over to the finite population setting, requiring a more complex machinery
(e.g. Särndal et al., 1992, section 5.3). Indeed, when a without replacement sampling scheme is
adopted to select samples from a population of N units, we cannot let n approach infinity without
further, artificial assumptions, because n ≤ N and N is fixed and finite. Therefore consistency results
can be achieved supposing a sequence of increasing populations, so that both N and n can increase
indefinitely. By considering an infinite sequence of units on which the survey variable Y can be
recorded, a sequence, indexed by a natural number k = 1, 2, . . ., of increasing, nested populations
{Uk} is constructed, each of them consisting of the first Nk units. If a corresponding sequence {dk}
of probabilistic sampling designs selecting samples of increasing size nk is introduced, an estimator
θ̂k of the parameter θk is said to be design-consistent or p-consistent if the sequence of random
variables {̂θk − θk} converges in probability to 0. Practically, consistency implies that an estimator
has little or no bias and a small standard error as long as the sample size is large.

This asymptotic framework was probably first delineated rigorously by Isaki and Fuller (1982)
who, in the spirit of design-based inference, proved the consistency of the Horvitz–Thompson
(HT) estimator of population means mainly on the basis of the properties of the design sequence
{dk}, requiring a minimal assumption regarding populations. Indeed, besides conditions on the
design sequence, consistency only requires that the survey variable is bounded, a feature always
satisfied in real surveys, where infinite values never occur. Other asymptotic results on the HT
estimator available in literature (see e.g. Prášková and Sen, 2009 for a review) refer to particular
class of sampling design, such as those achieved by Rosén (1997) under order sampling scheme and
by Berger (1998) for asymptotically maximum entropy design.

Following the approach by Isaki and Fuller (1982), we aim to give consistency conditions for HT
total estimators in spatial populations.

In design-based inference spatial populations are constituted by fixed sets of locations within a
region of interest, henceforth referred to as the support, with fixed values of the survey variable
attached to each location. Specifically, three types of spatial populations can be distinguished:
(i) continuous populations, constituted by a continuous set of locations with a surface giving the
values of the survey variable at each location;
(ii) finite populations of units regularly or irregularly scattered over the support (e.g. the nodes of
a regular network, the factories in a district, the shrubs in a natural reserve) with the value of the
survey variable attached to each unit;
(iii) finite populations of areal units partitioning the support where populations of type (i) or (ii) are
located (e.g. regular polygons such as satellite pixels or irregularly-shaped administrative districts)
and the survey variable is the total amount of an attribute within each areal unit.
As Wang et al. (2013) point out, while the support is the region of interest for any spatial population,
the nature of sampling unit varies. Indeed, the population is the continuous set of locations
coinciding with the support in case (i), a discrete set of units at fixed locations on the support
in case (ii) and a set of spatial subsets partitioning the support in case (iii).

Design-based inference has been widely adopted for estimating totals of spatial populations,
especially in environmental studies (e.g. De Vries, 1986; Thompson, 2002; Gregoire and Valentine,
2008; De Gruijter et al., 2010). For discrete populations of type (ii) and (iii), totals are summands
and estimation is performed by using the HT estimator or suitable modifications able to exploit
auxiliary information such as regression or ratio estimators (e.g. Särndal et al., 1992, chapter 6).
For continuous populations of type (i), totals are integrals and estimation is performed extending
the HT estimator to the continuous case (e.g. Cordy, 1993). Modifications able to exploit auxiliary
information are also available for the continuous case (e.g. Brus, 2000; Barabesi and Marcheselli,
2005).

Regarding the sampling schemes usually adopted in spatial surveys, an important feature is
their capacity to evenly spread sample locations over the support in such a way that no one
portion of the support is over- or under-represented. This property is usually referred to as spatial
balance (e.g. Brown et al., 2015). Spatial balance plays an important role in spatial surveys. This
is because of the two major characteristics of spatial populations, i.e. (a) the presence of the so-
called spatial autocorrelation, in which the values of the survey variable in neighboring locations
tend to be similar; (b) the presence of spatial strata heterogeneity where there is high variation of
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the survey variable between different portions of the support and low variability within. In both
cases sampling schemes likely to select clustered locations should be avoided. In the first case,
neighboring locations, having similar values, provide poor additional information to sample; in the
second case clustering in certain parts of the support with voids in other parts provides poorly
representative samples. Spatial balance, evenly spreading sample locations over the support, is able
to evenly spread sample locations throughout the strata at the same time avoiding the selection of
neigbouring sites. Therefore it is able to handle both the issues. Indeed, exploiting the anticipated
variance criterion, Grafström and Tillé (2013) prove the optimality of spatially balanced schemes in
presence of positive spatial autocorrelation, while on the basis of the same criterion, Bethel (1989)
proves the optimality of stratified sampling in the case of spatial heterogeneity.

In this paper, in the spirit of Isaki and Fuller (1982), whose consistency results on the HT
estimator can be applied only to spatial population of type (ii), we derive consistency conditions
for all the three types of spatial populations under minimal, as far as possible, conditions, also
proving that they hold for the most widely applied spatial sampling schemes. In some situations,
the spatial population can be held fixed, with fixed total T and consistency is proven by means of
the convergence in probability to T of the sequence of HT estimators {̂Tk} arising from the sequence
of designs. In other cases, a sequence of populations is presumed giving rise to the corresponding
sequence of totals {Tk} which increases indefinitely. In these cases, consistency is obtained by the
convergence in probability to 1 of the sequence {̂Tk/Tk}.

Sections 2–4 are devoted to consistency conditions while in Section 5 a simulation study is
presented. Practical implications of consistency in real surveys are outlined in Section 6, with focus
on environmental surveys. Finally conclusions are given in Section 7. Technical details and proofs
are reported in the Appendices.

Throughout the paper, λ denotes the Lebesgue measure on R2 and A represents a compact
support of R2.

2. Consistency for continuous populations

2.1. Setting and consistency conditions

Let y be a Borelian and bounded function on the support A with values on [0, L], where y(p) is
the value of the survey variable Y at the location p ∈ A. We aim to estimate the population total
T =

∫
A y(p)λ(dp).

Suppose a sequence of designs {dk}, each of them selecting an increasing number nk of points
onto A, say Pk,1, . . . , Pk,nk . Following Cordy (1993), the designs should be such that the nk-tuple
(Pk,1, . . . , Pk,nk ) is a random vector with probability density g (k) with respect to the product measure
λ⊗nk = λ × · · · × λ (nk times). Let g (k)

i be a version of the marginal probability density of Pk,i with
respect to λ and g (k)

ih be a version of the marginal probability density of (Pk,i, Pk,h) with respect to
λ ⊗ λ, with i ̸= h = 1, . . . , nk.

Moreover πk(p) =
∑nk

i=1 g
(k)
i (p) is the inclusion function and πk(p, q) =

∑nk
i̸=h=1 g

(k)
ih (p, q) is the

pairwise inclusion function. If πk(p) > 0 for each p ∈ A, then the extension of the HT estimator to
the continuous case

T̂k =

nk∑
i=1

y(Pk,i)
πk(Pk,i)

(1)

is an unbiased estimator of T and, if
∫
A

1
πk(p)

λ(dp) < ∞,

var(̂Tk) =

∫
A

y2(p)
πk(p)

λ(dp) +

∫
A2

{ πk(p, q)
πk(p)πk(q)

− 1
}
y(p)y(q)λ(dp)λ(dq). (2)
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Proposition 1. If the design sequence is such that

lim
k→∞

sup
p

1
πk(p)

= 0 (3)

lim
k→∞

sup
p̸=q

{ πk(p, q)
πk(p)πk(q)

− 1
}+

= 0 (4)

then limk→∞ var(̂Tk) = 0 and T̂k converges in probability to T .

2.2. Some schemes ensuring consistency

The most straightforward scheme to sample spatial locations on a continuum is uniform random
sampling (URS), i.e. the random and independent selection of nk points on the support. Under URS,
πk(p) = nk/λ(A) for each p ∈ A and, owing to the independence of selections, πk(p, q) = πk(p)πk(q)
for each p, q ∈ A, from which conditions (3) and (4) are satisfied.

Despite simplicity and consistency, URS may lead to uneven surveying. Spatial balance can be
achieved using quite complex schemes explicitly tailored, such as generalized random tessellation
stratified sampling (Stevens and Olsen, 2004) and sampling based on space-filling Hilbert curves
(Lister and Scott, 2009).

More simply, spatial balance can be obtained using tessellation stratified sampling (TSS): the
support A is partitioned into nk spatial subsets of equal extent and a point is randomly and
independently located in each subset. Under TSS, πk(p) = nk/λ(A) for each p ∈ A while, owing
to the independence of selections performed within different subsets, πk(p, q) = πk(p)πk(q) for p
and q belonging to two different subsets and πk(p, q) = 0 when p and q are in the same subset.
Therefore, (3) and (4) are satisfied.

Alternatively, when the support can be tessellated into nk regular polygons of equal extent,
systematic grid sampling (SGS) is widely used to achieve spatial balance. SGS consists of randomly
selecting a point in one polygon and systematically repeating it in the others. However, SGS cannot
be considered for consistency in the framework introduced by Cordy (1993), because while πk(p) =

nk/λ(A) for each p ∈ A, no probability density exists for the vector (Pk,i, Pk,i+1).
Under URS, TSS and SGS, (1) reduces to the Monte Carlo estimator

T̂k =
1
nk

nk∑
i=1

λ(A)y(Pk,i). (5)

Therefore, these schemes can be viewed as Monte Carlo integration methods with URS coinciding
with crude Monte Carlo integration. Consistency results on Monte Carlo integration have been
already exploited. In particular, when estimating totals and functions of totals, the relative efficiency
of TSS with respect to URS has been proven for finite samples, also proving that it approaches
infinity as the sample size increases because TSS variances go to 0 more quickly than under URS
(Barabesi and Franceschi, 2011; Barabesi et al., 2012, 2015). Consistency under SGS, which cannot
be obtained in the framework by Cordy (1993), is proven in the Monte Carlo estimation framework
(see Appendix C). However, even if consistent, losses of efficiency with respect of URS may occur
under SGS if spatial periodicities are present in the surface.

3. Consistency for finite populations of units

3.1. Setting and consistency conditions

Let {Uk} be a nested sequence of populations of units of increasing size Nk scattered throughout
A. Moreover, let Y be a survey variable with values on [0, L] and let yj be the value of Y on unit
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j ∈ Uk, usually referred to as the mark of unit j. Obviously the population sequence determines a
corresponding sequence of totals {Tk}. We aim to estimate the population total Tk =

∑
j∈Uk

yj.
Suppose a sequence of designs {dk}, each of them selecting a sample Sk from Uk of increasing

size nk, with first and second order inclusion probabilities π
(k)
j and π

(k)
jh for h > j ∈ Uk. Then the HT

estimator

T̂k =

∑
j∈Sk

yj
π

(k)
j

(6)

is unbiased with variance

var(̂Tk) =

∑
j∈Uk

(1 − π
(k)
j

π
(k)
j

)
y2j + 2

∑
h>j∈Uk

( π
(k)
jh

π
(k)
j π

(k)
h

− 1
)
yjyh. (7)

Proposition 2. If the design sequence ensures

lim
k→∞

max
h>j

{ π
(k)
jh

π
(k)
j π

(k)
h

− 1
}+

= 0 (8)

and there exists π0 > 0 such that minj π
(k)
j ≥ π0, then limk→∞ var(̂Tk/Tk) = 0 and T̂k/Tk converges in

probability to 1.

3.2. Some schemes ensuring consistency

If the population list is available, the most straightforward scheme is simple random sampling
without replacement (SRSWOR). If a constant fraction 0 < π0 < 1 of units is selected from each
population Uk, then π

(k)
j = π0 and π

(k)
jh = (π2

0Nk − π0)/(Nk − 1) for each h > j ∈ Uk, from which
condition (8) is satisfied.

Despite simplicity and consistency, SRSWOR may lead to uneven scattering of sampled units
throughout the region. Spatial balance can be ensured by using explicitly tailored schemes, such
as generalized random tessellation stratified sampling (Stevens and Olsen, 2004), the draw-by-
draw sampling that excludes the selection of contiguous units (Fattorini, 2006, 2009), the local
pivotal method of the first and second types (Grafström et al., 2012), the spatially correlated Poisson
sampling (Grafström, 2012) and the doubly balanced spatial sampling (Grafström and Tillé, 2013).
More simply, spatial balance can be achieved by partitioning the support into a fixed number
of strata and then selecting the same fraction of units 0 < π0 < 1 within each stratum by
SRSWOR ensuring consistency within each stratum when strata and sample sizes increase. Then
consistency also holds under stratified sampling with proportional allocations (STRPA). Moreover,
the relative efficiency of STRPA vs SRSWOR arises from relation (9.18) by Hedayat and Sinha (1991)
for sufficiently large strata sizes.

The knowledge of the list of the population units rarely occurs in environmental surveys where,
for example, units are trees or shrubs scattered over the study area and the knowledge of the
list involves prohibitive efforts, especially over large areas. The unique case in which the list of
units becomes available is under 3P sampling, from the acronym of probability proportional to
prediction. This scheme is a variation of Poisson sampling and can be adopted in forest surveys when
supports are of moderate sizes. Under 3P sampling, all the units are visited by a crew of experts, a
prediction xj for the value of the survey variable is given by the experts for each unit and units are
independently included in the sample with probability xj/L (Gregoire and Valentine, 2008). A lower
bound l for the survey variable Y often naturally arises in most forest and environmental surveys
in which units with Y values (e.g. tree height or basal area) smaller than a given threshold are not
considered in the population. In this case π

(k)
j ≥ l/L for any j ∈ Uk and any k and condition (8)

holds as π
(k)
jh = π

(k)
j π

(k)
h owing to the independence of drawings. Therefore, under 3P sampling,

T̂k/Tk converges in probability to 1.
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3.3. Consistency for without-list populations

When the list of units is unknown, the sampling schemes usually adopted for selecting units
from the population are based on points (eventually identifying plots or transects) randomly located
onto a reference area B. In most cases B constitutes an enlargement of the support A introduced
in order to avoid edge effects (see e.g. Gregoire and Valentine, 2008, section 7.5). If U denotes the
without-list population of units, for each unit j ∈ U , the scheme univocally defines the inclusion
region Bj, i.e. the subset of B onto which the random point p must fall to give rise to the selection
of the unit. Because p is randomly selected, the first-order inclusion probability of unit j is given by
πj = λ(Bj)/λ(B).

Denote by S(p) ⊂ U the sample of units selected by means of the random point p onto B. If λ(Bj)
can be computed for each j ∈ S(p), then the HT estimator

T̂ =

∑
j∈S(p)

yj
πj

= λ(B)
∑
j∈S(p)

yj
λ(Bj)

(9)

is an unbiased estimator of the population total T =
∑

j∈U yj. Since T can be rewritten as

T =

∫
B
g(p)λ(dp) (10)

where g(p) =
∑

j∈U
yj

λ(Bj)
Ij(p) and Ij(p) is the sample indicator function, that is equal to 1 if j ∈ S(p)

and 0 otherwise (see Appendix B for the proof), (9) can be rewritten as

T̂ = λ(B)g(p) (11)

i.e. it can be viewed as the Monte Carlo estimator of the integral (10) at p (Gregoire and Valentine,
2008, chapter 10; Mandallaz, 2008). Practically speaking, when dealing with a without-list popu-
lation, the total estimation can be rephrased by (5) as the estimation of a total over a continuum,
in such a way that consistency can be achieved, as in Section 2, as the number of sample points
selected onto B increases. Obviously, analogous considerations to those in Section 2.2 regarding
URS, TSS and SGS hold.

4. Consistency for finite populations of areal units

4.1. Setting and consistency conditions

Both when a continuous population and a finite population of units are defined on A, a sequence
of partitions {Pk} of A can be considered, constituted by an increasing number Mk of areal units
A(k)

1 , . . . ,A(k)
Mk

of decreasing size, in such a way that limk→∞ maxl λ(A
(k)
l ) = 0. Suppose a sequence

of designs {dk}, each of them selecting a sample Qk of increasing size mk from Pk in accordance
with a sampling scheme that induces first and second order inclusion probabilities π

(k)
l and π

(k)
lh for

h > l ∈ Pk.
If a continuous population is considered and y is a Borelian function on A, with values on [0, L],

let T =
∫
A y(p)λ(dp) be the population total and let T (k)

l =
∫
A(k)

l
y(p)λ(dp) be the total amount of

the survey variable within A(k)
l . Since T =

∑Mk
l=1 T

(k)
l for each k, estimating T over a continuum

can be approached as the total estimation in a finite population of areal units, whose list is always
available. The HT estimator

T̂k =

∑
l∈Qk

T (k)
l

π
(k)
l

(12)

is unbiased for T with variance

var(̂Tk) =

∑
l∈Pk

(1 − π
(k)
l

π
(k)
l

)
T (k)2
l + 2

∑
h>l∈Pk

( π
(k)
lh

π
(k)
l π

(k)
h

− 1
)
T (k)
l T (k)

h . (13)
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Proposition 3. For continuous populations, if the design sequence is such that

lim
k→∞

max
l

λ(A(k)
l )

π
(k)
l

= 0 (14)

and

lim
k→∞

max
h>l

( π
(k)
lh

π
(k)
l π

(k)
h

− 1
)+

= 0 (15)

then limk→∞ var(̂Tk) = 0 and T̂k converges in probability to T .

A sufficient condition for (14) to hold is minl π
(k)
l ≥ π0 > 0 for any k.

Alternatively, if we have a finite population of units scattered throughout A, consistency cannot
be proven taking the population fixed. In this case, it is necessary to consider a sequence of nested
populations Uk of increasing size Nk. Let Y be a survey variable with values on [0, L] and yj be the
value of Y on unit j ∈ Uk, so that the total for kth population is Tk =

∑
j∈Uk

yj. Once again estimation

in finite populations of units can be switched into estimation in finite populations of areal units
whose lists are always available.

Let T (k)
l =

∑
j∈U (k)

l
yj be the total amount of the survey variable within the areal unit A(k)

l , where

U (k)
l denotes the sub-population of the N (k)

l units located within A(k)
l . As Tk =

∑
l∈Pk

T (k)
l , the HT

estimator T̂k given by (12) is unbiased with variance (13).

Proposition 4. For finite populations of units, if (15) holds and

lim
k→∞

max
l

T (k)
l

π
(k)
l Tk

= 0 (16)

then limk var(̂Tk/Tk) = 0 and T̂k/Tk converges in probability to 1.

There is a perfect analogy with the continuous case. In the case of finite populations of units, it
suffices to replace λ(A(k)

l ) with T (k)
l /Tk. However, while in the continuous case only partitions are

involved, in the discrete case it is necessary to presume a sort of evenness in the enlargements of
the nested populations, in such a way that population units do not aggregate into some areal units.

4.2. Some schemes ensuring consistency

The most straightforward scheme to select areal units is SRSWOR. If a constant fraction 0 < π0 <

1 of areal units is selected from the partition Pk, then π
(k)
l = π0 and π

(k)
lh = (π2

0Mk − π0)/(Mk − 1)
for each h > l ∈ Pk. Hence conditions (14) and (15) are satisfied. In the discrete case, condition (16)
requires that the amounts of the survey variable within areal units divided by their total approach 0.

SRSWOR may lead to uneven scattering of sampled areas. Spatial balance can be achieved using
the quite complex schemes referred in Section 3.2 to sample units scattered over a continuum,
assigning to each areal unit a location (e.g. its barycenter). More simply, spatial balance can be
achieved using the one per stratum sampling (OPSS) (Breidt, 1995), i.e. partitioning Pk into mk strata
of approximately Mk/mk contiguous units and randomly selecting one unit within each stratum.
Under OPSS, π (k)

l = π0 for each l ∈ Pk, π
(k)
lh = π2

0 if the areal units l and h belong to different strata
while π

(k)
lh = 0 if they belong to the same stratum, so that conditions (14) and (15) are satisfied.

Once again, in the discrete case, convergence to 0 of the amounts of the survey variable within
areal units divided by their total is required. Also for areal units, the relative efficiency of OPSS vs
SRSWOR arises, mutatis mutandis, from relation (9.18) by Hedayat and Sinha (1991) for sufficiently
large strata sizes.

When A is regular and can be partitioned into Mk regular polygons of equal extent, systematic
sampling (SYS) can be performed, i.e. partitioning Pk into mk equally-shaped strata of Mk/mk
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Fig. 1. Maps of the two artificial surfaces.

contiguous polygons, randomly selecting one unit in a stratum and repeating it in the remaining
strata. However, under SYS π

(k)
l = π0 for each l ∈ Pk, while π

(k)
lh = π0 if polygons l and h have the

same position in the strata and π
(k)
lh = 0 otherwise. Therefore, (15) is not satisfied. Notwithstanding

this, we have proven the consistency of T̂k under SYS in the continuous case (see Appendix D). On
the other hand, in the case of finite populations of units, consistency under SYS cannot be proven.
Irrespective of consistency, SYS performance greatly depends on the population characteristics
(e.g. Cochran, 1977, section 8) and large losses of precision with respect to SRSWOR may occur
when spatial periodicities are present.

5. Simulation study

In order to generate continuous populations, finite populations of points and populations of
areal units, two artificial surfaces on the unit square, referred to as surface 1 and surface 2 were
considered. At any point p = (p1, p2) of the unit square the two surfaces were defined respectively
by

y(p) = C1(sin2 p1 + cos2 p2 + p1), y(p) = C2(sin 3p1 sin2 3p2)2,

where the constants C1, C2 ensured a maximum value of 10 in both cases (see Fig. 1).
The two surfaces were chosen to represent the major characteristics of spatial populations,

as mentioned in the Introduction. Both of them are continuous, hence the values of the survey
variable in neighboring locations tend to be similar, thus entailing a spatial autocorrelation in the
resulting populations. Both of them varied relevantly throughout the unit square: surface 1 showed
an increasing trend moving from the left part to the right part of the square, while the second
showed an increasing trend toward the center of the square, thus entailing a spatial stratification
with different values of the survey variable in different parts of the square.

5.1. Continuous populations

Surface 1 and 2 gave rise to population totals of 5.54 and 3.50, respectively. In both cases,
n = 25, 100, 400 points were selected on the unit square in accordance with URS, TSS and SGS.
In particular TSS and SGS were performed by partitioning the unit square into 5 × 5, 10 × 10 and
20×20 grids of equal-sized quadrats and randomly or systematically selecting a point per quadrat.
For any combination of surface, sampling scheme and sample size n, R = 10 000 samples were
independently selected and the Monte Carlo estimator (5) was computed.

5.2. Finite populations of points

Three nested populations of N = 1000, 5000 and 10 000 points were located in the unit square
in accordance with four spatial patterns referred to as regular, random, trended and clustered.
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For the regular pattern, the nested populations were constructed generating the first 1000 points
completely at random on the unit square but discarding those having distances smaller than
1/

√
1000 to those previously generated, then adding further 4000 points completely at random

on the unit square but discarding those having distances smaller than 1/
√
5000 to those previously

generated, and finally adding further 5000 points completely at random discarding those having
distances smaller than 1/

√
10000.

For the random pattern, the nested populations were constructed by simply generating 10 000
points completely at random in the unit square and then assigning the first 1000 to the first
population, the first 5000 to the second population and all of them to the third.

For the trended pattern, the nested populations were constructed generating 10 000 points of
coordinates (1−u2

1, 1−u2
2) where u1, u2 were independent random numbers uniformly distributed

on (0, 1). The first 1000 points were assigned to the first population, the first 5000 to the second
population and all of them to the third.

Finally, for the clustered pattern, the nested populations were constructed generating 10 cluster
centers completely at random on the unit square and then assigning 100 points to each cluster
generated from a spherical normal distribution centered on the cluster center with variances 0.025,
then adding further 400 points to each cluster from the same normal distribution and finally adding
further 500 points to each cluster from the same distribution. Points falling outside the unit square
were discarded and newly generated. For each pattern and population, marks were obtained by
considering the values of surface 1 and 2 at the generated points. Totals obviously changed with
surfaces, spatial patterns and population sizes and were reported in Table 2.

For any population arising from the combination of surface, spatial pattern and population size
N , R = 10 000 samples of size n = N/10 were independently selected by means of SRSWOR and
STRPA and the HT estimator (6) was computed. STRPA was performed by previously partitioning
the unit square into 16 spatial strata of equal size and then selecting 10% of points within each
stratum by means of SRSWOR.

Subsequently, for any surface and any spatial pattern, the populations of size N = 1000 were
sampled as if they were without list, by means of n = 25, 100, 400 plots of radius ρ = 0.013. Plot
centers were selected by means of URS, TSS and SGS on the unit square enlarged by a buffer of width
ρ to avoid edge effects. Plot radius was selected to ensure that the surveyed area was about 20% of
the unit square area when 400 plots were considered. TSS and SGS were performed as described in
Section 5.1. For each surface, each spatial pattern, each sampling scheme and each n, R = 10 000
samples were independently selected and the Monte Carlo estimator (5) was computed.

5.3. Finite populations of areal units

Simulation for finite populations of areal units was performed both when a continuous pop-
ulation and a finite population of units on the unit square were considered. In both cases, three
populations of M = 400, 1600, 6400 areal units were constructed by partitioning the unit square
into grids of 20 × 20, 40 × 40, 80 × 80 quadrats, respectively.

In the continuous framework, population values were the integrals of the surface onto the
quadrats. The population totals were 5.54 and 3.50 when surface 1 and 2 were considered,
respectively. For each surface and each population size M , R = 10 000 samples of size m = M/10
were independently selected by means of SRSWOR, OPSS and SYS and the HT estimator (12) was
computed. OPSS and SYS were performed by partitioning the grids into blocks of 2 × 5 contiguous
quadrats and then randomly or systematically selecting one quadrat per block.

Alternatively, the three populations of M = 400, 1600, 6400 quadrats were superimposed to the
nested point populations of sizes N = 1000, 5000, 10 000 generated in Section 5.2, in such a way
that both N and M increased. In this case, population values were the sums of the marks attached
to each point in the quadrats (population totals were the same reported in Table 2). Analogously
to the continuous case, for each population of spatial units, R = 10 000 samples of size m = M/10
were independently selected by means of SRSWOR, OPSS and SYS and the HT estimator (12) was
computed.
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Table 1
Relative efficiencies for any combination of sample size n, surface and sampling scheme. For any surface, the benchmark
is the empirical relative standard error for n = 25 under URS.
n Surface 1 Surface 2

URS TSS SGS URS TSS SGS

25 1.00 5.06 1.04 1.00 2.52 8.89
100 1.98 19.97 2.08 2.00 10.07 23.35
400 3.97 82.11 4.15 3.97 40.02 50.94

Table 2
Relative efficiencies for any combination of population size N (giving rise to total T ), spatial pattern, surface and sampling
scheme with sample size n = N/10. For any surface and any spatial pattern, the benchmark is the empirical relative
standard error achieved for N = 1000 under SRSWOR.

N T Surface1 Surface 2

SRSWOR STRPA SRSWOR STRPA

Regular 1000 5423.36 1.00 4.09 1.00 2.04
5000 27542.04 2.24 8.90 2.23 4.63
10000 55326.07 3.18 12.71 3.17 6.51

Random 1000 5446.18 1.00 4.14 1.00 2.04
5000 27454.91 2.25 9.13 2.24 4.62
10000 55023.73 3.18 12.71 3.15 6.62

Trended 1000 6234.43 1.00 4.00 1.00 1.99
5000 30979.18 2.23 8.74 2.24 4.38
10000 61882.13 3.13 12.30 3.16 6.28

Clustered 1000 6020.92 1.00 8.49 1.00 2.44
5000 30127.31 2.25 18.56 2.26 5.46
10000 60244.34 3.16 27.00 3.21 7.72

5.4. Performance indicators

The Monte Carlo distributions of the HT estimates were adopted to empirically determine the
sampling variance and its behavior as the sample size, and eventually the population size, increases.
As index of precision, the empirical relative standard error

1
T

√1
R

R∑
r=1

(̂Tr − T )2

was computed, where T̂r was the estimate achieved in the rth sample and T was the total under
estimation.

Because precision greatly depends on population characteristics, in order to facilitate com-
parisons we took the strategies adopting the simplest sampling design, i.e. URS for continuous
populations and SRSWOR for finite populations, and/or the smallest sampling effort as benchmarks.
Then, we checked relative efficiency by computing the ratios of the empirical relative standard error
of the benchmark design to that of the other designs. Relative efficiencies were expected to increase
as sample sizes increased and as effective sampling schemes were adopted.

5.5. Results

Simulation results, reported in Tables 1–5, fully confirmed the consistency results of the previous
sections. In the case of continuous populations, the benchmark was achieved with n = 25 points
located by means of URS and the relative efficiencies for any combination of sample size n, surface
and sampling scheme are reported in Table 1. Under this scheme, precision increased at a rate
proportional to

√
n, as from the theory of Monte Carlo integration discussed in Section 2.2, while
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Table 3
Relative efficiencies for without-list populations of N = 1000 points for any combination of sample size n, spatial pattern,
surface and sampling scheme. For any surface, the benchmark is the empirical relative standard error achieved for n = 25
under URS.

n Surface 1 Surface 2

URS TSS SGS URS TSS SGS

Regular 25 1.00 1.05 0.95 1.00 1.15 1.18
100 1.99 2.12 2.18 2.00 2.36 2.73
400 3.98 4.40 5.07 4.05 4.96 6.65

Random 25 1.00 1.02 0.95 1.00 1.10 1.13
100 1.99 2.08 2.15 2.01 2.23 2.88
400 3.97 4.41 5.97 4.09 4.76 5.83

Trended 25 1.00 1.16 0.77 1.00 1.04 1.02
100 1.99 2.57 1.44 2.00 2.16 2.01
400 3.91 6.03 2.66 3.98 4.65 4.22

Clustered 25 1.00 1.08 1.47 1.00 1.06 1.24
100 1.99 2.42 3.64 1.96 2.42 3.35
400 3.96 6.59 11.85 3.91 6.35 11.43

Table 4
Relative efficiencies for populations of quadrats for any combination of population size M , surface and sampling scheme.
For any surface the benchmark is the empirical relative standard error achieved for M = 20 × 20 under SRSWOR.

Surface 1 Surface 2

SRSWOR OPSS SYS SRSWOR OPSS SYS

20 × 20 1.00 7.68 1.19 1.00 2.46 17.72
40 × 40 2.02 31.17 2.57 1.98 9.68 40.58
80 × 80 4.04 112.20 5.15 3.97 38.12 83.87

higher precision and greater increase rates were achieved under TSS. On the other hand, even if
results on SGS confirmed consistency, as proven in Appendix C, relative efficiencies with respect
to the benchmark were small for the first surface, while they were the greatest with the second
surface, resulting even better than TSS. That confirmed the strong dependence of the performance
of SGS on the surface under study.

When populations of points were considered, for all the spatial patterns the benchmark was
achieved with populations of N = 1000 points and SRSWOR and results are given in Table 2.
Notwithstanding sampling fractions remained the same, precision increased as outlined in Sec-
tion 3.2. The rate of increase was approximately proportional to

√
n for both the surfaces, all the

spatial patterns and both sampling schemes. For surface 1, the relative efficiency of STRPA with
respect to SRSWOR was about 8 in the case of clustered pattern and about 4 for the other patterns. In
the case of surface 2 improvements provided by stratification were less marked, relative efficiencies
being about 2 for all patterns.

In the case of without-list finite populations of N = 1000 points sampled by means of circular
plots of radius ρ = 0.013, for all the spatial patterns the benchmark performance was that achieved
with n = 25 plots under URS. Results, reported in Table 3, were similar to those achieved for
continuous populations even if the efficiencies of TSS and SGS with respect to URS were considerably
less marked. Under URS, precision increased at a rate proportional to

√
n for all the spatial patterns,

while a higher rate was invariably achieved under TSS. SGS showed the greatest efficiencies and
rate of increase with regular, random and clustered patterns, but its performance was the worst
with trended pattern, confirming its dependence on the population characteristics. When finite
populations of M = 20×20, 40×40, 80×80 quadrats with population values being the totals of the
two surfaces within quadrats were considered, for both surfaces the benchmark was achieved with
the population of M = 20× 20 quadrats sampled by means of SRSWOR and results are reported in
Table 4. Under this scheme, precision increased at a rate proportional to

√
n, while higher precision

with greater increase rates was achieved under TSS. Once again, simulation results confirmed
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Table 5
Relative efficiencies for populations of quadrats for any combination of point population size N , quadrat population size
M , spatial pattern, surface and sampling scheme. For any combination of spatial pattern and surface, the benchmark is
the empirical relative standard error achieved for N = 1000 and M = 20 × 20 under SRSWOR.

N M Surface 1 Surface 2

SRSWOR OPS SYS SRSWOR OPSS SYS

Regular 1000 20 × 20 1.00 1.25 0.84 1.00 1.44 2.47
40 × 40 1.02 1.06 1.13 1.30 1.49 1.50
80 × 80 0.91 0.91 0.78 1.32 1.32 1.82

5000 20 × 20 1.36 2.45 1.05 1.15 2.41 5.51
40 × 40 2.01 2.57 1.69 2.03 3.52 4.39
80 × 80 2.29 2.41 2.89 2.87 3.48 4.30

10000 20 × 20 1.47 3.61 0.98 1.19 2.69 9.22
40 × 40 2.47 3.98 1.79 2.21 5.21 7.46
80 × 80 3.18 3.72 2.68 3.59 5.28 6.59

Random 1000 20 × 20 1.00 1.13 1.24 1.00 1.29 2.09
40 × 40 1.04 1.06 1.13 1.22 1.31 0.99
80 × 80 1.05 1.06 0.88 1.31 1.34 1.45

5000 20 × 20 1.58 2.35 1.69 1.22 2.16 4.37
40 × 40 1.99 2.25 2.32 1.98 2.80 2.84
80 × 80 2.24 2.38 2.89 2.65 3.07 2.69

10000 20 × 20 1.71 3.07 1.41 1.27 2.53 4.47
40 × 40 2.52 3.25 2.37 2.18 3.82 5.41
80 × 80 3.08 3.33 4.43 3.30 4.19 4.53

Trended 1000 20 × 20 1.00 1.18 0.49 1.00 1.17 1.22
40 × 40 1.55 1.94 0.67 1.21 1.28 1.60
80 × 80 2.15 2.49 0.93 1.25 1.29 1.03

5000 20 × 20 1.17 1.55 0.55 1.40 2.28 2.12
40 × 40 1.96 2.75 0.77 2.15 2.71 2.37
80 × 80 3.20 4.23 1.04 2.60 2.88 2.11

10000 20 × 20 1.16 1.58 0.57 1.48 2.84 2.73
40 × 40 2.06 2.95 0.78 2.46 3.89 3.09
80 × 80 3.51 4.95 1.08 3.48 4.03 2.54

Clustered 1000 20 × 20 1.00 1.07 1.58 1.00 1.12 3.27
40 × 40 1.68 2.05 1.83 1.68 2.13 2.41
80 × 80 2.82 3.87 3.10 2.73 3.90 5.07

5000 20 × 20 0.99 1.06 1.80 1.01 1.12 3.63
40 × 40 1.71 2.13 2.39 1.70 2.19 2.98
80 × 80 3.22 5.60 5.55 3.19 5.85 11.62

10000 20 × 20 0.98 1.04 1.78 1.01 1.14 4.49
40 × 40 1.71 2.14 2.50 1.74 2.22 3.12
80 × 80 3.29 5.99 6.32 3.32 6.47 16.31

consistency under SYS, as proven in Appendix D, which however provided small efficiencies with
respect to the benchmark scheme for the first surface, while they were the greatest with the second
surface.

Finally, finite populations of M = 20 × 20, 40 × 40, 80 × 80 quadrats with population values
being the totals of marks within quadrats were considered and, in particular, point populations
of size N = 1000, 5000, 10 000 were generated according to the four spatial patterns. Areal unit
populations were sampled by means of m = M/10 quadrats selected using SRSWOR, OPSS and
SYS. For both surfaces and each spatial pattern, the benchmark was achieved with the population
of M = 20 × 20 quadrats and N = 1000 points sampled by means of SRSWOR. As argued in
Section 4, results in Table 5 showed that consistency under SRSWOR and OPSS required that both M
and N jointly increased. The results also confirmed a possible lack of consistency under SYS, which
usually outperformed SRSWOR and OPSS with clustered and random patterns, but had performance
even worse than SRSWOR with trended pattern and surface 1. Under SRSWOR precision tended to
increase more slowly than to a rate proportional to

√
n, while better precision with greater increase

rates were achieved under OPSS, that was invariably more efficient with respect to SRSWOR.
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6. Consistency and real surveys

Design-based inference is of large use in environmental surveys, especially in large-scale forest
surveys such as national forest inventories (e.g. Tomppo et al., 2010). Usually the main targets are
to estimate land use, especially forest cover that can be expressed as integrals of dichotomous
variables, together with totals of some attributes regarding finite populations of objects within some
land cover classes (e.g. total volume of trees within forested lands). Therefore populations of types
(i) and (ii) are both involved and the goal is to estimate their totals by the same survey. That is done
by randomly locating points onto the study region in accordance with a sampling scheme, recording
the land cover class at each point and selecting samples of objects within plots of pre-fixed size
centered at the selected points (Fattorini, 2014).

Consistency of the resulting estimators holds under the more widely adopted sampling schemes,
such as TSS and SGS (Sections 2.2 and 3.3). Therefore, as the number of points increases, i.e. when
the subset grain is sufficiently small with respect to the size of the study area, thus providing a
sufficiently large number of sample points, the probability distribution of the estimators can be
considered concentrated around the true parameters. These considerations support the results of
some surveys such as the Italian National Forest Inventory where about 300000 points, one per
square kilometer, were selected on the Italian territory (Fattorini et al., 2006) and the IUTI survey,
a land use survey promoted and carried out in 2008 in Italy, where 1200000 points, one each 250
square meters, were selected (Pagliarella et al., 2016).

In most large-scale forest surveys, a second-phase of sampling is performed because it may be
demanding to visit and perform estimation for all the selected points (e.g. Marchetti et al., 2018).
In this case, estimator (5) is only virtual and, in a second-phase, a sub-sample of points is selected
using a finite population sampling scheme. Fattorini et al. (2017) give sufficient conditions for the
second-phase designs to ensure consistency of the two-phase estimators when TSS is performed in
the first phase.

As pointed out by Opsomer et al. (2007), in the last years there is a ‘‘tremendous’’ opportunity
of exploit auxiliary data derived from remote sensing sources such as photo-interpreted land-
cover class, elevation, slope and Lidar metrics, in order to improve the accuracy of the two-phase
estimators by means of calibration strategies performed introducing assisting super-population
models. Because the resulting model-assisted estimators, such as regression and ratio estimators,
can be invariably expressed as smooth functions of HT estimators of totals (e.g. Särndal et al.,
1992, chapter 6), if consistency holds for the HT estimators it also holds for the model-assisted
counterparts.

6.1. A small-scale case study

Environmental surveys at large scale (e.g. countries and parks) are usually performed by envi-
ronmental agencies with great availability of staffs and resources. That allows for sustaining the
sampling of an adequate number of locations per unit area that, joined with the large extents of
the areas under study, would provide very large sample sizes and consistent estimation. However,
consistency should be pursued also in small-scale study, usually performed by few researchers
and volunteers, by adopting suitable sampling strategies, possibly exploiting auxiliary information
and taking the sampling effort as large as possible. In spring 2016 we were involved in a sample
survey performed in a small stand constituted by a rectangular area of size 70 × 140 m2 within a
seminatural mixed oak-hornbeam flood plain forest in the province of Mantova (North Italy). Owing
to the moderate size of the study area, 3P sampling was adopted to select trees, as customary in
most forest surveys over small stands. A crew of experts visited the population U of the N = 510
trees lying in the stand with bole diameter at breast height greater than 7 cm, giving a prediction xj
for the height (m) of each tree j ∈ U . Then, 3P sampling was performed by independently selecting
each tree with probability πj = xj/L, where L was set equal to 151.373 m, in such a way to ensure
πj ≤ 1 for each j ∈ U and such that the sum of probabilities provided an expected sample size of
50 trees, with an expected sampling fraction of about 10%. The selected sample S was constituted
by n = 54 trees whose heights yj were measured for each j ∈ S. The use of 3P sampling and of
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the HT estimator was judged an effective strategy to estimate the average height of trees. Indeed,
3P sampling provided inclusion probabilities proportional to the predicted height. Therefore, if
predictions were good, 3P sampling was also likely to provide inclusion probability approximately
proportional to the true heights, that, if possible, would reduce sampling variance to 0 (e.g. Särndal
et al., 1992, section 3.5). Predictions performed by the crew turned out to be very good as they
explained the 99.8% of the height variability in the sample. In addition, stated the relevant sampling
fraction of about 10%, the strategy was judged likely to provide an estimate near to the true average
value. That was confirmed by the sample results. The HT estimate of the average height (HT estimate
of total divided by 510) was of 16.03 m with an estimated sampling variance (e.g. Särndal et al.,
1992, equation 3.5.6) of 4.11 m2, providing a quite satisfactory estimate of the relative standard
error of 12.6%. The quality of the predictions allowed to perform a presumably reliable assessment
of both spatial autocorrelation and spatial stratified heterogeneity of the survey variable. Using the
predictions, spatial autocorrelation was quantified by means of the Moran Index (Moran, 1950) in
which only the nearest tree was considered as neighbor. Moreover, spatial stratified heterogeneity
was assessed by partitioning the study area into four strata of size 35 × 70 m2 and computing the
q-index (Wang et al., 2016). The values of the two indexes were equal to 0.21 and 0.02, respectively,
highlighting that both spatial autocorrelation and stratified heterogeneity were extremely weak.
Thus, the use of 3P sampling which does not take into account the spatial pattern of the trees
seems to be suitable.

7. Conclusions

Consistency of the design-based estimators of totals of spatial populations is pursued under
minimal assumptions regarding the population characteristics, by focusing on the design sequences.
Even if there is no sequence in real surveys, however the presumed sequence is inspired by the
sampling scheme actually adopted to select the sample. Therefore consistency can be considered
real, not modeled or assumed.

For continuous populations, it suffices to hold the support and the surface as fixed and simply
considering a design sequence selecting an increasing number of sample points in the support.
A slightly more complex machinery is necessary for finite populations of units scattered onto a
support, where the Isaki and Fuller (1982) asymptotic scenario is exploited, taking the support fixed
and considering a sequence of nested populations increasing within. However, when the scattered
units have no list, as frequently happens in environmental surveys, and hence it is necessary to
sample them by points, eventually identifying plots or transects, the population can be held fixed
and consistency can be achieved from the scheme adopted to locate an increasing number of points
on the support. Also in the case of populations of areal units, the support as well as the surface are
held fixed in the continuous case and consistency is achieved from the scheme adopted to select
areal units from a sequence of partitions constituted by an increasing number of areas of decreasing
extents. Results are less general in the finite case, where a sequence of nested populations must be
introduced and conditions on their enlargement are necessary.

Consistency is essential also for estimating more complex parameters: if consistent estimators
T̂1, . . . , T̂K are available for the totals T1, . . . , TK of K attributes, then for a wide class of functions f ,
the plug-in estimator f (̂T1, . . . , T̂K ) is consistent for f (T1, . . . , TK ) (e.g. Särndal et al., 1992, remark
5.3.1).

For the three types of spatial populations, Table 6 shows the list of sampling designs that meet
sufficient conditions for consistency, as proven in Sections 2.2, 3.2 and 4.2. Besides the URS and
SRSWOR schemes, that constitute theoretical benchmarks, consistency holds for most schemes
widely adopted in environmental surveys. All these schemes naturally achieve spatial balance
by means of stratified or systematic selection of sample locations. Unfortunately, owing to their
complexity in second-order inclusion probabilities, we cannot prove consistency for other complex
spatially balanced schemes recently appeared in literature, that we have already mentioned in
Section 3.2. However, owing to their effectiveness in providing spatial balance and their empirical
performance (Fattorini et al., 2015), consistency presumably holds also for these schemes. On the
other hand we have not considered consistency for schemes providing unbalanced selections, with
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Table 6
List of some widely adopted spatial sampling schemes satisfying sufficient conditions for
consistency.
Population type Consistent schemes

Continuous populations or finite populations of points without list URS
TSS
SGS

Finite populations of points with list SRSWOR
STRPA
3P sampling

Finite populations of areal units in the continuous case SRSWOR
OPSS
SYS

Finite populations of areal units in the discrete case SRSWOR
OPSS

clustering of sample locations in some parts of the support and voids in other parts. They are rarely
adopted in spatial surveys. Their use has been recently discouraged in forest studies (e.g. Pagliarella
et al., 2018).

Regarding the relative performance of the schemes of Table 6, the simulation study has shown
that the standard errors of the benchmark schemes (URS and SRSWOR) usually decrease with the
square root of the sample size, while faster rates of decreases are invariably obtained adopting
stratified schemes (TSS and OPSS). Therefore stratified allocations invariably provide efficiency
with respect to random allocations, that tends to increase with the sample size. On the other
hand the relative efficiencies of systematic allocations heavily depend on the characteristics of the
spatial populations. These results suggest the use of stratified schemes as the most cautelative
solution less linked to the unknown population features. Finally, stated this dependence on the
population characteristics, it is extremely difficult to determine if the sample size adopted in the
survey is sufficiently large to meet consistency, i.e. to provide an estimator with a small standard
error. In this framework, the estimation of the sampling variance seems to be the sole way for
a fair evaluation of the actual precision. However, as pointed out by Grafström (2012), variance
estimation is a challenging issue in spatial sampling owing to the presence of some second-order
inclusion probabilities equal to 0 in most spatially balanced schemes. Therefore, the construction
of reliable variance estimators is a future necessary step.

Appendix A. Proofs of propositions

A.1. Proof of Proposition 1

Because the surface y(p) is bounded by L, from (2)

var(̂Tk) =

∫
A

y2(p)
πk(p)

λ(dp) +

∫
A2

{ πk(p, q)
πk(p)πk(q)

− 1
}
y(p)y(q)λ(dp)λ(dq)

≤ L2
∫
A

1
πk(p)
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}+
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1
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[
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1
πk(p)
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− 1
}+]

.

Therefore, under (3) and (4) limk→∞ var(̂Tk) = 0 and T̂k converges in probability to T . □
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A.2. Proof of Proposition 2

Since |yj| ≤ L, from (7)
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Therefore, under condition (8) and if there exists π0 > 0 such that

min
j

π
(k)
j ≥ π0,

then limk→∞ var(̂Tk/Tk) = 0 and because E (̂Tk/Tk) = 1, T̂k/Tk converges in probability to 1. □

A.3. Proof of Proposition 3

In the case of continuous populations, T (k)
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l π

(k)
h

− 1
)+ ∑

h̸=l∈Pk

λ(A(k)
l )λ(A(k)

h )

≤ L2λ2(A)max
h>l

( π
(k)
lh

π
(k)
l π

(k)
h

− 1
)+

.

The two inequalities jointly imply

var(̂Tk) ≤ L2λ(A)max
l

λ(A(k)
l )

π
(k)
l

+ L2λ2(A)max
h>l

( π
(k)
lh

π
(k)
l π

(k)
h

− 1
)+

then, under (14) and (15), limk→∞ var(̂Tk) = 0 and T̂k converges in probability to T . □
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A.4. Proof of Proposition 4

In the case of finite population of units, from (13)

var(
T̂k
Tk

) =
1
T 2
k

{∑
l∈Pk

( 1

π
(k)
l

− 1
)
T (k)2
l + 2

∑
h>l∈Pk

( π
(k)
lh

π
(k)
l π

(k)
h

− 1
)
T (k)
l T (k)

h

}
≤

1
Tk

∑
l∈Pk

T (k)
l

π
(k)
l Tk

T (k)
l +

2
T 2
k

∑
h>l∈Pk

( π
(k)
lh

π
(k)
l π

(k)
h

− 1
)+

T (k)
l T (k)

h

≤
1
Tk

max
l

T (k)
l

π
(k)
l Tk

∑
l∈Pk

T (k)
l +

2
T 2
k
max
h>l

( π
(k)
lh

π
(k)
l π

(k)
h

− 1
)+ ∑

h>l∈Pk

T (k)
l T (k)

h

≤ max
l

T (k)
l

π
(k)
l Tk

+ max
h>l

( π
(k)
lh

π
(k)
l π

(k)
h

− 1
)+

.

Under condition (15) and (16) limk→∞ var(̂Tk/Tk) = 0 and because E (̂Tk/Tk) = 1, T̂k/Tk converges
in probability to 1. □

Appendix B. Relationships (10) and (11)

As to (10), because Ij(p) is equal to 1 if p ∈ Bj and equal to 0 otherwise, from the definition of
g(p), it follows that∫

B
g(p)λ(dp) =

∑
j∈U

∫
B

yj
λ(Bj)

Ij(p)λ(dp)

=

∑
j∈U

yj
λ(Bj)

∫
B
Ij(p)λ(dp) =

∑
j∈U

yj = T .

As to (11), from (9) it follows that

T̂ = λ(B)
∑
j∈S(p)

yj
λ(Bj)

= λ(B)
∑
j∈U

yj
λ(Bj)

Ij(p) = λ(B)g(p). □

Appendix C. Consistency of systematic grid sampling

Let A(k)
1 , . . . ,A(k)

nk be the nk regular polygons of size λ(A)/nk partitioning A. Moreover, let Pk,1
be a random point in A(k)

1 and Pk,2, . . . , Pk,nk the systematically repeated points in A(k)
2 , . . . ,A(k)

nk in
such a way that

T̂k =
λ(A)
nk

nk∑
i=1

y(Pk,i)

is the Monte Carlo estimator (5). For an arbitrary ϵ > 0, let g be a continuous function such that∫
A |y(p) − g(p)| λ(dp) < ϵ and let

T̂ ′

k =
λ(A)
nk

nk∑
i=1

g(Pk,i)

be the Monte Carlo estimator of T ′
=

∫
A g(p) λ(dp). Since

E[|̂Tk − T |] ≤ E[|̂Tk − T̂ ′

k|] + E[|̂T ′

k − T ′
|] + |T ′

− T |
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and the following inequalities hold

|T ′
− T | < ϵ

E[|̂Tk − T̂ ′

k|] ≤
λ(A)
nk

nk∑
i=1

E[|y(Pk,i) − g(Pk,i)|] =

∫
A

|y(p) − g(p)| λ(dp) < ϵ,

for the arbitrariness of ϵ, it suffices to prove the consistency of T̂ ′

k. To this aim, thanks to uniform
continuity of g on A, for any ϵ > 0 there exists an integer k0 such that⏐⏐λ(A)

nk
g(Pk,i) −

∫
A(k)

i

g(p) λ(dp)
⏐⏐ ≤

∫
A(k)

i

|g(Pk,i) − g(p)| λ(dp) <
λ(A)
nk

ϵ

for any k > k0 and for any i = 1, . . . , nk. Then, when k > k0,

|̂T ′

k − T ′
| ≤

nk∑
i=1

⏐⏐λ(A)
nk

g(Pk,i) −

∫
A(k)

i

g(p) λ(dp)
⏐⏐ < λ(A)ϵ

and the consistency is proven.

Appendix D. Consistency of systematic sampling of areal units in the continuous case

Since in each stratum there are Mk/mk = m0 regular polygons of size λ(A)/Mk, denote by
A(k)

1,l, . . . ,A
(k)
m0,l the polygons in the stratum l and by T (k)

1,l , . . . , T
(k)
m0,l the corresponding totals within

polygons. Under systematic sampling, the Horvitz–Thompson estimator (12) can be rewritten as

T̂k = m0

m0∑
h=1

s(k)h Ih,k

where s(k)h =
∑mk

l=1 T
(k)
h,l =

∫
A(k)

h
y(p) λ(dp), while Ih,k is equal to 1 if A(k)

h,1 is sampled and equal to

0 otherwise and A(k)
h = ∪

mk
l=1A

(k)
h,l is the union of the polygons constituting the systematic sample

(h = 1, . . . ,m0). Moreover, let g be a continuous function on A such that∫
A

|y(p) − g(p)| λ(dp) < ϵ

for a fixed ϵ > 0. If T ′
=

∫
A g(p)λ(dp), T̂ ′

k = m0
∑m0

h=1 s
′(k)
h Ih,k, with s′(k)h =

∑mk
l=1 T

′(k)
h,l =∫

A(k)
h

g(p) λ(dp) and T ′(k)
1,l , . . . , T ′(k)

m0,l represent the totals within polygons in stratum l, it holds

E[|̂Tk − T |] ≤ E[|̂Tk − T̂ ′

k|] + E[|̂T ′

k − T ′
|] + [|T ′

− T |].

Since [|T ′
− T |] < ϵ and

|̂Tk − T̂ ′

k| = |m0

m0∑
h=1

s(k)h Ih,k − m0

m0∑
h=1

s′(k)h Ih,k| = |m0

m0∑
h=1

∫
A(k)

h

(y(p) − g(p)) λ(dp)Ih,k|

≤ m0

m0∑
h=1

∫
A(k)

h

|y(p) − g(p)| λ(dp)Ih,k ≤ m0ϵ,

for the arbitrariness of ϵ, it suffices to prove consistency of T̂ ′

k. Thanks to uniform continuity of g on
A, fixed ϵ > 0, there exists an integer k0 such that for any k > k0 and any h = 1, . . . ,m0 it holds

max
l=1,...,mk

|T ′(k)
1,l − T ′(k)

h,l | <
λ(A)
Mk

ϵ

in such a way that

|s′(k)1 − s′(k)h | ≤

mk∑
l=1

|T ′(k)
1,l − T ′(k)

h,l | ≤
λ(A)
m0

ϵ



L. Fattorini, M. Marcheselli, C. Pisani et al. / Spatial Statistics 35 (2020) 100404 19

and hence

|m0s
′(k)
1 − T ′

| = |

m0∑
h=1

(s′(k)1 − s′(k)h )| ≤

m0∑
h=1

|s′(k)1 − s′(k)h | ≤ λ(A)ϵ.

Then, it follows that

|m0s
′(k)
1 − T̂ ′

k| = m0|

m0∑
h=1

(s′(k)1 − s′(k)h )Ih,k| ≤ m0

m0∑
h=1

|s′(k)1 − s′(k)h |Ih,k ≤ λ(A)ϵ.

Finally it follows

|̂T ′

k − T ′
| = |̂T ′

k − m0s
′(k)
1 + m0s

′(k)
1 − T ′

| ≤ |̂T ′

k − m0s
′(k)
1 | + |m0s

′(k)
1 − T ′

| ≤ 2λ(A)ϵ

and the consistency of T̂ ′

k is ensured from the arbitrariness of ϵ. □
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